Skip to main content
Log in

tDCS polarity effects in motor and cognitive domains: a meta-analytical review

  • Mini-Review
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

In vivo effects of transcranial direct current stimulation (tDCS) have attracted much attention nowadays as this area of research spreads to both the motor and cognitive domains. The common assumption is that the anode electrode causes an enhancement of cortical excitability during stimulation, which then lasts for a few minutes thereafter, while the cathode electrode generates the opposite effect, i.e., anodal-excitation and cathodal-inhibition effects (AeCi). Yet, this dual-polarity effect has not been observed in all tDCS studies. Here, we conducted a meta-analytical review aimed to investigate the homogeneity/heterogeneity of the effect sizes of the AeCi dichotomy in both motor and cognitive functions. The AeCi effect was found to occur quite commonly with motor investigations and rarely in cognitive studies. When the anode electrode is applied over a non-motor area, in most cases, it will cause an excitation as measured by a relevant cognitive or perceptual task; however, the cathode electrode rarely causes an inhibition. We found homogeneity in motor studies and heterogeneity in cognitive studies with the electrode’s polarity serving as a moderator that can explain the source of heterogeneity in cognitive studies. The lack of inhibitory cathodal effects might reflect compensation processes as cognitive functions are typically supported by rich brain networks. Further insights as to the polarity and domain interaction are offered, including subdivision to different classes of cognitive functions according to their likelihood of being affected by stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • 19Andrews SC, Hoy KE, Enticott PG, Daskalakis ZJ, Fitzgerald FB (2011) Improving working memory: the effect of combining cognitive activity and anodal transcranial direct current stimulation to the left dorsolateral prefrontal cortex. Brain Stimul 4(2):84–89

    Article  PubMed  Google Scholar 

  • Antal A, Nitsche MA, Kruse W, Kincses TZ, Hoffmann K, Paulus W (2004) Direct current stimulation over V5 enhances visuomotor coordination by improving motion perception in humans. J Cogn Neurosci 4(16):521–527

    Article  Google Scholar 

  • Baudewig J, Nitsche MA, Paulus W, Frahm J (2001) Regional modulation of BOLD MRI responses to human sensorimotor activation by transcranial direct current stimulation. Magn Reson Med 45(2):196–201

    Article  PubMed  CAS  Google Scholar 

  • 20Berryhill ME, Wencil EB, Coslett HB, Olson IR (2010) A selective working memory impairment after transcranial direct current stimulation to the right parietal lobe. Neurosci Lett 479:312–316

    Article  PubMed  CAS  Google Scholar 

  • Bindman LJ, Lippold OCJ, Redfearn JWT (1964) The action of brief polarizing currents on the cerebral cortex of the rat 1 during current flow and 2 in the production of long-lasting after-effects. J Physiol 172:369–382

    PubMed  CAS  Google Scholar 

  • 1Boggio PS, Castro LO, Savagim EA, Braite R, Cruz VC, Rocha RR, Rigonatti SP, Silva MTA, Fregni F (2006a) Enhancement of non-dominant hand motor function by anodal transcranial direct current stimulation. Neurosci Lett 404:232–236

    Article  PubMed  CAS  Google Scholar 

  • 22Boggio PS, Ferrucci R, Rigonatti SP, Covre P, Nitsche M, Pascual-Leone A, Fregni F (2006b) Effects of transcranial direct current stimulation on working memory in patients with Parkinson’s disease. J Neurol Sci 249(1):31–38

    Article  PubMed  Google Scholar 

  • 23Boggio PS, Rocha RR, Theodoro da Silvaa M, Fregni F (2008) Differential modulatory effects of transcranial direct current stimulation on a facial expression go-no-go task in males and females. Neurosci Lett 447:101–105

    Article  PubMed  CAS  Google Scholar 

  • 25Boggio PS, Zaghi S, Fregni F (2009) Modulation of emotions associated with images of human pain using anodal transcranial direct current stimulation (tDCS). Neuropsychologia 47(1):212–217

    Article  PubMed  Google Scholar 

  • 21Boggio PS, Campanha C, Valasek CA, Fecteau S, Pascual-Leone A, Fregni F (2010a) Modulation of decision-making in a gambling task in older adults with transcranial direct current stimulation. Eur J Neurosci 31:593–597

