Skip to main content

Advertisement

Log in

Increased caveolin-1 expression precedes decreased expression of occludin and claudin-5 during blood–brain barrier breakdown

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

The significance of caveolin-1, a major constituent of caveolae, and the tight junction proteins occludin and claudin-5 in early blood–brain barrier (BBB) breakdown was assessed by sequential demonstration of the expression of these proteins over a period of 12 h to 6 days post-lesion in the rat cortical cold injury model. Pial and intracerebral vessels of control rats showed punctuate endothelial immunoreactivity for caveolin-1 and caveolin-2, while claudin-5 and occludin were localized as longitudinal strands in endothelium. During the early phase of BBB breakdown following injury at 12 h and on day 2, western blot analyses detected a significant increase in caveolin-1 expression at the lesion site while immunohistochemistry showed that the caveolin-1 increase was localized to the endothelium of lesion vessels. Decreased expression of occludin occurred at the lesion site only on days 2 and 4 post-lesion while claudin-5 expression was decreased only on day 2. Dual labeling for fibronectin, a marker of BBB breakdown, and caveolin-1 or the tight junction proteins demonstrated that only lesion vessels with BBB breakdown showed a marked increase of caveolin-1, loss of occludin and reduced localization of claudin-5. The issue whether these alterations precede or follow BBB breakdown is uncertain; however, increased expression of caveolin-1 preceded the decreased expression of occludin and claudin-5. Thus caveolae and caveolin-1 have an important role in early BBB breakdown and could be potential therapeutic targets in the control of early brain edema.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ahn M, Kim H, Kim JT, Lee J, Hyun JW, Park JW, Shin T (2006) Gamma-ray irradiation stimulates the expression of caveolin-1 and GFAP in rat spinal cord: a study of immunoblot and immunohistochemistry. J Vet Sci 7(4):309–314

    PubMed  Google Scholar 

  2. Anderson RG, Kamen BA, Rothberg KG, Lacey SW (1992) Potocytosis: sequestration and transport of small molecules by caveolae. Science 255:410–411

    Article  PubMed  CAS  Google Scholar 

  3. Ballabh P, Hu F, Kumarasiri M, Braun A, Nedergaard M (2005) Development of tight junction molecules in blood vessels of germinal matrix, cerebral cortex, and white matter. Pediatr Res 58:791–798

    Article  PubMed  CAS  Google Scholar 

  4. Bolton SJ, Anthony DC, Perry VH (1998) Loss of the tight junction proteins occludin and zonula occludens-1 from cerebral vascular endothelium during neutrophil-induced blood–brain barrier breakdown in vivo. Neuroscience 86:1245–1257

    Article  PubMed  CAS  Google Scholar 

  5. Boyd NL, Park H, Yi H, Boo YC, Sorescu GP, Sykes M, Jo H (2003) Chronic shear induces caveolae formation and alters ERK and Akt responses in endothelial cells. Am J Physiol Heart Circ Physiol 285:H1113–H1122

    PubMed  CAS  Google Scholar 

  6. Dallasta LM, Pisarov LA, Esplen JE, Werley JV, Moses AV, Nelson JA, Achim CL (1999) Blood–brain barrier tight junction disruption in human immunodeficiency virus-1 encephalitis. Am J Pathol 155:1915–1927

    PubMed  CAS  Google Scholar 

  7. Furuse M, Sasaki H, Fujimoto K, Tsukita S (1998) A single gene product, claudin-1 or -2, reconstitutes tight junction strands and recruits occludin in fibroblasts. J Cell Biol 143:391–401

    Article  PubMed  CAS  Google Scholar 

  8. Gow A, Southwood CM, Li JS, Pariali M, Riordan GP, Brodie SE, Danias J, Bronstein JM, Kachar B, Lazzarini RA (1999) CNS myelin and sertoli cell tight junction strands are absent in Osp/claudin-11 null mice. Cell 99:649–659

