Skip to main content
Log in

Optimal feedback control and the long-latency stretch response

  • Review
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

There has traditionally been a separation between voluntary control processes and the fast feedback responses which follow mechanical perturbations (i.e., stretch “reflexes”). However, a recent theory of motor control, based on optimal control, suggests that voluntary motor behavior involves the sophisticated manipulation of sensory feedback. We have recently proposed that one implication of this theory is that the long-latency stretch “reflex”, like voluntary control, should support a rich assortment of behaviors because these two processes are intimately linked through shared neural circuitry including primary motor cortex. In this review, we first describe the basic principles of optimal feedback control related to voluntary motor behavior. We then explore the functional properties of upper-limb stretch responses, with a focus on how the sophistication of the long-latency stretch response rivals voluntary control. And last, we describe the neural circuitry that underlies the long-latency stretch response and detail the evidence that primary motor cortex participates in sophisticated feedback responses to mechanical perturbations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbruzzese G, Berardelli A, Rothwell JC, Day BL, Marsden CD (1985) Cerebral potentials and electromyographic responses evoked by stretch of wrist muscles in man. Exp Brain Res 58:544–551

    Article  PubMed  CAS  Google Scholar 

  • Akazawa K, Aldridge JW, Steeves JD, Stein RB (1982) Modulation of stretch reflexes during locomotion in the mesencephalic cat. J Physiol (Lond) 329:553–567

    CAS  Google Scholar 

  • Akazawa K, Milner TE, Stein RB (1983) Modulation of reflex EMG and stiffness in response to stretch of human finger muscle. J Neurophysiol 49:16–27

    PubMed  CAS  Google Scholar 

  • Bedingham W, Tatton WG (1984) Dependence of EMG responses evoked by imposed wrist displacements on pre-existing activity in the stretched muscles. Can J Neurol Sci 11:272–280

    PubMed  CAS  Google Scholar 

  • Brogan WL (1991) Modern control theory. Prentice-Hall, Upper Saddle River

    Google Scholar 

  • Burdet E, Osu R, Franklin DW, Milner TE, Kawato M (2001) The central nervous system stabilizes unstable dynamics by learning optimal impedance. Nature 414:446–449

    Article  PubMed  CAS  Google Scholar 

  • Burke D, Gandevia SC, Mckeon B (1984) Mono-synaptic and oligosynaptic contributions to human ankle jerk and H-reflex. J Neurophysiol 52:435–448

    PubMed  CAS  Google Scholar 

  • Calancie B, Bawa P (1985) Voluntary and reflexive recruitment of flexor carpi radialis motor units in humans. J Neurophysiol 53:1194–1200

    PubMed  CAS  Google Scholar 

  • Capaday C, Stein RB (1986) Amplitude-modulation of the soleus H-reflex in the human during walking and standing. J Neurosci 6:1308–1313

    PubMed  CAS  Google Scholar 

  • Capaday C, Stein RB (1987) A method for simulating the reflex output of a motoneuron pool. J Neurosci Methods 21:91–104

    Article  PubMed  CAS  Google Scholar 

  • Capaday C, Forget R, Fraser R, Lamarre Y (1991) Evidence for a contribution of the motor cortex to the long-latency stretch reflex of the human thumb. J Physiol 440:243–255

    PubMed  CAS  Google Scholar 

  • Cheney PD, Fetz EE (1984) Corticomotoneuronal cells contribute to long-latency stretch reflexes in the rhesus-monkey. J Physiol Lond 349:249–272

    PubMed  CAS  Google Scholar 

  • Christakos CN, Wolf H, Meyerlohmann J (1983) The M2 electro-myographic response to random perturbations of arm movements is missing in long-trained monkeys. Neurosci Lett 41:295–300

    Article  PubMed  CAS  Google Scholar 

  • Cody FW, MacDermott N, Matthews PB, Richardson HC (1986) Observations on the genesis of the stretch reflex in Parkinson’s disease. Brain 109(Pt 2):229–249

    Article  PubMed  Google Scholar 

  • Cole KJ, Gracco VL, Abbs JH (1984) Autogenic and nonautogenic sensorimotor actions in the control of multiarticulate hand movements. Exp Brain Res 56:582–585

    Article  PubMed  CAS  Google Scholar 

  • Colebatch JG, Gandevia SC, Mccloskey DI, Potter EK (1979) Subject instruction and long latency reflex responses to muscle stretch. J Physiol (Lond) 292:527–534

    CAS  Google Scholar 

  • Crago PE, Houk JC, Hasan Z (1976) Regulatory actions of human stretch reflex. J Neurophysiol 39:925–935

    PubMed  CAS  Google Scholar 

  • Cunningham HA (1989) Aiming error under transformed spatial mappings suggests a structure for visual motor maps. J Exp Psychol Hum Percept Perform 15:493–506

    Article  PubMed  CAS  Google Scholar 

  • Day BL, Riescher H, Struppler A, Rothwell JC, Marsden CD (1991) Changes in the response to magnetic and electrical-stimulation of the motor cortex following muscle stretch in man. J Physiol Lond 433:41–57