    Article  PubMed  Google Scholar 

  • 24Boggio PS, Zaghi S, Beatriz-Villani Ana, Fecteau S, Pascual-Leone A, Fregni F (2010b) Modulation of risk-taking in marijuana users by transcranial direct current stimulation (tDCS) of the dorsolateral prefrontal cortex (DLPFC). Drug Alcohol Depend 112:220–225

    Article  PubMed  Google Scholar 

  • 26Bolognini N, Fregni F, Casati C, Olgiati E, Vallar G (2010a) Brain polarization of parietal cortex augments training-induced improvement of visual exploratory and attentional skills. Brain Res 1349:76–89

    Article  PubMed  CAS  Google Scholar 

  • 27Bolognini N, Olgiati E, Rossetti A, Maravita A (2010b) Enhancing multisensory spatial orienting by brain polarization of the parietal cortex. Eur J Neurosci 31:1800–1806

    Article  PubMed  Google Scholar 

  • Catani M, Jones DK, Ffytche DH (2005) Perisylvian language networks of the human brain. Ann Neurol 57(1):8–16

    Article  PubMed  Google Scholar 

  • 28Cerruti C, Schlaug G (2008) Anodal transcranial direct current stimulation of the prefrontal cortex enhances complex verbal associative thought. J Cogn Neurosci 21(10):1980–1987

    Article  Google Scholar 

  • 29Chi RP, Fregni F, Snyder AW (2010) Visual memory improved by non-invasive brain stimulation. Brain Res 1353:168–175

    Article  PubMed  CAS  Google Scholar 

  • 2Csifcsak G, Antal A, Hillers F, Levold M, Bachmann CG, Happe S, Nitsche MA, Ellrich J, Paulus W (2009) Modulatory effects of transcranial direct current stimulation on laser-evoked potentials. Am Acad Pain Mad 10(1):122–132

    Google Scholar 

  • Elsberg CA (1917) Experiments on motor nerve regeneration and the direct neurotization of paralyzed muscles by their own and by foreign nerves. Science 45(1161):318–320

    Article  PubMed  CAS  Google Scholar 

  • 30Fecteau S, Knoch D, Fregni F, Sultani N, Boggio PS, Pascual-Leone A (2007) Diminishing risk-taking behavior by modulating activity in the prefrontal cortex: a direct current stimulation study. J Neurosci 27(46):12500–12505

    Article  PubMed  CAS  Google Scholar 

  • 31Fiori V, Coccia M, Marinelli CV, Vecchi V, Bonifazi S, Ceravolo MG, Provinciali L, Tomaiuolo F, Marangolo P (2010) Transcranial direct current stimulation improves word retrieval in healthy and nonfluent aphasic subjects. J Cogn Neuroscsi 23(9):2309–2323

    Article  Google Scholar 

  • 32Floel A, Rosser N, Michka O, Knecht S, Breitenstein C (2008) Noninvasive brain stimulation improves language learning. J Cogn Neurosci 20(8):1415–1422

    Article  PubMed  Google Scholar 

  • Fox PT, Narayana S, Tandon N, Fox SP, Sandoval H, Kochunov P, Capaday C, Lancaster L (2006) Intensity modulation of TMS-induced cortical excitation: primary motor cortex. Hum Brain Map 27:478–487

    Article  Google Scholar 

  • 33Fregni F, Boggio PS, Nitsche MA, Bermpohl F, Antal A, Feredoes E, Marcolin MA, Rigonatti SP, Silva MT, Paulus W, Pascual-Leone A (2005) Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Exp Brain Res 166(1):23–30

    Article  PubMed  Google Scholar 

  • 3Fregni F, Boggio PS, Santos MC, Lima M, Vieira AL, Rigonatti SP, Silva MTA, Barbosa ER, Nitsche MA, Pascual-Leone A (2006) Noninvasive cortical stimulation with transcranial direct current stimulation in Parkinson’s disease. Mov Disord 21(10):1693–1702

    Article  PubMed  Google Scholar 

  • Fuortes MFG (1954) Direct current stimulation of motornurones. J Physiol 126:494–506