    Article  PubMed  CAS  Google Scholar 

  9. Hirase T, Staddon JM, Saitou M, Ando-Akatsuka Y, Itoh M, Furuse M, Fujimoto K, Tsukita S, Rubin LL (1997) Occludin as a possible determinant of tight junction permeability in endothelial cells. J Cell Sci 110:1603–1613

    PubMed  CAS  Google Scholar 

  10. Huber JD, Egleton RD, Davis TP (2001) Molecular physiology and pathophysiology of tight junctions in the blood–brain barrier. Trends Neurosci 24:719–725

    Article  PubMed  CAS  Google Scholar 

  11. Ikezu T, Ueda H, Trapp BD, Nishiyama K, Sha JF, Volonte D, Galbiati F, Byrd AL, Bassell G, Serizawa H, Lane WS, Lisanti MP, Okamoto T (1998) Affinity-purification and characterization of caveolins from the brain: differential expression of caveolin-1, -2, and -3 in brain endothelial and astroglial cell types. Brain Res 804:177–192

    Article  PubMed  CAS  Google Scholar 

  12. Kubota K, Furuse M, Sasaki H, Sonoda N, Fujita K, Nagafuchi A, Tsukita S (1999) Ca(2+)-independent cell-adhesion activity of claudins, a family of integral membrane proteins localized at tight junctions. Curr Biol 9:1035–1038

    Article  PubMed  CAS  Google Scholar 

  13. Liebner S, Fischmann A, Rascher G, Duffner F, Grote EH, Kalbacher H, Wolburg H (2000) Claudin-1 and claudin-5 expression and tight junction morphology are altered in blood vessels of human glioblastoma multiforme. Acta Neuropathol 100:323–331

    Article  PubMed  CAS  Google Scholar 

  14. Liebner S, Kniesel U, Kalbacher H, Wolburg H (2000) Correlation of tight junction morphology with the expression of tight junction proteins in blood–brain barrier endothelial cells. Eur J Cell Biol 79:707–717

    Article  PubMed  CAS  Google Scholar 

  15. Lipardi C, Mora R, Colomer V, Paladino S, Nitsch L, Rodriguez-Boulan E, Zurzolo C (1998) Caveolin transfection results in caveolae formation but not apical sorting of glycosylphosphatidylinositol (GPI)-anchored proteins in epithelial cells. J Cell Biol 140:617–626

    Article  PubMed  CAS  Google Scholar 

  16. Lossinsky AS, Shivers RR (2004) Structural pathways for macromolecular and cellular transport across the blood–brain barrier during inflammatory conditions. Rev Histol Histopathol 19:535–564

    CAS  Google Scholar 

  17. Mayhan WG (2000) Nitric oxide donor-induced increase in permeability of the blood–brain barrier. Brain Res 866:101–108

    Article  PubMed  CAS  Google Scholar 

  18. McCarthy KM, Francis SA, McCormack JM, Lai J, Rogers RA, Skare IB, Lynch RD, Schneeberger EE (2000) Inducible expression of claudin-1-myc but not occludin-VSV-G results in aberrant tight junction strand formation in MDCK cells. J Cell Sci 113:3387–3398

    PubMed  CAS  Google Scholar 

  19. Monier S, Parton RG, Vogel F, Behlke J, Henske A, Kurzchalia TV (1995) VIP21-caveolin, a membrane protein constituent of the caveolar coat, oligomerizes in vivo and in vitro. Mol Biol Cell 6:911–927

    PubMed  CAS  Google Scholar 

  20. Morita K, Sasaki H, Furuse M, Tsukita S (1999) Endothelial claudin: Claudin-5/TMVCF constitutes tight junction strands in endothelial cells. J Cell Biol 147:185–194

    Article  PubMed  CAS  Google Scholar 

  21. Nag S (1998) Blood–brain barrier permeability measured with histochemistry. In: Pardridge WM (ed) Introduction to the blood–brain barrier. Methodology, biology and pathology. Cambridge University Press, Cambridge, pp 113–121

