Skip to main content

Advertisement

Log in

The role of lipoprotein receptors on the physiological function of APP

  • Review
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

In this review, we will primarily focus on the role of members of the low-density lipoprotein receptor (LDL-R) family that are involved in trafficking and processing of the amyloid precursor protein (APP). We will discuss the role of the LDL-receptor family members, low-density lipoprotein receptor-related protein 1 (LRP1), LRP1b, apolipoprotein E receptor 2, sortilin-related receptor (SorLA/LR11) and megalin/LRP2 on the physiological function of APP and its cellular localization. Additionally, we will focus on adaptor proteins that have been shown to influence the physiological function of LDL-R family members in combination with APP processing. The results in this review emphasize that the physiological function of APP cannot be explained by the focus on the APP protein alone but rather in combination with various direct or indirect interaction partners within the cellular environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alvira-Botero X, Carro EM (2010) Clearance of amyloid-beta peptide across the choroid plexus in Alzheimer’s disease. Curr Aging Sci 3(3):219–229. doi:BSP/CAS/E-Pub/000014

    Article  PubMed  CAS  Google Scholar 

  • Alvira-Botero X, Perez-Gonzalez R, Spuch C, Vargas T, Antequera D, Garzon M, Bermejo-Pareja F, Carro E (2010) Megalin interacts with APP and the intracellular adapter protein FE65 in neurons. Mol Cell Neurosci 45(3):306–315. doi:10.1016/j.mcn.2010.07.005

    Article  PubMed  CAS  Google Scholar 

  • Andersen OM, Reiche J, Schmidt V, Gotthardt M, Spoelgen R, Behlke J, von Arnim CA, Breiderhoff T, Jansen P, Wu X, Bales KR, Cappai R, Masters CL, Gliemann J, Mufson EJ, Hyman BT, Paul SM, Nykjaer A, Willnow TE (2005) Neuronal sorting protein-related receptor sorLA/LR11 regulates processing of the amyloid precursor protein. Proc Natl Acad Sci USA 102(38):13461–13466. doi:10.1073/pnas.0503689102

    Article  PubMed  CAS  Google Scholar 

  • Blacker D, Wilcox MA, Laird NM, Rodes L, Horvath SM, Go RC, Perry R, Watson B Jr, Bassett SS, McInnis MG, Albert MS, Hyman BT, Tanzi RE (1998) Alpha-2 macroglobulin is genetically associated with Alzheimer disease. Nat Genet 19(4):357–360. doi:10.1038/1243

    Article  PubMed  CAS  Google Scholar 

  • Bohm C, Seibel NM, Henkel B, Steiner H, Haass C, Hampe W (2006) SorLA signaling by regulated intramembrane proteolysis. J Biol Chem 281(21):14547–14553. doi:10.1074/jbc.M601660200

    Article  PubMed  Google Scholar 

  • Borg JP, Ooi J, Levy E, Margolis B (1996) The phosphotyrosine interaction domains of X11 and FE65 bind to distinct sites on the YENPTY motif of amyloid precursor protein. Mol Cell Biol 16(11):6229–6241

    PubMed  CAS  Google Scholar 

  • Borg JP, Yang Y, De Taddeo-Borg M, Margolis B, Turner RS (1998) The X11alpha protein slows cellular amyloid precursor protein processing and reduces Abeta40 and Abeta42 secretion. J Biol Chem 273(24):14761–14766

    Article  PubMed  CAS  Google Scholar 

  • Brown MS, Goldstein JL (1986) A receptor-mediated pathway for cholesterol homeostasis. Science 232(4746):34–47

    Article  PubMed  CAS  Google Scholar 

  • Cam JA, Zerbinatti CV, Knisely JM, Hecimovic S, Li Y, Bu G (2004) The low density lipoprotein receptor-related protein 1B retains beta-amyloid precursor protein at the cell surface and reduces amyloid-beta peptide production. J Biol Chem 279(28):29639–29646. doi:10.1074/jbc.M313893200

    Article  PubMed  CAS  Google Scholar 

  • Cao X, Sudhof TC (2001) A transcriptionally [correction of transcriptively] active complex of APP with Fe65 and histone acetyltransferase Tip60. Science 293(5527):115–120. doi:10.1126/science.1058783