    PubMed  CAS  Google Scholar 

  • Diedrichsen J (2007) Optimal task-dependent changes of bimanual feedback control and adaptation. Curr Biol 17:1675–1679

    Article  PubMed  CAS  Google Scholar 

  • Diedrichsen J, Shadmehr R, Ivry RB (2010) The coordination of movement: optimal feedback control and beyond. Trends Cogn Sci 14:31–39

    Article  PubMed  Google Scholar 

  • Dietz V, Discher M, Trippel M (1994) Task-dependent modulation of short-latency and long-latency electromyographic responses in upper-limb muscles. Electroencephalogr Clin Neurophysiol 93:49–56

    Article  PubMed  CAS  Google Scholar 

  • Dimitriou M, Franklin DW, Wolpert DM (2011) Task-dependent coordination of rapid bimanual motor responses. J Neurophysiol 107:890–901

    Article  PubMed  Google Scholar 

  • Doemges F, Rack PMH (1992a) Changes in the stretch reflex of the human 1St dorsal interosseous muscle during different tasks. J Physiol Lond 447:563–573

    PubMed  CAS  Google Scholar 

  • Doemges F, Rack PMH (1992b) Task-dependent changes in the response of human wrist joints to mechanical disturbance. J Physiol Lond 447:575–585

    PubMed  CAS  Google Scholar 

  • Dufresne JR, Soechting JF, Terzuolo CA (1980) Modulation of the myotatic reflex gain in man during intentional movements. Brain Res 193:67–84

    Article  PubMed  CAS  Google Scholar 

  • Duysens J, Tax AA, Trippel M, Dietz V (1993) Increased amplitude of cutaneous reflexes during human running as compared to standing. Brain Res 613:230–238

    Article  PubMed  CAS  Google Scholar 

  • Eklund G, Hagbarth KE, Hagglund JV, Wallin EU (1982) The late reflex responses to muscle stretch—the resonance hypothesis versus the long-loop hypothesis. J Physiol 326:79–90

    PubMed  CAS  Google Scholar 

  • Evarts EV (1973) Motor cortex reflexes associated with learned movement. Science 179:501–503

    Article  PubMed  CAS  Google Scholar 

  • Evarts EV, Fromm C (1977) Sensory responses in motor cortex neurons during precise motor control. Neurosc Lett 5:267–272

    Article  CAS  Google Scholar 

  • Evarts EV, Granit R (1976) Relations of reflexes and intended movements. Prog Brain Res 44:1–14

    Article  PubMed  CAS  Google Scholar 

  • Evarts EV, Tanji J (1976) Reflex and intended responses in motor cortex pyramidal tract neurons of monkey. J Neurophysiol 39:1069–1080

    PubMed  CAS  Google Scholar 

  • Fagg AH, Shah A, Barto AG (2002) A computational model of muscle recruitment for wrist movements. J Neurophysiol 88:3348–3358

    Article  PubMed  Google Scholar 

  • Faisal AA, Selen LPJ, Wolpert DM (2008) Noise in the nervous system. Nat Rev Neurosci 9:292–303

    Article  PubMed  CAS  Google Scholar 

  • Fetz EE, Finocchio DV, Baker MA, Soso MJ (1980) Sensory and motor-responses of precentral cortex cells during comparable passive and active joint movements. J Neurophysiol 43:1070–1089

    PubMed  CAS  Google Scholar 

  • Flament D, Hore J (1988) Relations of motor cortex neural discharge to kinematics of passive and active elbow movements in the monkey. J Neurophysiol 60:1268–1284

    PubMed  CAS  Google Scholar 

  • Forssberg H, Grillner S, Rossignol S (1975) Phase dependent reflex reversal during walking in chronic spinal cats. Brain Res 85:103–107

    Article  PubMed  CAS  Google Scholar 

  • Franklin DW, Wolpert DM (2008) Specificity of reflex adaptation for task-relevant variability. J Neurosci 28:14165–14175

    Article  PubMed  CAS  Google Scholar 

  • Franklin DW, Osu R, Burdet E, Kawato M, Milner TE (2003) Adaptation to stable and unstable dynamics achieved by combined impedance control and inverse dynamics model. J Neurophysiol 90:3270–3282

    Article  PubMed  Google Scholar 

  • Franklin DW, Liaw G, Milner TE, Osu R, Burdet E, Kawato M (2007) Endpoint stiffness of the arm is directionally tuned to instability in the environment. J Neurosci 27:7705–7716

    Article  PubMed  CAS  Google Scholar 

  • Fromm C, Evarts EV (1977) Relation of motor cortex neurons to precisely controlled and ballistic movements. Neurosci Lett 5:259–265

    Article  PubMed  CAS  Google Scholar 

  • Ghez C, Shinoda Y (1978) Spinal mechanisms of functional stretch reflex. Exp Brain Res 32:55–68

    Article  PubMed  CAS  Google Scholar 

  • Gielen CC, Ramaekers L, van Zuylen EJ (1988) Long-latency stretch reflexes as co-ordinated functional responses in man. J Physiol 407:275–292