    Google Scholar 

  22. Nag S (2003) Pathophysiology of blood–brain barrier breakdown. Methods Mol Med 89:97–119

    PubMed  CAS  Google Scholar 

  23. Nag S (2005) Anatomy and structure of brain blood vessels. In: Kalimo H (ed) Pathology and genetics. Cerebrovascular diseases. ISN Neuropath Press, Basel, pp 14–21

    Google Scholar 

  24. Nag S, Eskandarian MR, Davis J, Eubanks JH (2002) Differential expression of vascular endothelial growth factor-A (VEGF-A) and VEGF-B after brain injury. J Neuropathol Exp Neurol 61:778–788

    PubMed  CAS  Google Scholar 

  25. Nag S, Papneja T, Venugopalan R, Stewart DJ (2005) Increased angiopoietin2 expression is associated with endothelial apoptosis and blood–brain barrier breakdown. Lab Invest 85:1189–1198

    Article  PubMed  CAS  Google Scholar 

  26. Nag S, Picard P, Stewart DJ (2001) Expression of nitric oxide synthases and nitrotyrosine during blood–brain barrier breakdown and repair after cold injury. Lab Invest 81:41–49

    PubMed  CAS  Google Scholar 

  27. Nag S, Takahashi JL, Kilty DW (1997) Role of vascular endothelial growth factor in blood–brain barrier breakdown and angiogenesis in brain trauma. J Neuropathol Exp Neurol 56:912–921

    Article  PubMed  CAS  Google Scholar 

  28. Nitta T, Hata M, Gotoh S, Seo Y, Sasaki H, Hashimoto N, Furuse M, Tsukita S (2003) Size-selective loosening of the blood–brain barrier in claudin-5-deficient mice. J Cell Biol 161:653–660

    Article  PubMed  CAS  Google Scholar 

  29. Nourhaghighi N, Teichert-Kuliszewska K, Davis J, Stewart DJ, Nag S (2003) Altered expression of angiopoietins during blood–brain barrier breakdown and angiogenesis. Lab Invest 83:1211–1222

    Article  PubMed  CAS  Google Scholar 

  30. Parton RG, Hanzal-Bayer M, Hancock JF (2006) Biogenesis of caveolae: a structural model for caveolin-induced domain formation. J Cell Sci 119:787–796

    Article  PubMed  CAS  Google Scholar 

  31. Parton RG, Simons K (2007) The multiple faces of caveolae. Nat Rev Mol Cell Biol 8:185–194

    Article  PubMed  CAS  Google Scholar 

  32. Plumb J, McQuaid S, Mirakhur M, Kirk J (2002) Abnormal endothelial tight junctions in active lesions and normal-appearing white matter in multiple sclerosis. Brain Pathol 12(2):154–169

    Article  PubMed  Google Scholar 

  33. Predescu D, Vogel SM, Malik AB (2004) Functional and morphological studies of protein transcytosis in continuous endothelia. Am J Physiol Lung Cell Mol Physiol 287:L895–L901

    Article  PubMed  CAS  Google Scholar 

  34. Reese TS, Karnovsky MJ (1967) Fine structural localization of a blood–brain barrier to exogenous peroxidase. J Cell Biol 34:207–217

    Article  PubMed  CAS  Google Scholar 

  35. Rizzo V, Morton C, DePaola N, Schnitzer JE, Davies PF (2003) Recruitment of endothelial caveolae into mechanotransduction pathways by flow conditioning in vitro. Am J Physiol Heart Circ Physiol 285:H1720–H1729

    PubMed  CAS  Google Scholar 

  36. Saitou M, Furuse M, Sasaki H, Schulzke JD, Fromm M, Takano H, Noda T, Tsukita S (2000) Complex phenotype of mice lacking occludin, a component of tight junction strands. Mol Biol Cell 11:4131–4142

    PubMed  CAS  Google Scholar 

  37. Scherer PE, Okamoto T, Chun M, Nishimoto I, Lodish HF, Lisanti MP (1996) Identification, sequence, and expression of caveolin-2 defines a caveolin gene family. Proc Natl Acad Sci USA 93:131–135