    Article  PubMed  CAS  Google Scholar 

  • Cao X, Sudhof TC (2004) Dissection of amyloid-beta precursor protein-dependent transcriptional transactivation. J Biol Chem 279(23):24601–24611. doi:10.1074/jbc.M402248200

    Article  PubMed  CAS  Google Scholar 

  • Carro E, Spuch C, Trejo JL, Antequera D, Torres-Aleman I (2005) Choroid plexus megalin is involved in neuroprotection by serum insulin-like growth factor I. J Neurosci 25(47):10884–10893. doi:10.1523/JNEUROSCI.2909-05.2005

    Article  PubMed  CAS  Google Scholar 

  • Chasseigneaux S, Dinc L, Rose C, Chabret C, Coulpier F, Topilko P, Mauger G, Allinquant B (2011) Secreted amyloid precursor protein beta and secreted amyloid precursor protein alpha induce axon outgrowth in vitro through Egr1 signaling pathway. PLoS One 6(1):e16301. doi:10.1371/journal.pone.0016301

  • Cole SL, Vassar R (2007) The Alzheimer’s disease beta-secretase enzyme, BACE1. Mol Neurodegener 2:22. doi:10.1186/1750-1326-2-22

    Article  PubMed  Google Scholar 

  • Coon KD, Myers AJ, Craig DW, Webster JA, Pearson JV, Lince DH, Zismann VL, Beach TG, Leung D, Bryden L, Halperin RF, Marlowe L, Kaleem M, Walker DG, Ravid R, Heward CB, Rogers J, Papassotiropoulos A, Reiman EM, Hardy J, Stephan DA (2007) A high-density whole-genome association study reveals that APOE is the major susceptibility gene for sporadic late-onset Alzheimer’s disease. J Clin Psychiatry 68(4):613–618

    Article  PubMed  CAS  Google Scholar 

  • D’Arcangelo G, Homayouni R, Keshvara L, Rice DS, Sheldon M, Curran T (1999) Reelin is a ligand for lipoprotein receptors. Neuron 24(2):471–479. doi:S0896-6273(00)80860-0

    Article  PubMed  Google Scholar 

  • De Strooper B, Annaert W (2000) Proteolytic processing and cell biological functions of the amyloid precursor protein. J Cell Sci 113(Pt 11):1857–1870

    PubMed  Google Scholar 

  • Deane R, Wu Z, Sagare A, Davis J, Du Yan S, Hamm K, Xu F, Parisi M, LaRue B, Hu HW, Spijkers P, Guo H, Song X, Lenting PJ, Van Nostrand WE, Zlokovic BV (2004) LRP/amyloid beta-peptide interaction mediates differential brain efflux of Abeta isoforms. Neuron 43(3):333–344. doi:10.1016/j.neuron.2004.07.017

    Article  PubMed  CAS  Google Scholar 

  • Deane R, Sagare A, Zlokovic BV (2008) The role of the cell surface LRP and soluble LRP in blood-brain barrier Abeta clearance in Alzheimer’s disease. Curr Pharm Des 14(16):1601–1605

    Article  PubMed  CAS  Google Scholar 

  • Dodson SE, Andersen OM, Karmali V, Fritz JJ, Cheng D, Peng J, Levey AI, Willnow TE, Lah JJ (2008) Loss of LR11/SORLA enhances early pathology in a mouse model of amyloidosis: evidence for a proximal role in Alzheimer’s disease. J Neurosci 28(48):12877–12886. doi:10.1523/JNEUROSCI.4582-08.2008

    Article  PubMed  CAS  Google Scholar 

  • Ehehalt R, Keller P, Haass C, Thiele C, Simons K (2003) Amyloidogenic processing of the Alzheimer beta-amyloid precursor protein depends on lipid rafts. J Cell Biol 160(1):113–123. doi:10.1083/jcb.200207113

    Article  PubMed  CAS  Google Scholar 

  • Fuentealba RA, Barria MI, Lee J, Cam J, Araya C, Escudero CA, Inestrosa NC, Bronfman FC, Bu G, Marzolo MP (2007) ApoER2 expression increases Abeta production while decreasing Amyloid Precursor Protein (APP) endocytosis: possible role in the partitioning of APP into lipid rafts and in the regulation of gamma-secretase activity. Mol Neurodegener 2:14. doi:10.1186/1750-1326-2-14