    PubMed  CAS  Google Scholar 

  • Goldring S, Ratcheson R (1972) Human motor cortex—sensory input data from single neuron recordings. Science 175:1493

    Article  PubMed  CAS  Google Scholar 

  • Goodale MA, Pelisson D, Prablanc C (1986) Large adjustments in visually guided reaching do not depend on vision of the hand or perception of target displacement. Nature 320:748–750

    Article  PubMed  CAS  Google Scholar 

  • Goodwin GM, Luschei ES (1975) Discharge of spindle afferents from jaw-closing muscles during chewing in alert monkeys. J Neurophysiol 38:560–571

    PubMed  CAS  Google Scholar 

  • Gottlieb GL, Agarwal GC (1979) Response to sudden torques about ankle in man—myotatic reflex. J Neurophysiol 42:91–106

    PubMed  CAS  Google Scholar 

  • Gottlieb GL, Agarwal GC (1980) Response to sudden torques about ankle in man. 2. Postmyotatic reactions. J Neurophysiol 43:86–101

    PubMed  CAS  Google Scholar 

  • Graham KM, Moore KD, Cabel DW, Gribble PL, Cisek P, Scott SH (2003) Kinematics and kinetics of multijoint reaching in nonhuman primates. J Neurophysiol 89:2667–2677

    Article  PubMed  Google Scholar 

  • Grey MJ, Ladouceur M, Andersen JB, Nielsen JB, Sinkjaer T (2001) Group II muscle afferents probably contribute to the medium latency soleus stretch reflex during walking in humans. J Physiol Lond 534:925–933

    Article  PubMed  CAS  Google Scholar 

  • Gritsenko V, Kalaska JF (2010) Rapid online correction is selectively suppressed during movement with a visuomotor transformation. J Neurophysiol 104:3084–3104

    Article  PubMed  CAS  Google Scholar 

  • Hagbarth KE (1967) EMG studies of stretch reflexes in man. Electroencephalogr Clin Neurophysiol Suppl 25:74–79

    Google Scholar 

  • Hagbarth KE, Hagglund JV, Wallin EU, Young RR (1981) Grouped spindle and electro-myographic responses to abrupt wrist extension movements in man. J Physiol Lond 312:81–96

    PubMed  CAS  Google Scholar 

  • Hager-Ross C, Cole KJ, Johansson RS (1996) Grip-force responses to unanticipated object loading: load direction reveals body- and gravity-referenced intrinsic task variables. Exp Brain Res 110:142–150

    PubMed  CAS  Google Scholar 

  • Hammond PH (1955) Involuntary activity in biceps following the sudden application of velocity to the abducted forearm. J Physiol 127:23-5P

    Google Scholar 

  • Hammond PH (1956) The influence of prior instruction to the subject on an apparently involuntary neuro-muscular response. J Physiol (Lond) 132:17P–18P

    Google Scholar 

  • Harris CM, Wolpert DM (1998) Signal-dependent noise determines motor planning. Nature 394:780–784

    Article  PubMed  CAS  Google Scholar 

  • Hasan Z (2005) The human motor control system’s response to mechanical perturbation: should it, can it, and does it ensure stability? J Motor Behav 37:484–493

    Article  CAS  Google Scholar 

  • Hatsopoulos NG, Suminski AJ (2011) Sensing with the motor cortex. Neuron 72:477–487

    Article  PubMed  CAS  Google Scholar 

  • Herter TM, Korbel T, Scott SH (2009) Comparison of neural responses in primary motor cortex to transient and continuous loads during posture. J Neurophysiol 101:150–163

    Article  PubMed  Google Scholar 

  • Hof AL (1984) Emg and muscle force—an introduction. Hum Mov Sci 3:119–153

    Article  Google Scholar 

  • Hogan N (1984) An organizing principle for a class of voluntary movements. J Neurosci 4:2745–2754

    PubMed  CAS  Google Scholar 

  • Hollerbach JM, Flash T (1982) Dynamic interactions between limb segments during planar arm movement. Biol Cybern 44:67–77

    Article  PubMed  CAS  Google Scholar 

  • Horak FB, Nashner LM (1986) Central programming of postural movements—adaptation to altered support-surface configurations. J Neurophysiol 55:1369–1381

    PubMed  CAS  Google Scholar 

  • Hore J, Mccloskey DI, Taylor JL (1990) Task-dependent changes in gain of the reflex response to imperceptible perturbations of joint position in man. J Physiol Lond 429:309–321

    PubMed  CAS  Google Scholar 

  • Hulliger M (1984) The mammalian muscle-spindle and its central control. Rev Physiol Biochem Pharmacol 101:1–110

    Article  PubMed  CAS  Google Scholar 

  • Hwang EJ, Shadmehr R (2005) Internal models of limb dynamics and the encoding of limb state. J Neural Eng 2:S266–S278

    Article  PubMed  Google Scholar 

  • Jacobs JV, Horak FB (2007) Cortical control of postural responses. J Neural Transm 114:1339–1348