    PubMed  CAS  Google Scholar 

  • 4Furubayashi T, Terao Y, Arai N, Okabe S, Mochizuki H, Hanajima R, Hamada M, Yugeta A, Inomata-Terada S, Ugawa Y (2008) Transcranial direct current stimulation (tDCS) over the human hand motor area. Exp Brain Res 185:279–286

    Article  PubMed  Google Scholar 

  • 5Galea JM, Jayaram G, Ajagbe L, Celnik P (2009) Modulation of Cerebellar Excitability by Polarity-Specific Noninvasive Direct Current Stimulation. J Neurosci 29(28):9115–9122

    Article  PubMed  CAS  Google Scholar 

  • Hern JEC, Landgren S, Phillips CG, Porter R (1962) Selective excitation of corticofugal neurones by surface-anodal stimulation of the baboon’s motor cortex. J Physiol 161:73–90

    Google Scholar 

  • Higgins JPT, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21:1539–1558

    Article  PubMed  Google Scholar 

  • 6Hummel FC, Heise K, Celnik P, Floel A, Gerloff C, Cohen LG (2010) Facilitating skilled right hand motor function in older subjects by anodal polarization over the left primary motor cortex. Neurobiol Aging 31(12):2160–2168

    Article  PubMed  Google Scholar 

  • 7Hunter T, Sacco P, Nitsche MA, Turner DL (2009) Modulation of internal model formation during force field-induced motor learning by anodal transcranial direct current stimulation of primary motor cortex. J Physiol 587(12):2949–2961

    Article  PubMed  CAS  Google Scholar 

  • 34Iyer MB, Mattu U, Grafman J, Lomarev M, Sato S, Wassermann EM (2005) Safety and cognitive effect of frontal DC brain polarization in healthy individuals. Neurology 64:872–875

    Article  PubMed  CAS  Google Scholar 

  • Jadad AR, Moore RA, Carroll D, Jenkinson C, Reynolds DJ, Gavaghan DJ, Mcquay HJ (1996) Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials 17(1):1–12

    Article  PubMed  CAS  Google Scholar 

  • 8Jefferson S, Mistry S, Singh S, Rothwell J, Hamdy S (2009) Characterizing the application of transcranial direct current stimulation in human pharyngeal motor cortex. Am J Physiol Gastrointest Liver Physiol 297:1035–1040

    Article  Google Scholar 

  • 9Jeffery DT, Norton JA, Roy FD, Gorassini MA (2007) Effects of transcranial direct current stimulation on the excitability of the leg motor cortex. Exp Brain Res 182(2):281–287

    Article  PubMed  Google Scholar 

  • 35Jo JM, Kim Y-H, Ko M-H, Ohn SH, Joen B, Lee KH (2009) Enhancing the working memory of stroke patients using tDCS. Am J Phys Med Rehabil 88:404–409

    Article  PubMed  Google Scholar 

  • 36Karim AA, Schneider M, Lotze M, Veit R, Sauseng P, Braun C, Birbaumer N (2010) The truth about lying: inhibition of the anterior prefrontal cortex improves deceptive behavior. Cereb Cortex 20:205–213

    Article  PubMed  Google Scholar 

  • 37Kincses TZ, Antal A, Nitsche MA, Bartfai O, Paulus W (2004) Facilitation of probabilistic classification learning by transcranial direct current stimulation of the prefrontal cortex in the human. Neuropsychologia 42(1):113–117

    Article  PubMed  Google Scholar 

  • 10Kirimoto H, Ogata K, Onishi H, Oyama M, Goto Y, Tobimatsu S (2009) Transcranial direct current stimulation over premotor cortex modifies the excitability of the ipsilateral primary motor and somatosensory cortices. IEEE 978-1-4244-3316-2/09

  • 50Knoch D, Nitsche MA, Fischbacher U, Eisenegger C, Pascual-Leone A, Fehr E (2008) Studying the neurobiology of social interaction with transcranial direct current stimulation-the example of punishing unfairness. Cereb Cortex 18:1987–1990