    Article  PubMed  Google Scholar 

  • Ghiso J, Shayo M, Calero M, Ng D, Tomidokoro Y, Gandy S, Rostagno A, Frangione B (2004) Systemic catabolism of Alzheimer’s Abeta40 and Abeta42. J Biol Chem 279(44):45897–45908. doi:10.1074/jbc.M407668200

    Article  PubMed  CAS  Google Scholar 

  • Goldstein JL, Brown MS, Anderson RG, Russell DW, Schneider WJ (1985) Receptor-mediated endocytosis: concepts emerging from the LDL receptor system. Annu Rev Cell Biol 1:1–39. doi:10.1146/annurev.cb.01.110185.000245

    Article  PubMed  CAS  Google Scholar 

  • Gotthardt M, Trommsdorff M, Nevitt MF, Shelton J, Richardson JA, Stockinger W, Nimpf J, Herz J (2000) Interactions of the low density lipoprotein receptor gene family with cytosolic adaptor and scaffold proteins suggest diverse biological functions in cellular communication and signal transduction. J Biol Chem 275(33):25616–25624. doi:10.1074/jbc.M000955200

    Article  PubMed  CAS  Google Scholar 

  • He X, Cooley K, Chung CH, Dashti N, Tang J (2007) Apolipoprotein receptor 2 and X11 alpha/beta mediate apolipoprotein E-induced endocytosis of amyloid-beta precursor protein and beta-secretase, leading to amyloid-beta production. J Neurosci 27(15):4052–4060. doi:10.1523/JNEUROSCI.3993-06.2007

    Article  PubMed  CAS  Google Scholar 

  • Herms J, Anliker B, Heber S, Ring S, Fuhrmann M, Kretzschmar H, Sisodia S, Muller U (2004) Cortical dysplasia resembling human type 2 lissencephaly in mice lacking all three APP family members. EMBO J 23(20):4106–4115. doi:10.1038/sj.emboj.7600390

    Article  PubMed  CAS  Google Scholar 

  • Herz J, Hamann U, Rogne S, Myklebost O, Gausepohl H, Stanley KK (1988) Surface location and high affinity for calcium of a 500-kd liver membrane protein closely related to the LDL-receptor suggest a physiological role as lipoprotein receptor. EMBO J 7(13):4119–4127

    PubMed  CAS  Google Scholar 

  • Hjalm G, Murray E, Crumley G, Harazim W, Lundgren S, Onyango I, Ek B, Larsson M, Juhlin C, Hellman P, Davis H, Akerstrom G, Rask L, Morse B (1996) Cloning and sequencing of human gp330, a Ca(2+)-binding receptor with potential intracellular signaling properties. Eur J Biochem 239(1):132–137

    Article  PubMed  CAS  Google Scholar 

  • Ho A, Sudhof TC (2004) Binding of F-spondin to amyloid-beta precursor protein: a candidate amyloid-beta precursor protein ligand that modulates amyloid-beta precursor protein cleavage. Proc Natl Acad Sci USA 101(8):2548–2553. doi:101/8/2548

    Article  PubMed  CAS  Google Scholar 

  • Hoe HS, Rebeck GW (2005) Regulation of ApoE receptor proteolysis by ligand binding. Brain Res Mol Brain Res 137(1–2):31–39. doi:10.1016/j.molbrainres.2005.02.013

    Article  PubMed  CAS  Google Scholar 

  • Hoe HS, Wessner D, Beffert U, Becker AG, Matsuoka Y, Rebeck GW (2005) F-spondin interaction with the apolipoprotein E receptor ApoEr2 affects processing of amyloid precursor protein. Mol Cell Biol 25(21):9259–9268. doi:10.1128/MCB.25.21.9259-9268.2005

    Article  PubMed  CAS  Google Scholar 

  • Hoe HS, Magill LA, Guenette S, Fu Z, Vicini S, Rebeck GW (2006a) FE65 interaction with the ApoE receptor ApoEr2. J Biol Chem 281(34):24521–24530. doi:10.1074/jbc.M600728200

    Article  PubMed  CAS  Google Scholar 

  • Hoe HS, Tran TS, Matsuoka Y, Howell BW, Rebeck GW (2006b) DAB1 and Reelin effects on amyloid precursor protein and ApoE receptor 2 trafficking and processing. J Biol Chem 281(46):35176–35185. doi:10.1074/jbc.M602162200

