Skip to main content

Advertisement

Log in

Loss of perineuronal net N-acetylgalactosamine in Alzheimer’s disease

  • Regular Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

The perineuronal net (PN), a specialised region of extracellular matrix, is interposed between the neuronal cell surface and astrocytic processes. It is involved in the buffering of ions, in the development, stabilisation and remodelling of synapses and in the regulating the neuronal microenvironment particularly around the parvalbumin-positive GABAergic neurons. We have investigated the relative preservation of Wisteria floribunda agglutinin (WFA)-positive PNs and parvalbumin-positive neurons in Alzheimer’s disease (AD), and the relationship of WFA-positive PNs to parenchymal tau, amyloid β-peptide (Aβ) and MHC class II antigen (a marker of activated microglia), in paraffin sections of 100 cases with AD and 45 controls. The density of PNs that could be labelled with WFA, which binds to the N-acetylgalactosamine (GalNAc) residues of chondroitin sulphate proteoglycans, was reduced by about 2/3 in AD (P<0.001). In contrast, the density of parvalbumin-positive neurons did not differ significantly between AD and controls. Combined fluorescence imaging showed granular disintegration of WFA labelling around some parvalbumin-positive neurons. There was no significant difference in the amount of phosphorylated tau, Aβ or MHC class II antigen in areas with and without WFA-positive PNs. In AD, there is marked loss of PN GalNAc that is not topographically related to neurofibrillary pathology, parenchymal Aβ load or activated microglia. Although the parvalbumin-positive neurons themselves are relatively spared, the loss of PN GalNAc, which maintains a polyanionic microenvironment around neurons, is likely to impair the function of these inhibitory interneurons. This could in turn lead to increased activity of the glutamatergic and other neurons onto which they synapse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, Cooper NR, Eikelenboom P, Emmerling M, Fiebich BL, et al (2000) Inflammation and Alzheimer’s disease. Neurobiol Aging 21:383–421

    Article  PubMed  Google Scholar 

  2. Backstrom JR, Miller CA, Tokes ZA (1992) Characterization of neutral proteinases from Alzheimer-affected and control brain specimens: identification of calcium-dependent metalloproteinases from the hippocampus. J Neurochem 58:983–992

    PubMed  Google Scholar 

  3. Backstrom JR, Lim GP, Cullen MJ, Tokes ZA (1996) Matrix metalloproteinase-9 (MMP-9) is synthesized in neurons of the human hippocampus and is capable of degrading the amyloid-β peptide (1–40). J Neurosci 16:7910–7919

    PubMed  Google Scholar 

  4. Blümcke I, Eggli P, Celio MR (1995) Relationship between astrocytic processes and “perineuronal nets” in rat neocortex. Glia 15:131–140

    Article  PubMed  Google Scholar 

  5. Brady DR, Mufson EJ (1997) Parvalbumin-immunoreactive neurons in the hippocampal formation of Alzheimer’s diseased brain. Neuroscience 80:1113–1125

    Article  PubMed  Google Scholar 

  6. Brakebusch C, Seidenbecher CI, Asztely F, Rauch U, Matthies H, Meyer H, Krug M, Bockers TM, Zhou X, Kreutz MR, Montag D, Gundelfinger ED, Fassler R (2002) Brevican-deficient mice display impaired hippocampal CA1 long-term potentiation but show no obvious deficits in learning and memory. Mol Cell Biol 22:7417–7427

    Article  PubMed  Google Scholar 

  7. Brenneke F, Schachner M, Elger CE, Lie AA (2004) Up-regulation of the extracellular matrix glycoprotein tenascin-R during axonal reorganization and astrogliosis in the adult rat hippocampus. Epilepsy Res 58:133–143

    Article  PubMed  Google Scholar 

  8. Brückner G, Brauer K, Härtig W, Wolff JR, Rickmann MJ, Derouiche A, Delpech B, Girard N, Oertel WH, Reichenbach A (1993) Perineuronal nets provide a polyanionic, glia-associated form of microenvironment around certain neurons in many parts of the rat brain. Glia 8:183–200