    Article  PubMed  CAS  Google Scholar 

  • Jaeger RJ, Gottlieb GL, Agarwal GC (1982) Myoelectric responses at flexors and extensors of human wrist to step torque perturbations. J Neurophysiol 48:388–402

    PubMed  CAS  Google Scholar 

  • Jeka JJ, Lackner JR (1994) Fingertip contact influences human postural control. Exp Brain Res 100:495–502

    Article  PubMed  CAS  Google Scholar 

  • Johnson MT, Kipnis AN, Lee MC, Ebner TJ (1993) Independent control of reflex and volitional EMG modulation during sinusoidal pursuit tracking in humans. Exp Brain Res 96:347–362

    Article  PubMed  CAS  Google Scholar 

  • Kandel ER, Schwartz JH, Jessell TM (2000) Principles of neural science. McGraw-Hill, New York

    Google Scholar 

  • Kawato M, Wolpert D (1998) Internal models for motor control. Sens Guid Mov 218:291–307

    CAS  Google Scholar 

  • Kernell D, Hultborn H (1990) Synaptic effects on recruitment gain—a mechanism of importance for the input output relations of motoneuron pools. Brain Res 507:176–179

    Article  PubMed  CAS  Google Scholar 

  • Kimura T, Haggard P, Gomi H (2006) Transcranial magnetic stimulation over sensorimotor cortex disrupts anticipatory reflex gain modulation for skilled action. J Neurosci 26:9272–9281

    Article  PubMed  CAS  Google Scholar 

  • Knill DC, Bondada A, Chhabra M (2011) Flexible, task-dependent use of sensory feedback to control hand movements. J Neurosci 31:1219–1237

    Article  PubMed  CAS  Google Scholar 

  • Komiyama T, Zehr EP, Stein RB (2000) Absence of nerve specificity in human cutaneous reflexes during standing. Exp Brain Res 133:267–272

    Article  PubMed  CAS  Google Scholar 

  • Koshland GF, Hasan Z, Gerilovsky L (1991) Activity of wrist muscles elicited during imposed or voluntary movements about the elbow joint. J Motor Behav 23:91–100

    Article  CAS  Google Scholar 

  • Krakauer JW (2009) Motor learning and consolidation: the case of visuomotor rotation. Adv Exp Med Biol 629:405–421

    Article  PubMed  Google Scholar 

  • Krutky MA, Ravichandran VJ, Trumbower RD, Perreault EJ (2010) Interactions between limb and environmental mechanics influence stretch reflex sensitivity in the human arm. J Neurophysiol 103:429–440

    Article  PubMed  Google Scholar 

  • Kuo AD (1995) An optimal control model for analyzing human postural balance. IEEE Trans Biomed Eng 42:87–101

    Article  PubMed  CAS  Google Scholar 

  • Kurtzer I, Pruszynski JA, Herter TM, Scott SH (2006) Primate upper limb muscles exhibit activity patterns that differ from their anatomical action during a postural task. J Neurophysiol 95:493–504

    Article  PubMed  Google Scholar 

  • Kurtzer IL, Pruszynski JA, Scott SH (2008) Long-latency reflexes of the human arm reflect an internal model of limb dynamics. Curr Biol 18:449–453

    Article  PubMed  CAS  Google Scholar 

  • Kurtzer I, Pruszynski JA, Scott SH (2009) Long-latency responses during reaching account for the mechanical interaction between the shoulder and elbow joints. J Neurophysiol 102:3004–3015

    Article  PubMed  Google Scholar 

  • Kurtzer I, Pruszynski JA, Scott SH (2010) Long-latency and voluntary responses to an arm displacement can be rapidly attenuated by perturbation offset. J Neurophysiol 103:3195–3204

    Article  PubMed  Google Scholar 

  • Lackner JR, Dizio P (1994) Rapid adaptation to coriolis-force perturbations of arm trajectory. J Neurophysiol 72:299–313

    PubMed  CAS  Google Scholar 

  • Lamarre Y, Bioulac B, Jacks B (1978) Activity of precentral neurons in conscious monkeys—effects of deafferentation and cerebellar ablation. J Physiol 74:253–264

    CAS  Google Scholar 

  • Lawrence JH, Deluca CJ (1983) Myoelectric signal versus force relationship in different human muscles. J Appl Physiol 54:1653–1659

    PubMed  CAS  Google Scholar 

  • Lee RG, Tatton WG (1978) Long loop reflexes in man: clinical applications. In: Desmedt JE (ed) Cerebral motor control in man: long loop mechanisms. Krager, Basel, pp 320–333

    Google Scholar 

  • Lee RG, Tatton WG (1982) Long latency reflexes to imposed displacements of the human wrist—dependence on duration of movement. Exp Brain Res 45:207–216

    Article  PubMed  CAS  Google Scholar 

  • Lemon RN, Porter R (1976) Afferent input to movement-related precentral neurons in conscious monkeys. Proc R Soc Lond Ser B Biol Sci 194:313–339