    Article  PubMed  CAS  Google Scholar 

  • Hoe HS, Lee KJ, Carney RS, Lee J, Markova A, Lee JY, Howell BW, Hyman BT, Pak DT, Bu G, Rebeck GW (2009) Interaction of reelin with amyloid precursor protein promotes neurite outgrowth. J Neurosci 29(23):7459–7473. doi:10.1523/JNEUROSCI.4872-08.2009

    Article  PubMed  CAS  Google Scholar 

  • Howell BW, Lanier LM, Frank R, Gertler FB, Cooper JA (1999) The disabled 1 phosphotyrosine-binding domain binds to the internalization signals of transmembrane glycoproteins and to phospholipids. Mol Cell Biol 19(7):5179–5188

    PubMed  CAS  Google Scholar 

  • Jacobsen L, Madsen P, Moestrup SK, Lund AH, Tommerup N, Nykjaer A, Sottrup-Jensen L, Gliemann J, Petersen CM (1996) Molecular characterization of a novel human hybrid-type receptor that binds the alpha2-macroglobulin receptor-associated protein. J Biol Chem 271(49):31379–31383

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen L, Madsen P, Jacobsen C, Nielsen MS, Gliemann J, Petersen CM (2001) Activation and functional characterization of the mosaic receptor SorLA/LR11. J Biol Chem 276(25):22788–22796. doi:10.1074/jbc.M100857200

    Article  PubMed  CAS  Google Scholar 

  • Jaeger S, Pietrzik CU (2008) Functional role of lipoprotein receptors in Alzheimer’s disease. Curr Alzheimer Res 5(1):15–25

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita A, Shah T, Tangredi MM, Strickland DK, Hyman BT (2003) The intracellular domain of the low density lipoprotein receptor-related protein modulates transactivation mediated by amyloid precursor protein and Fe65. J Biol Chem 278(42):41182–41188. doi:10.1074/jbc.M306403200

    Article  PubMed  CAS  Google Scholar 

  • Knauer MF, Orlando RA, Glabe CG (1996) Cell surface APP751 forms complexes with protease nexin 2 ligands and is internalized via the low density lipoprotein receptor-related protein (LRP). Brain Res 740(1–2):6–14. doi:S0006-8993(96)00711-1

    Article  PubMed  CAS  Google Scholar 

  • Kondo M, Shiono M, Itoh G, Takei N, Matsushima T, Maeda M, Taru H, Hata S, Yamamoto T, Saito Y, Suzuki T (2010) Increased amyloidogenic processing of transgenic human APP in X11-like deficient mouse brain. Mol Neurodegener 5:35. doi:10.1186/1750-1326-5-35

    Article  PubMed  Google Scholar 

  • Kounnas MZ, Moir RD, Rebeck GW, Bush AI, Argraves WS, Tanzi RE, Hyman BT, Strickland DK (1995) LDL receptor-related protein, a multifunctional ApoE receptor, binds secreted beta-amyloid precursor protein and mediates its degradation. Cell 82(2):331–340. doi:0092-8674(95)90320-8

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Retamal C, Cuitino L, Caruano-Yzermans A, Shin JE, van Kerkhof P, Marzolo MP, Bu G (2008) Adaptor protein sorting nexin 17 regulates amyloid precursor protein trafficking and processing in the early endosomes. J Biol Chem 283(17):11501–11508. doi:10.1074/jbc.M800642200

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Marzolo MP, van Kerkhof P, Strous GJ, Bu G (2000) The YXXL motif, but not the two NPXY motifs, serves as the dominant endocytosis signal for low density lipoprotein receptor-related protein. J Biol Chem 275(22):17187–17194. doi:10.1074/jbc.M000490200

    Article  PubMed  CAS  Google Scholar 

  • Liu CX, Musco S, Lisitsina NM, Forgacs E, Minna JD, Lisitsyn NA (2000) LRP-DIT, a putative endocytic receptor gene, is frequently inactivated in non-small cell lung cancer cell lines. Cancer Res 60(7):1961–1967