    Article  PubMed  Google Scholar 

  9. Brückner G, Hausen D, Härtig W, Drlicek M, Arendt T, Brauer K (1999) Cortical areas abundant in extracellular matrix chondroitin sulphate proteoglycans are less affected by cytoskeletal changes in Alzheimer’s disease. Neuroscience 92:791–805

    Article  PubMed  Google Scholar 

  10. Brückner G, Grosche J, Schmidt S, Härtig W, Margolis RU, Delpech B, Seidenbecher CI, Czaniera R, Schachner M (2000) Postnatal development of perineuronal nets in wild-type mice and in a mutant deficient in tenascin-R. J Comp Neurol 428:616–629

    Article  PubMed  Google Scholar 

  11. Bukalo O, Schachner M, Dityatev A (2001) Modification of extracellular matrix by enzymatic removal of chondroitin sulfate and by lack of tenascin-R differentially affects several forms of synaptic plasticity in the hippocampus. Neuroscience 104:359–369

    Article  PubMed  Google Scholar 

  12. Celio MR, Blümcke I (1994) Perineuronal nets—a specialized form of extracellular matrix in the adult nervous system. Brain Res Rev 19:128–145

    Article  PubMed  Google Scholar 

  13. Celio MR, Spreafico R, De Biasi S, Vitellaro-Zuccarello L (1998) Perineuronal nets: past and present. Trends Neurosci 21:510–515

    Article  PubMed  Google Scholar 

  14. Deb S, Gottschall PE (1996) Increased production of matrix metalloproteinases in enriched astrocyte and mixed hippocampal cultures treated with β-amyloid peptides. J Neurochem 66:1641–1647

    PubMed  Google Scholar 

  15. DeWitt DA, Silver J, Canning DR, Perry G (1993) Chondroitin sulfate proteoglycans are associated with the lesions of Alzheimer’s disease. Exp Neurol 121:149–152

    Article  PubMed  Google Scholar 

  16. Diaz-Nido J, Wandosell F, Avila J (2002) Glycosaminoglycans and β-amyloid, prion and tau peptides in neurodegenerative diseases. Peptides 23:1323–1332

    Article  PubMed  Google Scholar 

  17. Ferreira A (1999) Abnormal synapse formation in agrin-depleted hippocampal neurons. J Cell Sci 112:4729–4738

    PubMed  Google Scholar 

  18. Ferrer I, Soriano E, Tunon T, Fonseca M, Guionnet N (1991) Parvalbumin immunoreactive neurons in normal human temporal neocortex and in patients with Alzheimer’s disease. J Neurol Sci 106:135–141

    Article  PubMed  Google Scholar 

  19. Fillit H, Leveugle B (1995) Disorders of the extracellular matrix and the pathogenesis of senile dementia of the Alzheimer’s type. Lab Invest 72:249–253

    PubMed  Google Scholar 

  20. Fox K, Caterson B (2002) Neuroscience. Freeing the brain from the perineuronal net. Science 298:1187–1189

    Article  PubMed  Google Scholar 

  21. Goedert M, Jakes R, Spillantini MG, Hasegawa M, Smith MJ, Crowther RA (1996) Assembly of microtubule-associated protein tau into Alzheimer-like filaments induced by sulphated glycosaminoglycans. Nature 383:550–553

    Article  PubMed  Google Scholar 

  22. Gottschall PE, Yu X (1995) Cytokines regulate gelatinase A and B (matrix metalloproteinase 2 and 9) activity in cultured rat astrocytes. J Neurochem 64:1513–1520

    PubMed  Google Scholar 

  23. Gottschall PE, Deb S (1996) Regulation of matrix metalloproteinase expressions in astrocytes, microglia and neurons. Neuroimmunomodulation 3:69–75

    PubMed  Google Scholar 

  24. Gurevicius K, Gureviciene I, Valjakka A, Schachner M, Tanila H (2004) Enhanced cortical and hippocampal neuronal excitability in mice deficient in the extracellular matrix glycoprotein tenascin-R. Mol Cell Neurosci 25:515–523

    Article  PubMed  Google Scholar 

  25. Hagihara K, Miura R, Kosaki R, Berglund E, Ranscht B, Yamaguchi Y (1999) Immunohistochemical evidence for the brevican-tenascin-R interaction: colocalization in perineuronal nets suggests a physiological role for the interaction in the adult rat brain. J Comp Neurol 410:256–264