    Article  PubMed  Google Scholar 

  • 38Kraft A, Roehmel J, Olma MC, Schmidt S, Irlbacher K, Brandt SA (2010) Transcranial direct current stimulation affects visual perception measured by threshold perimetry. Exp Brain Res 207:283–290

    Article  PubMed  Google Scholar 

  • 11Lang N, Nitsche MA, Paulus W, Rothwell JC, Lemon RN (2004a) Effects of transcranial direct current stimulation over the human motor cortex on corticospinal and transcallosal excitability. Exp Brain Res 156(4):439–443

    Article  PubMed  CAS  Google Scholar 

  • 12Lang N, Siebner HR, Ernst D, Nitsche MA, Paulus W, Lemon RN, Rothwell JC (2004b) Preconditioning with transcranial direct current stimulation sensitizes the motor cortex to rapid-rate transcranial magnetic stimulation and controls the direction of after-effects. Biol Psychiatry 56:634–639

    Article  PubMed  Google Scholar 

  • Lang N, Siebner HR, Ward NS, Lee L, Nitsche MA, Paulus W, Rothwell JC, Lemon RN, Frackowiak RS (2005) How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain? Eur J Neurosci 22:495–504

    Article  PubMed  Google Scholar 

  • Liddle PF, Kiehl KA, Smith AM (2001) Event-related fMRI study of response inhibition. Hum Brain Mapp 12(2):100

    Article  PubMed  CAS  Google Scholar 

  • 51Loui P, Hohmann A, Schlaug G (2010) Inducing disorders in pitch perception and production: a reverse-engineering approach. Proc Meet Acoust 9(1):50002

    Article  PubMed  Google Scholar 

  • 39Mameli F, Mrakic-Sposta S, Vergari M, Fumagallia M, Macisa M, Ferrucci R, Nordio Francesco, Consonni D, Sartori G, Priori A (2010) Dorsolateral prefrontal cortex specifically processes general—but not personal—knowledge deception: multiple brain networks for lying. Behav Brain Res 211(2):164–168

    Article  PubMed  Google Scholar 

  • 40Marshall L, Molle M, Hallschmid M, Born J (2004) Transcranial direct current stimulation during sleep improves declarative memory. J Neurosci 24(44):9985–9992

    Article  PubMed  CAS  Google Scholar 

  • 52Marshall L, Molle M, Siebner H, Born J (2005) Bifrontal transcranial direct current stimulation slows reaction time in a working memory task. BMC Neurosci 6:23

    Article  PubMed  Google Scholar 

  • Moher D, Schulz KF, Altman D (2001) The CONSORT statement: revised recommendations for improving the quality of reports of parallel-group randomized trials. JAMA 285(15):1987–1991

    Article  PubMed  CAS  Google Scholar 

  • 41Monti A, Cogiamanian F, Marceglia S, Ferrucci R, Mrakic-Sposta S, Vergari M, Zago S, Priori A (2008) Improved naming after transcranial direct current stimulation in aphasia. J Neurol Neurosurg Psychiatry 79:451–453

    Article  PubMed  CAS  Google Scholar 

  • 13Nitsche MA, Paulus W (2000) Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol 527(3):633–639

    Article  PubMed  CAS  Google Scholar 

  • 14Power HA, Norton JA, Porter CL, Doyle Z, Hui I, Chan KM (2006) Transcranial direct current stimulation of the primary motor cortex affects cortical drive to human musculature as assessed by intermuscular coherence. J Physiol 577(3):795–803

    Article  PubMed  CAS  Google Scholar 

  • Priori A, Berardelli A, Rona S, Accornero N, Manfredi M (1998) Polarization of the human motor cortex through the scalp. NeuroReport 9:2257–2260

    Article  PubMed  CAS  Google Scholar 

  • 42Ragert P, Vandermeeren Y, Camus M, Cohen LG (2008) Improvement of spatial tactile acuity by transcranial direct current stimulation. Clin Neurophysiol 119:805–811

    Article  PubMed  Google Scholar 

  • 43Rogalewski A, Breitenstein C, Nitsche MA, Paulus W, Knecht S (2004) Transcranial direct current stimulation disrupts tactile perception. Eur J Neurosci 20:313–316