    PubMed  CAS  Google Scholar 

  • Liu CX, Li Y, Obermoeller-McCormick LM, Schwartz AL, Bu G (2001) The putative tumor suppressor LRP1B, a novel member of the low density lipoprotein (LDL) receptor family, exhibits both overlapping and distinct properties with the LDL receptor-related protein. J Biol Chem 276(31):28889–28896. doi:10.1074/jbc.M102727200

    Article  PubMed  CAS  Google Scholar 

  • Liu Q, Zerbinatti CV, Zhang J, Hoe HS, Wang B, Cole SL, Herz J, Muglia L, Bu G (2007) Amyloid precursor protein regulates brain apolipoprotein E and cholesterol metabolism through lipoprotein receptor LRP1. Neuron 56(1):66–78. doi:10.1016/j.neuron.2007.08.008

    Article  PubMed  CAS  Google Scholar 

  • Lleo A, Waldron E, von Arnim CA, Herl L, Tangredi MM, Peltan ID, Strickland DK, Koo EH, Hyman BT, Pietrzik CU, Berezovska O (2005) Low density lipoprotein receptor-related protein (LRP) interacts with presenilin 1 and is a competitive substrate of the amyloid precursor protein (APP) for gamma-secretase. J Biol Chem 280(29):27303–27309. doi:10.1074/jbc.M413969200

    Article  PubMed  CAS  Google Scholar 

  • Ma QL, Galasko DR, Ringman JM, Vinters HV, Edland SD, Pomakian J, Ubeda OJ, Rosario ER, Teter B, Frautschy SA, Cole GM (2009) Reduction of SorLA/LR11, a sorting protein limiting beta-amyloid production, in Alzheimer disease cerebrospinal fluid. Arch Neurol 66(4):448–457. doi:10.1001/archneurol.2009.22

    Article  PubMed  Google Scholar 

  • Mahley RW (1988) Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science 240(4852):622–630

    Article  PubMed  CAS  Google Scholar 

  • May P, Herz J (2003) LDL receptor-related proteins in neurodevelopment. Traffic 4(5):291–301. doi:087

    Article  PubMed  CAS  Google Scholar 

  • May P, Reddy YK, Herz J (2002) Proteolytic processing of low density lipoprotein receptor-related protein mediates regulated release of its intracellular domain. J Biol Chem 277(21):18736–18743. doi:10.1074/jbc.M201979200

    Article  PubMed  CAS  Google Scholar 

  • McLoughlin DM, Irving NG, Brownlees J, Brion JP, Leroy K, Miller CC (1999) Mint2/X11-like colocalizes with the Alzheimer’s disease amyloid precursor protein and is associated with neuritic plaques in Alzheimer’s disease. Eur J Neurosci 11(6):1988–1994

    Article  PubMed  CAS  Google Scholar 

  • Moestrup SK, Verroust PJ (2001) Megalin- and cubilin-mediated endocytosis of protein-bound vitamins, lipids, and hormones in polarized epithelia. Annu Rev Nutr 21:407–428. doi:10.1146/annurev.nutr.21.1.407

    Article  PubMed  CAS  Google Scholar 

  • Motoi Y, Itaya M, Mori H, Mizuno Y, Iwasaki T, Hattori H, Haga S, Ikeda K (2004) Apolipoprotein E receptor 2 is involved in neuritic plaque formation in APP sw mice. Neurosci Lett 368(2):144–147. doi:10.1016/j.neulet.2004.06.081

    Article  PubMed  CAS  Google Scholar 

  • Mulvihill MM, Guttman M, Komives EA (2011) Protein Interactions between Fe65, the LDL receptor-related protein and the amyloid precursor protein. Biochemistry. doi:10.1021/bi200508f

  • Neumann S, Schobel S, Jager S, Trautwein A, Haass C, Pietrzik CU, Lichtenthaler SF (2006) Amyloid precursor-like protein 1 influences endocytosis and proteolytic processing of the amyloid precursor protein. J Biol Chem 281(11):7583–7594. doi:10.1074/jbc.M508340200

    Article  PubMed  CAS  Google Scholar 

  • Offe K, Dodson SE, Shoemaker JT, Fritz JJ, Gearing M, Levey AI, Lah JJ (2006) The lipoprotein receptor LR11 regulates amyloid beta production and amyloid precursor protein traffic in endosomal compartments. J Neurosci 26(5):1596–1603. doi:10.1523/JNEUROSCI.4946-05.2006