    Article  CAS  Google Scholar 

  • Lewis GN, Polych MA, Byblow WD (2004) Proposed cortical and sub-cortical contributions to the long-latency stretch reflex in the forearm. Exp Brain Res 156:72–79

    Article  PubMed  Google Scholar 

  • Liddell EGT, Sherrington CS (1924) Reflexes in response to stretch (myotatic reflexes). Proc R Soc Lond B 96:212–242

    Article  Google Scholar 

  • Loeb GE, Duysens J (1979) Activity patterns in individual hindlimb primary and secondary muscle-spindle afferents during normal movements in unrestrained cats. J Neurophysiol 42:420–440

    PubMed  CAS  Google Scholar 

  • Lourenco G, Iglesias C, Cavallari P, Pierrot-Deseilligny E, Marchand-Pauvert V (2006) Mediation of late excitation from human hand muscles via parallel group II spinal and group I transcortical pathways. J Physiol 572:585–603

    Article  PubMed  CAS  Google Scholar 

  • Lucier GE, Ruegg DC, Wiesendanger M (1975) Responses of neurons in motor cortex and in area-3A to controlled stretches of forelimb muscles in cebus monkeys. J Physiol Lond 251:833–853

    PubMed  CAS  Google Scholar 

  • Ludvig D, Cathers I, Kearney RE (2007) Voluntary modulation of human stretch reflexes. Exp Brain Res 183:201–213

    Article  PubMed  Google Scholar 

  • MacKinnon CD, Verrier MC, Tatton WG (2000) Motor cortical potentials precede long-latency EMG activity evoked by imposed displacements of the human wrist. Exp Brain Res 131:477–490

    Article  PubMed  CAS  Google Scholar 

  • Marsden CD, Merton PA, Morton HB (1973) Latency measurements compatible with a cortical pathway for stretch reflex in man. J Physiol Lond 230:58–59

    Google Scholar 

  • Marsden CD, Merton PA, Morton HB (1976a) Servo action in human thumb. J Physiol Lond 257:1–44

    PubMed  CAS  Google Scholar 

  • Marsden CD, Merton PA, Morton HB (1976b) Stretch reflex and servo action in a variety of human muscles. J Physiol Lond 259:531–560

    PubMed  CAS  Google Scholar 

  • Marsden CD, Merton PA, Morton HB, Adam J (1977) Effect of posterior column lesions on servo responses from human long thumb flexor. Brain 100:185–200

    Article  PubMed  Google Scholar 

  • Marsden CD, Merton PA, Morton HB (1981) Human postural responses. Brain 104:513–534

    Article  PubMed  CAS  Google Scholar 

  • Marsden CD, Rothwell JC, Day BL (1983) Long-latency automatic responses to muscle stretch in man: origin and function. In: Desmedt JE (ed) Motor control mechanisms in health and disease. Raven Press, New York

    Google Scholar 

  • Matthews PBC (1984) Evidence from the use of vibration that the human long-latency stretch reflex depends upon spindle secondary afferents. J Physiol Lond 348:383–415

    PubMed  CAS  Google Scholar 

  • Matthews PBC (1986) Observations on the automatic compensation of reflex gain on varying the preexisting level of motor discharge in man. J Physiol Lond 374:73–90

    PubMed  CAS  Google Scholar 

  • Matthews PBC (1989) Long-latency stretch reflexes of 2 intrinsic muscles of the human hand analyzed by cooling the arm. J Physiol Lond 419:519–538

    PubMed  CAS  Google Scholar 

  • Matthews PBC (1991) The human stretch reflex and the motor cortex. Trends Neurosci 14:87–91

    Article  PubMed  CAS  Google Scholar 

  • Matthews PBC (2006) Restoring balance to the reflex actions of the muscle spindle: the secondary endings also matter. J Physiol 572:309–310

    Article  PubMed  CAS  Google Scholar 

  • Matthews PBC, Miles TS (1988) On the long-latency reflex responses of the human flexor digitorum profundus. J Physiol Lond 404:515–534

    PubMed  CAS  Google Scholar 

  • Matthews PBC, Pickup CM (1985) Contrasting responses of the long flexor of the big toe to stretch and to vibration. J Physiol Lond 369:14

    Google Scholar 

  • Matthews PBC, Farmer SF, Ingram DA (1990) On the localization of the stretch reflex of intrinsic hand muscles in a patient with mirror movements. J Physiol Lond 428:561–577

    PubMed  CAS  Google Scholar 

  • Meskers CGM, Schouten AC, Rich MML, de Groot JH, Schuurmans J, Arendzen JH (2010) Tizanidine does not affect the linear relation of stretch duration to the long latency M2 response of m. flexor carpi radialis. Exp Brain Res 201:681–688

    Article  PubMed  CAS  Google Scholar 

  • Miller AD, Brooks VB (1981) Late muscular responses to arm perturbations persist during supraspinal dysfunctions in monkeys. Exp Brain Res 41:146–158

    Article  PubMed  CAS  Google Scholar 

  • Milner-Brown HS, Stein RB (1975) Relation between surface electromyogram and muscular force. J Physiol Lond 246:549–569