    Article  PubMed  CAS  Google Scholar 

  38. Schnitzer JE, Oh P, McIntosh DP (1996) Role of GTP hydrolysis in fission of caveolae directly from plasma membranes. Science 274:239–242

    Article  PubMed  CAS  Google Scholar 

  39. Schubert W, Frank PG, Razani B, Park DS, Chow CW, Lisanti MP (2001) Caveolae-deficient endothelial cells show defects in the uptake and transport of albumin in vivo. J Biol Chem 276:48619–48622

    Article  PubMed  CAS  Google Scholar 

  40. Shin T, Kim H, Jin JK, Moon C, Ahn M, Tanuma N, Matsumoto Y (2005) Expression of caveolin-1, -2, and -3 in the spinal cords of Lewis rats with experimental autoimmune encephalomyelitis. J Neuroimmunol 165:11–20

    Article  PubMed  CAS  Google Scholar 

  41. Song L, Ge S, Pachter JS (2007) Caveolin-1 regulates expression of junction-associated proteins in brain microvascular endothelial cells. Blood 109:1515–1523

    Article  PubMed  CAS  Google Scholar 

  42. Tsukita S, Furuse M (1999) Occludin and claudins in tight-junction strands: leading or supporting players? Tr Cell Biol 9:268–273

    Article  CAS  Google Scholar 

  43. Unterberg A, Wahl M, Baethmann A (1984) Effects of bradykinin on permeability and diameter of pial vessels in vivo. J Cereb Blood Flow Metab 4:574–585

    PubMed  CAS  Google Scholar 

  44. Van Itallie CM, Anderson JM (2006) Claudins and epithelial paracellular transport. Annu Rev Physiol 68:403–429

    Article  PubMed  CAS  Google Scholar 

  45. Virgintino D, Errede M, Robertson D, Capobianco C, Girolamo F, Vimercati A, Bertossi M, Roncali L (2004) Immunolocalization of tight junction proteins in the adult and developing human brain. Histochem Cell Biol 122:51–59

    Article  PubMed  CAS  Google Scholar 

  46. Virgintino D, Robertson D, Errede M, Benagiano V, Tauer U, Roncali L, Bertossi M (2002) Expression of caveolin-1 in human brain microvessels. Neuroscience 115:145–152

    Article  PubMed  CAS  Google Scholar 

  47. Witt KA, Mark KS, Hom S, Davis TP (2003) Effects of hypoxia-reoxygenation on rat blood–brain barrier permeability and tight junctional protein expression. Am J Physiol Heart Circ Physiol 285:H2820–H2831

    PubMed  CAS  Google Scholar 

  48. Wolburg H, Wolburg-Buchholz K, Kraus J, Rascher-Eggstein G, Liebner S, Hamm S, Duffner F, Grote EH, Risau W, Engelhardt B (2003) Localization of claudin-3 in tight junctions of the blood–brain barrier is selectively lost during experimental autoimmune encephalomyelitis and human glioblastoma multiforme. Acta Neuropathol (Berl) 105:586–592

    CAS  Google Scholar 

  49. Woodman SE, Ashton AW, Schubert W, Lee H, Williams TM, Medina FA, Wyckoff JB, Combs TP, Lisanti MP (2003) Caveolin-1 knockout mice show an impaired angiogenic response to exogenous stimuli. Am J Pathol 162:2059–2068

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. James Eubanks for helpful suggestions throughout this work and for reviewing this manuscript. Supported by Heart and Stroke Foundation of Ontario, Grant #5347

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukriti Nag.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nag, S., Venugopalan, R. & Stewart, D.J. Increased caveolin-1 expression precedes decreased expression of occludin and claudin-5 during blood–brain barrier breakdown. Acta Neuropathol 114, 459–469 (2007). https://doi.org/10.1007/s00401-007-0274-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-007-0274-x

Keywords

Navigation