    Article  PubMed  CAS  Google Scholar 

  • Ohkawara T, Nagase H, Koh CS, Nakayama K (2011) The amyloid precursor protein intracellular domain alters gene expression and induces neuron-specific apoptosis. Gene 475(1):1–9. doi:10.1016/j.gene.2010.11.014

    Article  PubMed  CAS  Google Scholar 

  • Pflanzner T, Janko MC, Andre-Dohmen B, Reuss S, Weggen S, Roebroek AJ, Kuhlmann CR, Pietrzik CU (2010) LRP1 mediates bidirectional transcytosis of amyloid-beta across the blood-brain barrier. Neurobiol Aging. doi:10.1016/j.neurobiolaging.2010.05.025

  • Pietrzik CU, Hoffmann J, Stober K, Chen CY, Bauer C, Otero DA, Roch JM, Herzog V (1998) From differentiation to proliferation: the secretory amyloid precursor protein as a local mediator of growth in thyroid epithelial cells. Proc Natl Acad Sci USA 95(4):1770–1775

    Article  PubMed  CAS  Google Scholar 

  • Pietrzik CU, Busse T, Merriam DE, Weggen S, Koo EH (2002) The cytoplasmic domain of the LDL receptor-related protein regulates multiple steps in APP processing. EMBO J 21(21):5691–5700

    Article  PubMed  CAS  Google Scholar 

  • Pietrzik CU, Yoon IS, Jaeger S, Busse T, Weggen S, Koo EH (2004) FE65 constitutes the functional link between the low-density lipoprotein receptor-related protein and the amyloid precursor protein. J Neurosci 24(17):4259–4265. doi:10.1523/JNEUROSCI.5451-03.2004

    Article  PubMed  CAS  Google Scholar 

  • Quinn KA, Pye VJ, Dai YP, Chesterman CN, Owensby DA (1999) Characterization of the soluble form of the low density lipoprotein receptor-related protein (LRP). Exp Cell Res 251(2):433–441. doi:10.1006/excr.1999.4590

    Article  PubMed  CAS  Google Scholar 

  • Rebeck GW, LaDu MJ, Estus S, Bu G, Weeber EJ (2006) The generation and function of soluble apoE receptors in the CNS. Mol Neurodegener 1:15. doi:10.1186/1750-1326-1-15

    Article  PubMed  Google Scholar 

  • Reekmans SM, Pflanzner T, Gordts PL, Isbert S, Zimmermann P, Annaert W, Weggen S, Roebroek AJ, Pietrzik CU (2010) Inactivation of the proximal NPXY motif impairs early steps in LRP1 biosynthesis. Cell Mol Life Sci 67(1):135–145. doi:10.1007/s00018-009-0171-7

    Article  PubMed  CAS  Google Scholar 

  • Roncarati R, Sestan N, Scheinfeld MH, Berechid BE, Lopez PA, Meucci O, McGlade JC, Rakic P, D’Adamio L (2002) The gamma-secretase-generated intracellular domain of beta-amyloid precursor protein binds Numb and inhibits Notch signaling. Proc Natl Acad Sci USA 99(10):7102–7107. doi:10.1073/pnas.102192599

    Article  PubMed  CAS  Google Scholar 

  • Sagare A, Deane R, Bell RD, Johnson B, Hamm K, Pendu R, Marky A, Lenting PJ, Wu Z, Zarcone T, Goate A, Mayo K, Perlmutter D, Coma M, Zhong Z, Zlokovic BV (2007) Clearance of amyloid-beta by circulating lipoprotein receptors. Nat Med 13(9):1029–1031. doi:10.1038/nm1635

    Article  PubMed  CAS  Google Scholar 

  • Saito Y, Sano Y, Vassar R, Gandy S, Nakaya T, Yamamoto T, Suzuki T (2008) X11 proteins regulate the translocation of amyloid beta-protein precursor (APP) into detergent-resistant membrane and suppress the amyloidogenic cleavage of APP by beta-site-cleaving enzyme in brain. J Biol Chem 283(51):35763–35771. doi:10.1074/jbc.M801353200

    Article  PubMed  CAS  Google Scholar 

  • Sano Y, Syuzo-Takabatake A, Nakaya T, Saito Y, Tomita S, Itohara S, Suzuki T (2006) Enhanced amyloidogenic metabolism of the amyloid beta-protein precursor in the X11L-deficient mouse brain. J Biol Chem 281(49):37853–37860. doi:10.1074/jbc.M609312200