    Article  PubMed  Google Scholar 

  • 18Rosenkranz K, Nitsche M, Tergau F, Paulus W (2000) Diminution of training-induced transient motor cortex plasticity by weak transcranial direct current stimulation in the human. Neurosci Lett 296:61–63

    Article  PubMed  CAS  Google Scholar 

  • Rosenthal R (1991) Meta-analytic procedure for social research. Sage publication, Newbury park

    Google Scholar 

  • 44Ross L, McCoy D, Wolk DA, Coslett B, Olson IR (2010) Improved proper name recall by electrical stimulation of the anterior temporal lobes. Neuropsychologia 48(12):3671–3674

    Article  PubMed  Google Scholar 

  • Sanchez-Meca J, Marin-Marines F (1997) Homogenity tests in meta-analysis: a Monte Carlo comparisons of statistical power and type I error. Qual Quant 31:385–399

    Article  Google Scholar 

  • Shadish WR, Haddock CK (1994) Combining estimate of effect size. In: Cooper HM, Hedges LV (eds) The handbook of research synthesis. Russel Sage foundation, New York, pp 261–281

    Google Scholar 

  • 15Siebner HR, Lang N, Rizzo V, Nitsche MA, Paulus W, Lemon RN, Rothwell JC (2004) Preconditioning of low-frequency repetitive transcranial magnetic stimulation with transcranial direct current stimulation: evidence for homeostatic plasticity in the human motor cortex. J Neurosci 24(13):3379–3385

    Article  PubMed  CAS  Google Scholar 

  • Silvanto J, Muggleton N, Walsh V (2008) State-dependency in brain stimulation studies of perception and cognition. Trends Cogn Sci 12(12):447–454

    Article  PubMed  Google Scholar 

  • 45Sparing R, Dafotakis M, Meister IG, Thirugnanasambandam N, Fink GR (2008) Enhancing language performance with non-invasive brain stimulation—a transcranial direct current stimulation study in healthy humans. Neuropsychologia 46:261–268

    Article  PubMed  Google Scholar 

  • 46Sparing R, Thimm M, Hesse MD, Kust J, Karbe H, Fink GR (2009) Bidirectional alterations of interhemispheric parietal balance by non-invasive cortical stimulation. Brain 1–10

  • 16Stagg CJ, O’Shea J, Kincses ZT, Woolrich M, Matthews MP, Johansen-Berg H (2009) Modulation of movement-associated cortical activation by transcranial direct current stimulation. Eur J Neurosci 30:1412–1423

    Article  PubMed  CAS  Google Scholar 

  • 47Stone DB, Tesche CD (2009) Transcranial direct current stimulation modulates shifts in global/local attention. NeuroReport 20:1115–1119

    PubMed  Google Scholar 

  • Sylvester CYC, Wager TD, Lacey SC, Hernandez L, Nichols TE, Smith EE, Jonides J (2003) Switching attention and resolving interference: fMRI measures of executive functions. Neuropsychologia 41:357–370

    Article  PubMed  Google Scholar 

  • 17Tanaka S, Hanakawa T, Honda M, Watanabe K (2009) Enhancement of pinch force in the lower leg by anodal transcranial direct current stimulation. Exp Brain Res 196:459–465

    Article  PubMed  Google Scholar 

  • 48Timea VE, Kaya E, Andrea A, Marta Z, Iren H, Paulus W, Gyula K (2007) Cathodal transcranial direct current stimulation over the parietal cortex modifies facial gender adaptation. Ideggyogy 60(11–12):474–479

    Google Scholar 

  • 49Vries MH, Barth ACR, Maiworm S, Knecht S, Zwitserlood P, Floel A (2009) Electrical stimulation of Broca’s area enhances implicit learning of an artificial grammar. J Cogn Neurosci 22(11):2427–2436

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Israel Academy of Sciences grant no. 100/10 and an ERC starting grant awarded to ML (Inspire 200512).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Lavidor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacobson, L., Koslowsky, M. & Lavidor, M. tDCS polarity effects in motor and cognitive domains: a meta-analytical review. Exp Brain Res 216, 1–10 (2012). https://doi.org/10.1007/s00221-011-2891-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-011-2891-9

Keywords

Navigation