    Article  PubMed  Google Scholar 

  26. Härtig W, Derouiche A, Welt K, Brauer K, Grosche J, Mader M, Reichenbach A, Brückner G (1999) Cortical neurons immunoreactive for the potassium channel Kv3.1b subunit are predominantly surrounded by perineuronal nets presumed as a buffering system for cations. Brain Res 842:15–29

    Article  PubMed  Google Scholar 

  27. Härtig W, Klein C, Brauer K, Schuppel KF, Arendt T, Bigl V, Brückner G (2001) Hyperphosphorylated protein tau is restricted to neurons devoid of perineuronal nets in the cortex of aged bison. Neurobiol Aging 22:25–33

    Article  PubMed  Google Scholar 

  28. Hockfield S, Kalb RG, Zaremba S, Fryer H (1990) Expression of neural proteoglycans correlates with the acquisition of mature neuronal properties in the mammalian brain. Cold Spring Harb Symp Quant Biol 55:505–514

    PubMed  Google Scholar 

  29. Kawaguchi Y, Kubota Y (1997) GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Cereb Cortex 7:476–486

    Article  PubMed  Google Scholar 

  30. Kawaguchi Y, Kubota Y (1998) Neurochemical features and synaptic connections of large physiologically-identified GABAergic cells in the rat frontal cortex. Neuroscience 85:677–701

    Article  PubMed  Google Scholar 

  31. Khachaturian ZS (1985) Diagnosis of Alzheimer’s disease. Arch Neurol 42:1097–1105

    PubMed  Google Scholar 

  32. Kobayashi K, Emson PC, Mountjoy CQ (1989) Vicia villosa lectin-positive neurones in human cerebral cortex. Loss in Alzheimer-type dementia. Brain Res 498:170–174

    Article  PubMed  Google Scholar 

  33. Koppe G, Bruckner G, Brauer K, Hartig W, Bigl V (1997) Developmental patterns of proteoglycan-containing extracellular matrix in perineuronal nets and neuropil of the postnatal rat brain. Cell Tissue Res 288:33–41

    Article  PubMed  Google Scholar 

  34. Lander C, Zhang H, Hockfield S (1998) Neurons produce a neuronal cell surface-associated chondroitin sulfate proteoglycan. J Neurosci 18:174–183

    PubMed  Google Scholar 

  35. Lorenzl S, Albers DS, Relkin N, Ngyuen T, Hilgenberg SL, Chirichigno J, Cudkowicz ME, Beal MF (2003) Increased plasma levels of matrix metalloproteinase-9 in patients with Alzheimer’s disease. Neurochem Int 43:191–196

    Article  PubMed  Google Scholar 

  36. McGeer PL, McGeer EG (1995) The inflammatory response system of brain: implications for therapy of Alzheimer and other neurodegenerative diseases. Brain Res Rev 21:195–218

    Article  PubMed  Google Scholar 

  37. Mikkonen M, Alafuzoff I, Tapiola T, Soininen H, Miettinen R (1999) Subfield- and layer-specific changes in parvalbumin, calretinin and calbindin-D28K immunoreactivity in the entorhinal cortex in Alzheimer’s disease. Neuroscience 92:515–532

    Article  PubMed  Google Scholar 

  38. Morawski M, Brückner MK, Riederer P, Brückner G, Arendt T (2004) Perineuronal nets potentially protect against oxidative stress. Exp Neurol 188:309–315

    Article  PubMed  Google Scholar 

  39. Nakagami Y, Abe K, Nishiyama N, Matsuki N (2000) Laminin degradation by plasmin regulates long-term potentiation. J Neurosci 20:2003–2010

    PubMed  Google Scholar 

  40. Okamoto M, Mori S, Ichimura M, Endo H (1994) Chondroitin sulfate proteoglycans protect cultured rat’s cortical and hippocampal neurons from delayed cell death induced by excitatory amino acids. Neurosci Lett 172:51–54

    Article  PubMed  Google Scholar 

  41. Paulsen O, Moser EI (1998) A model of hippocampal memory encoding and retrieval: GABAergic control of synaptic plasticity. Trends Neurosci 21:273–278