    Article  PubMed  CAS  Google Scholar 

  • Santiard-Baron D, Langui D, Delehedde M, Delatour B, Schombert B, Touchet N, Tremp G, Paul MF, Blanchard V, Sergeant N, Delacourte A, Duyckaerts C, Pradier L, Mercken L (2005) Expression of human FE65 in amyloid precursor protein transgenic mice is associated with a reduction in beta-amyloid load. J Neurochem 93(2):330–338. doi:10.1111/j.1471-4159.2005.03026.x

    Article  PubMed  CAS  Google Scholar 

  • Scherzer CR, Offe K, Gearing M, Rees HD, Fang G, Heilman CJ, Schaller C, Bujo H, Levey AI, Lah JJ (2004) Loss of apolipoprotein E receptor LR11 in Alzheimer disease. Arch Neurol 61(8):1200–1205. doi:10.1001/archneur.61.8.1200

    Article  PubMed  Google Scholar 

  • Selkoe DJ (1998) The cell biology of beta-amyloid precursor protein and presenilin in Alzheimer’s disease. Trends Cell Biol 8(11):447–453. doi:S0962-8924(98)01363-4

    Article  PubMed  CAS  Google Scholar 

  • Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81(2):741–766

    PubMed  CAS  Google Scholar 

  • Senechal Y, Larmet Y, Dev KK (2006) Unraveling in vivo functions of amyloid precursor protein: insights from knockout and knockdown studies. Neurodegener Dis 3(3):134–147. doi:10.1159/000094772

    Article  PubMed  CAS  Google Scholar 

  • Sheng B, Song B, Zheng Z, Zhou F, Lu G, Zhao N, Zhang X, Gong Y (2009) Abnormal cleavage of APP impairs its functions in cell adhesion and migration. Neurosci Lett 450(3):327–331. doi:10.1016/j.neulet.2008.11.046

    Article  PubMed  CAS  Google Scholar 

  • Shibata M, Yamada S, Kumar SR, Calero M, Bading J, Frangione B, Holtzman DM, Miller CA, Strickland DK, Ghiso J, Zlokovic BV (2000) Clearance of Alzheimer‘s amyloid-ss(1-40) peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier. J Clin Invest 106(12):1489–1499. doi:10.1172/JCI10498

    Article  PubMed  CAS  Google Scholar 

  • Spoelgen R, von Arnim CA, Thomas AV, Peltan ID, Koker M, Deng A, Irizarry MC, Andersen OM, Willnow TE, Hyman BT (2006) Interaction of the cytosolic domains of sorLA/LR11 with the amyloid precursor protein (APP) and beta-secretase beta-site APP-cleaving enzyme. J Neurosci 26(2):418–428. doi:10.1523/JNEUROSCI.3882-05.2006

    Article  PubMed  CAS  Google Scholar 

  • Stockinger W, Sailler B, Strasser V, Recheis B, Fasching D, Kahr L, Schneider WJ, Nimpf J (2002) The PX-domain protein SNX17 interacts with members of the LDL receptor family and modulates endocytosis of the LDL receptor. EMBO J 21(16):4259–4267

    Article  PubMed  CAS  Google Scholar 

  • Strittmatter WJ, Saunders AM, Schmechel D, Pericak-Vance M, Enghild J, Salvesen GS, Roses AD (1993) Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci USA 90(5):1977–1981

    Article  PubMed  CAS  Google Scholar 

  • Trommsdorff M, Borg JP, Margolis B, Herz J (1998) Interaction of cytosolic adaptor proteins with neuronal apolipoprotein E receptors and the amyloid precursor protein. J Biol Chem 273(50):33556–33560

    Article  PubMed  CAS  Google Scholar 

  • Trommsdorff M, Gotthardt M, Hiesberger T, Shelton J, Stockinger W, Nimpf J, Hammer RE, Richardson JA, Herz J (1999) Reeler/Disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell 97(6):689–701. doi:S0092-8674(00)80782-5

    Article  PubMed  CAS  Google Scholar 

  • Ulery PG, Beers J, Mikhailenko I, Tanzi RE, Rebeck GW, Hyman BT, Strickland DK (2000) Modulation of beta-amyloid precursor protein processing by the low density lipoprotein receptor-related protein (LRP). Evidence that LRP contributes to the pathogenesis of Alzheimer’s disease. J Biol Chem 275(10):7410–7415