    PubMed  CAS  Google Scholar 

  • Mortimer JA, Webster DD, Dukich TG (1981) Changes in short and long latency stretch responses during the transition from posture to movement. Brain Res 229:337–351

    Article  PubMed  CAS  Google Scholar 

  • Murphy JT, Kwan HC, Mackay WA, Wong YC (1978) Spatial-organization of precentral cortex in awake primates. 3. input-output coupling. J Neurophysiol 41:1132–1139

    PubMed  CAS  Google Scholar 

  • Mutha PK, Sainburg RL (2009) Shared bimanual tasks elicit bimanual reflexes during movement. J Neurophysiol 102:3142–3155

    Article  PubMed  Google Scholar 

  • Naito E, Ehrsson HH, Geyer S, Zilles K, Roland PE (1999) Illusory arm movements activate cortical motor areas: a positron emission tomography study. J Neurosci 19:6134–6144

    PubMed  CAS  Google Scholar 

  • Naito E, Roland PE, Ehrsson HH (2002) I feel my hand moving: a new role of the primary motor cortex in somatic perception of limb movement. Neuron 36:979–988

    Article  PubMed  CAS  Google Scholar 

  • Nashner LM (1977) Fixed patterns of rapid postural responses among leg muscles during stance. Exp Brain Res 30:13–24

    Article  PubMed  CAS  Google Scholar 

  • Nozaki D, Kurtzer I, Scott SH (2006) Limited transfer of learning between unimanual and bimanual skills within the same limb. Nat Neurosci 9:1364–1366

    Article  PubMed  CAS  Google Scholar 

  • Ohki Y, Johansson RS (1999) Sensorimotor interactions between pairs of fingers in bimanual and unimanual manipulative tasks. Exp Brain Res 127:43–53

    Article  PubMed  CAS  Google Scholar 

  • Paintal AS (1965) Effects of temperature on conduction in single vagal and saphenous myelinated nerve fibres of cat. J Physiol Lond 180:20

    PubMed  CAS  Google Scholar 

  • Palmer E, Ashby P (1992) Evidence that a long latency stretch reflex in humans is transcortical. J Physiol Lond 449:429–440

    PubMed  CAS  Google Scholar 

  • Pearce SL, Miles TS, Thompson PD, Nordstrom MA (2003) Is the long-latency stretch reflex in human masseter transcortical? Exp Brain Res 150:465–472

    PubMed  Google Scholar 

  • Pelisson D, Prablanc C, Goodale MA, Jeannerod M (1986) Visual control of reaching movements without vision of the Limb. 2. evidence of fast unconscious processes correcting the trajectory of the hand to the final position of a double-step stimulus. Exp Brain Res 62:303–311

    Article  PubMed  CAS  Google Scholar 

  • Perreault EJ, Chen K, Trumbower RD, Lewis G (2008) Interactions with compliant loads alter stretch reflex gains but not intermuscular coordination. J Neurophysiol 99:2101–2113

    Article  PubMed  Google Scholar 

  • Phillips CG (1969) Ferrier lecture, 1968—motor apparatus of baboons hand. Proc R Soc Lond Ser B Biol Sci 173:141

    Article  CAS  Google Scholar 

  • Picard N, Smith AM (1992) Primary motor cortical responses to perturbations of prehension in the monkey. J Neurophysiol 68:1882–1894

    PubMed  CAS  Google Scholar 

  • Pierrot-Deseilligny E, Burke D (2005) The circuitry of the spinal cord: its role in motor control and movement disorders. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Pine ZM, Krakauer JW, Gordon J, Ghez C (1996) Learning of scaling factors and reference axes for reaching movements. NeuroReport 7:2357–2361

    Article  PubMed  CAS  Google Scholar 

  • Pisella L, Grea H, Tilikete C, Vighetto A, Desmurget M, Rode G, Boisson D, Rossetti Y (2000) An ‘automatic pilot’ for the hand in human posterior parietal cortex: toward reinterpreting optic ataxia. Nat Neurosci 3:729–736

    Article  PubMed  CAS  Google Scholar 

  • Prochazka A (1989) Sensorimotor gain-control—a basic strategy of motor systems. Prog Neurobiol 33:281–307

    Article  PubMed  CAS  Google Scholar 

  • Prochazka A, Clarac F, Loeb GE, Rothwell JC, Wolpaw JR (2000) What do reflex and voluntary mean? Modern views on an ancient debate. Exp Brain Res 130:417–432

    Article  PubMed  CAS  Google Scholar 

  • Pruszynski JA, Kurtzer I, Scott SH (2008) Rapid motor responses are appropriately tuned to the metrics of a visuospatial task. J Neurophysiol 100:224–238

    Article  PubMed  Google Scholar 

  • Pruszynski JA, Kurtzer I, Lillicrap TP, Scott SH (2009) Temporal evolution of “automatic gain-scaling”. J Neurophysiol 102:992–1003