    Article  PubMed  Google Scholar 

  42. Pizzorusso T, Medini P, Berardi N, Chierzi S, Fawcett JW, Maffei L (2002) Reactivation of ocular dominance plasticity in the adult visual cortex. Science 298:1248–1251

    Article  PubMed  Google Scholar 

  43. Rhodes KE, Fawcett JW (2004) Chondroitin sulphate proteoglycans: preventing plasticity or protecting the CNS? J Anat 204:33–48

    Article  PubMed  Google Scholar 

  44. Saghatelyan AK, Dityatev A, Schmidt S, Schuster T, Bartsch U, Schachner M (2001) Reduced perisomatic inhibition, increased excitatory transmission, and impaired long-term potentiation in mice deficient for the extracellular matrix glycoprotein tenascin-R. Mol Cell Neurosci 17:226–240

    Article  PubMed  Google Scholar 

  45. Sampson VL, Morrison JH, Vickers JC (1997) The cellular basis for the relative resistance of parvalbumin and calretinin immunoreactive neocortical neurons to the pathology of Alzheimer’s disease. Exp Neurol 145:295–302

    Article  PubMed  Google Scholar 

  46. Satoh J, Tabira T, Sano M, Nakayama H, Tateishi J (1991) Parvalbumin-immunoreactive neurons in the human central nervous system are decreased in Alzheimer’s disease. Acta Neuropathol 81:388–395

    Article  PubMed  Google Scholar 

  47. Schenk DB, Yednock T (2002) The role of microglia in Alzheimer’s disease: friend or foe? Neurobiol Aging 23:677–679

    Article  PubMed  Google Scholar 

  48. Solodkin A, Veldhuizen SD, Van Hoesen GW (1996) Contingent vulnerability of entorhinal parvalbumin-containing neurons in Alzheimer’s disease. J Neurosci 16:3311–3321

    PubMed  Google Scholar 

  49. Sugahara K, Mikami T, Uyama T, Mizuguchi S, Nomura K, Kitagawa H (2003) Recent advances in the structural biology of chondroitin sulfate and dermatan sulfate. Curr Opin Struct Biol 13:612–620

    Article  PubMed  Google Scholar 

  50. Szklarczyk A, Lapinska J, Rylski M, McKay RD, Kaczmarek L (2002) Matrix metalloproteinase-9 undergoes expression and activation during dendritic remodeling in adult hippocampus. J Neurosci 22:920–930

    PubMed  Google Scholar 

  51. Wegner F, Härtig W, Bringmann A, Grosche J, Wohlfarth K, Zuschratter W, Brückner G (2003) Diffuse perineuronal nets and modified pyramidal cells immunoreactive for glutamate and the GABA(A) receptor alpha1 subunit form a unique entity in rat cerebral cortex. Exp Neurol 184:705–714

    Article  PubMed  Google Scholar 

  52. Yamaguchi Y (2000) Lecticans: organizers of the brain extracellular matrix. Cell Mol Life Sci 57:276–289

    PubMed  Google Scholar 

  53. Yong VW, Krekoski CA, Forsyth PA, Bell R, Edwards DR (1998) Matrix metalloproteinases and diseases of the CNS. Trends Neurosci 21:75–80

    Article  PubMed  Google Scholar 

  54. Yong VW, Power C, Forsyth P, Edwards DR (2001) Metalloproteinases in biology and pathology of the nervous system. Nat Rev Neurosci 2:502–511

    Article  PubMed  Google Scholar 

  55. Yuan W, Matthews RT, Sandy JD, Gottschall PE (2002) Association between protease-specific proteolytic cleavage of brevican and synaptic loss in the dentate gyrus of kainate-treated rats. Neuroscience 114:1091–1101

    PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by BRACE (Bristol Research into Alzheimer’s and Care of the Elderly).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shabnam Baig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baig, S., Wilcock, G.K. & Love, S. Loss of perineuronal net N-acetylgalactosamine in Alzheimer’s disease. Acta Neuropathol 110, 393–401 (2005). https://doi.org/10.1007/s00401-005-1060-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-005-1060-2

Keywords

Navigation