    Article  PubMed  CAS  Google Scholar 

  • van Kerkhof P, Lee J, McCormick L, Tetrault E, Lu W, Schoenfish M, Oorschot V, Strous GJ, Klumperman J, Bu G (2005) Sorting nexin 17 facilitates LRP recycling in the early endosome. EMBO J 24(16):2851–2861. doi:10.1038/sj.emboj.7600756

    Article  PubMed  Google Scholar 

  • von Arnim CA, Kinoshita A, Peltan ID, Tangredi MM, Herl L, Lee BM, Spoelgen R, Hshieh TT, Ranganathan S, Battey FD, Liu CX, Bacskai BJ, Sever S, Irizarry MC, Strickland DK, Hyman BT (2005) The low density lipoprotein receptor-related protein (LRP) is a novel beta-secretase (BACE1) substrate. J Biol Chem 280(18):17777–17785. doi:10.1074/jbc.M414248200

    Article  Google Scholar 

  • von Einem B, Schwanzar D, Rehn F, Beyer AS, Weber P, Wagner M, Schneckenburger H, von Arnim CA (2010) The role of low-density receptor-related protein 1 (LRP1) as a competitive substrate of the amyloid precursor protein (APP) for BACE1. Exp Neurol 225(1):85–93. doi:10.1016/j.expneurol.2010.05.017

    Article  Google Scholar 

  • Waldron E, Heilig C, Schweitzer A, Nadella N, Jaeger S, Martin AM, Weggen S, Brix K, Pietrzik CU (2008) LRP1 modulates APP trafficking along early compartments of the secretory pathway. Neurobiol Dis 31(2):188–197. doi:10.1016/j.nbd.2008.04.006

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Wang B, Yang L, Guo Q, Aithmitti N, Songyang Z, Zheng H (2009) Presynaptic and postsynaptic interaction of the amyloid precursor protein promotes peripheral and central synaptogenesis. J Neurosci 29(35):10788–10801. doi:10.1523/JNEUROSCI.2132-09.2009

    Article  PubMed  CAS  Google Scholar 

  • Willnow TE, Moehring JM, Inocencio NM, Moehring TJ, Herz J (1996) The low-density-lipoprotein receptor-related protein (LRP) is processed by furin in vivo and in vitro. Biochem J 313(Pt 1):71–76

    PubMed  CAS  Google Scholar 

  • Wirths O, Multhaup G, Czech C, Blanchard V, Tremp G, Pradier L, Beyreuther K, Bayer TA (2001) Reelin in plaques of beta-amyloid precursor protein and presenilin-1 double-transgenic mice. Neurosci Lett 316(3):145–148. doi:S0304394001023990

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki H, Bujo H, Kusunoki J, Seimiya K, Kanaki T, Morisaki N, Schneider WJ, Saito Y (1996) Elements of neural adhesion molecules and a yeast vacuolar protein sorting receptor are present in a novel mammalian low density lipoprotein receptor family member. J Biol Chem 271(40):24761–24768

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki T, Koo EH, Selkoe DJ (1997) Cell surface amyloid beta-protein precursor colocalizes with beta 1 integrins at substrate contact sites in neural cells. J Neurosci 17(3):1004–1010

    PubMed  CAS  Google Scholar 

  • Zlokovic BV, Martel CL, Matsubara E, McComb JG, Zheng G, McCluskey RT, Frangione B, Ghiso J (1996) Glycoprotein 330/megalin: probable role in receptor-mediated transport of apolipoprotein J alone and in a complex with Alzheimer disease amyloid beta at the blood-brain and blood-cerebrospinal fluid barriers. Proc Natl Acad Sci USA 93(9):4229–4234

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Michael Plenikowski for the illustrations. This work was supported by the Deutsche Forschungsgemeinschaft (DFG), as part of FOR1332 grant to CUP (379/6-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claus U. Pietrzik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagner, T., Pietrzik, C.U. The role of lipoprotein receptors on the physiological function of APP. Exp Brain Res 217, 377–387 (2012). https://doi.org/10.1007/s00221-011-2876-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-011-2876-8

Keywords

Navigation