    Article  PubMed  Google Scholar 

  • Pruszynski JA, King GL, Boisse L, Scott SH, Flanagan JR, Munoz DP (2010) Stimulus-locked responses on human arm muscles reveal a rapid neural pathway linking visual input to arm motor output. Eur J Neurosci 32:1049–1057

    Article  PubMed  Google Scholar 

  • Pruszynski JA, Kurtzer I, Nashed JY, Omrani M, Brouwer B, Scott SH (2011a) Primary motor cortex underlies multi-joint integration for fast feedback control. Nature 478:387–390

    Article  PubMed  CAS  Google Scholar 

  • Pruszynski JA, Kurtzer I, Scott SH (2011b) The long-latency reflex is composed of at least two functionally independent processes. J Neurophysiol 106:449–459

    Article  PubMed  Google Scholar 

  • Prut Y, Fetz EE (1999) Primate spinal interneurons show pre-movement instructed delay activity. Nature 401:590–594

    Article  PubMed  CAS  Google Scholar 

  • Rosen I, Asanuma H (1972) Peripheral afferent inputs to forelimb area of monkey motor cortex—input-output relations. Exp Brain Res 14:257

    Article  PubMed  CAS  Google Scholar 

  • Rothwell JC, Traub MM, Marsden CD (1980) Influence of voluntary intent on the human long-latency stretch reflex. Nature 286:496–498

    Article  PubMed  CAS  Google Scholar 

  • Ruegg DG, Krauer R, Drews H (1990) Superposition of H-reflexes on steady contractions in man. J Physiol Lond 427:1–18

    PubMed  CAS  Google Scholar 

  • Sailer U, Flanagan JR, Johansson RS (2005) Eye-hand coordination during learning of a novel visuomotor task. J Neurosci 25:8833–8842

    Article  PubMed  CAS  Google Scholar 

  • Scholz JP, Schoner G (1999) The uncontrolled manifold concept: identifying control variables for a functional task. Exp Brain Res 126:289–306

    Article  PubMed  CAS  Google Scholar 

  • Scholz JP, Schoner G, Latash ML (2000) Identifying the control structure of multijoint coordination during pistol shooting. Exp Brain Res 135:382–404

    Article  PubMed  CAS  Google Scholar 

  • Schuurmans J, de Vlugt E, Schouten AC, Meskers CGM, de Groot JH, van der Helm FCT (2009) The monosynaptic Ia afferent pathway can largely explain the stretch duration effect of the long latency M2 response. Exp Brain Res 193:491–500

    Article  PubMed  Google Scholar 

  • Scott SH (2004) Optimal feedback control and the neural basis of volitional motor control. Nat Rev Neurosci 5:534–546

    Article  CAS  Google Scholar 

  • Scott SH, Kalaska JF (1997) Reaching movements with similar hand paths but different arm orientations.1. Activity of individual cells in motor cortex. J Neurophysiol 77:826–852

    PubMed  CAS  Google Scholar 

  • Shadmehr R, Krakauer JW (2008) A computational neuroanatomy for motor control. Exp Brain Res 185:359–381

    Article  PubMed  Google Scholar 

  • Shadmehr R, Mussa-Ivaldi FA (1994) Adaptive representation of dynamics during learning of a motor task. J Neurosci 14:3208–3224

    PubMed  CAS  Google Scholar 

  • Shadmehr R, Wise SP (2005) The computational neurobiology of reaching and pointing. MIT Press, Cambridge

    Google Scholar 

  • Shemmell J, An JH, Perreault EJ (2009) The differential role of motor cortex in stretch reflex modulation induced by changes in environmental mechanics and verbal instruction. J Neurosci 29:13255–13263

    Article  PubMed  CAS  Google Scholar 

  • Shemmell J, Krutky MA, Perreault EJ (2010) Stretch sensitive reflexes as an adaptive mechanism for maintaining limb stability. Clin Neurophysiol 121:1680–1689

    Article  PubMed  Google Scholar 

  • Sherrington CS (1910) Flexion-reflex of the limb, croseed extension reflex and reflex stepping and standing. J Physiol 40:28–121

    PubMed  CAS  Google Scholar 

  • Slot PJ, Sinkjaer T (1994) Simulations of the alpha-motoneuron pool electromyogram reflex at different preactivation levels in man. Biol Cybern 70:351–358

    Article  PubMed  CAS  Google Scholar 

  • Smeets JB, Brenner E (1999) A new view on grasping. Mot Control 3:237–271

    CAS  Google Scholar 

  • Soechting JF, Lacquaniti F (1988) Quantitative-evaluation of the electromyographic responses to multidirectional load perturbations of the human arm. J Neurophysiol 59:1296–1313

    PubMed  CAS  Google Scholar 

  • Soechting JF, Dufresne JR, Lacquaniti F (1981) Time-varying properties of myotatic response in man during some simple motor-tasks. J Neurophysiol 46:1226–1243

    PubMed  CAS  Google Scholar 

  • Stein RB, Hunter IW, Lafontaine SR, Jones LA (1995) Analysis of short-latency reflexes in human elbow flexor muscles. J Neurophysiol 73:1900–1911

    PubMed  CAS  Google Scholar 

  • Stengel RF (1994) Optimal control and estimation. Dover Publications, New York

    Google Scholar 

  • Strick PL (1983) The influence of motor preparation on the response of cerebellar neurons to limb displacements. J Neurosci 3:2007–2020

    PubMed  CAS  Google Scholar 

  • Suminski AJ, Tkach DC, Fagg AH, Hatsopoulos NG (2010) Incorporating feedback from multiple sensory modalities enhances brain-machine interface control. J Neurosci 30:16777–16787

    Article  PubMed  CAS  Google Scholar 

  • Tanji J, Evarts EV (1976) Anticipatory activity of motor cortex neurons in relation to direction of an intended movement. J Neurophysiol 39:1062–1068

    PubMed  CAS  Google Scholar 

  • Taylor A, Cody FWJ (1974) Jaw muscle-spindle activity in cat during normal movements of eating and drinking. Brain Res 71:523–530

    Article  PubMed  CAS  Google Scholar 

  • Todorov E (2004) Optimality principles in sensorimotor control. Nat Neurosci 7:907–915

    Article  PubMed  CAS  Google Scholar 

  • Todorov E, Jordan MI (2002) Optimal feedback control as a theory of motor coordination. Nat Neurosci 5:1226–1235

    Article  PubMed  CAS  Google Scholar 

  • Tracey DJ, Walmsley B, Brinkman J (1980) Long-loop reflexes can be obtained in spinal monkeys. Neurosci Lett 18:59–65

    Article  PubMed  CAS  Google Scholar 

  • Verrier MC (1985) Alterations in H reflex magnitude by variations in baseline EMG excitability. Electroencephalogr Clin Neurophysiol 60:492–499

    Article  PubMed  CAS  Google Scholar 

  • Vilis T, Hore J, Meyer-Lohmann J, Brooks VB (1976) Dual nature of the precentral responses to limb perturbations revealed by cerebellar cooling. Brain Res 117:336–340

    Article  PubMed  CAS  Google Scholar 

  • Wagner MJ, Smith MA (2008) Shared internal models for feedforward and feedback control. J Neurosci 28:10663–10673

    Article  PubMed  CAS  Google Scholar 

  • Weiller C, Juptner M, Fellows S, Rijntjes M, Leonhardt G, Kiebel S, Muller S, Diener HC, Thilmann AF (1996) Brain representation of active and passive movements. Neuroimage 4:105–110

    Article  PubMed  CAS  Google Scholar 

  • White O, Diedrichsen J (2010) Responsibility assignment in redundant systems. Curr Biol 20:1290–1295

    Article  PubMed  CAS  Google Scholar 

  • Wolf SL, Segal RL (1996) Reducing human biceps brachii spinal stretch reflex magnitude. J Neurophysiol 75:1637–1646

    PubMed  CAS  Google Scholar 

  • Wolpaw JR (1980) Amplitude of responses to perturbation in primate sensorimotor cortex as a function of task. J Neurophysiol 44:1139–1147

    PubMed  CAS  Google Scholar 

  • Wolpaw JR, Braitman DJ, Seegal RF (1983) Adaptive plasticity in primate spinal stretch reflex—initial development. J Neurophysiol 50:1296–1311

    PubMed  CAS  Google Scholar 

  • Wolpert DM, Flanagan JR (2001) Motor prediction. Curr Biol 11:R729–R732

    Article  PubMed  CAS  Google Scholar 

  • Wong YC, Kwan HC, Mackay WA, Murphy JT (1978) Spatial-organization of precentral cortex in awake primates. 1. somatosensory inputs. J Neurophysiol 41:1107–1119

    PubMed  CAS  Google Scholar 

  • Yang L, Michaels JA, Pruszynski JA, Scott SH (2011) Rapid motor responses quickly integrate visuospatial task constraints. Exp Brain Res 211:231–242

    Article  PubMed  Google Scholar 

  • Zehr EP, Chua R (2000) Modulation of human cutaneous reflexes during rhythmic cyclical arm movement. Exp Brain Res 135:241–250

    Article  PubMed  CAS  Google Scholar 

  • Zehr EP, Stein RB (1999) Interaction of the Jendrassik maneuver with segmental presynaptic inhibition. Exp Brain Res 124:474–480

    Article  PubMed  CAS  Google Scholar 

  • Zehr EP, Collins DF, Frigon A, Hoogenboom N (2003) Neural control of rhythmic human arm movement: phase dependence and task modulation of Hoffmann reflexes in forearm muscles. J Neurophysiol 89:12–21

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the Canadian Institute of Health Research (CIHR) and the National Science and Engineering Research Council of Canada (NSERC). J.A.P. received a salary award from the CIHR and the Human Frontier Science Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Andrew Pruszynski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pruszynski, J.A., Scott, S.H. Optimal feedback control and the long-latency stretch response. Exp Brain Res 218, 341–359 (2012). https://doi.org/10.1007/s00221-012-3041-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-012-3041-8

Keywords

Navigation