Skip to main content
Log in

Chronotype and time-of-day influences on the alerting, orienting, and executive components of attention

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

An Erratum to this article was published on 28 October 2008

Abstract

Recent research on attention has identified three separable components, known as alerting, orienting, and executive functioning, which are thought to be subserved by distinct neural networks. Despite systematic investigation into their relatedness to each other and to psychopathology, little is known about how these three networks might be modulated by such factors as time-of-day and chronotype. The present study administered the Attentional Network Test (ANT) and a self-report measure of alertness to 80 participants at 0800, 1200, 1600, and 2000 hours on the same day. Participants were also chronotyped with a morningness/eveningness questionnaire and divided into evening versus morning/neither-type groups; morning chronotypes tend to perform better early in the day, while evening chronotypes show enhanced performance later in the day. The results replicated the lack of any correlations between alerting, orienting, and executive functioning, supporting the independence of these three networks. There was an effect of time-of-day on executive functioning with higher conflict scores at 1200 and 1600 hours for both chronotypes. The efficiency of the orienting system did not change as a function of time-of-day or chronotype. The alerting measure, however, showed an interaction between time-of-day and chronotype such that alerting scores increased only for the morning/neither-type participants in the latter half of the day. There was also an interaction between time-of-day and chronotype for self-reported alertness, such that it increased during the first half of the day for all participants, but then decreased for morning/neither types (only) toward evening. This is the first report to examine changes in the trinity of attentional networks measured by the ANT throughout a normal day in a large group of normal participants, and it encourages more integration between chronobiology and cognitive neuroscience for both theoretical and practical reasons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adan A, Natale V (2002) Gender differences in morningness-eveningness preference. Chronobiol Int 19:709–720

    Article  PubMed  Google Scholar 

  • Almirall H (1993) Including neither-type in the morningness-eveningness dimension decreases the robustness of the model. Percept Mot Skills 77:243–254

    PubMed  CAS  Google Scholar 

  • Baehr EK, Revelle W, Eastman CI (2000) Individual differences in the phase and amplitude of the human circadian temperature rhythm with an emphasis on morningness-eveningness. J Sleep Res 9:117–127

    Article  PubMed  CAS  Google Scholar 

  • Baghdoyan HA, Spotts JL, Snyder SG (1993) Simultaneous pontine and basal forebrain microinjections of carbachol suppress REM sleep. J Neurosci 13:229–242

    PubMed  CAS  Google Scholar 

  • Barbato G, Ficca G, Muscettola G, Fichele M, Beatrice M, Rinaldi F (2000) Diurnal variation in spontaneous eye-blink rate. Psychiatry Res 93:145–151

    Article  PubMed  CAS  Google Scholar 

  • Benes FM (2000) Emerging principles of altered neural circuitry in schizophrenia. Brain Res Brain Res Rev 31:251–269

    Article  PubMed  CAS  Google Scholar 

  • Beane M, Marrocco RT (2004) Norepinephrine and acetylcholine mediation of the components of reflexive attention: implication for attentoin deficit disorders. Prog Neurobiol 74:167–181

    Article  PubMed  CAS  Google Scholar 

  • Bombin I, Arango C, Mayoral M, Castro-Fornieles J, Gonzalez-Pinto A, Gonzalez-Gomez C, Moreno D, Parellada M, Baeza I, Graell M, Otero S, Saiz PA, Patiño-Garcia A (2008) DRD3, but not COMT or DRD2, genotype affects executive functions in healthy and first-episode psychosis adolescents. Am J Med Genet B Neuropsychiatr Genet 147:873–879

    Google Scholar 

  • Bush G, Luu P, Posner MI (2000) Cognitive and emotional influences in the anterior cingulate cortex. Trends Cogn Sci 4:215–222

    Article  PubMed  Google Scholar 

  • Cacot P, Tesolin B, Sebban C (1995) Diurnal variations of EEG power in healthy adults. Electroenceph Clin Neurophysiol 94:305–312

    Article  PubMed  CAS  Google Scholar 

  • Callejas A, Lupianez J, Tudela P (2004) The three attentional networks: on their independence and interactions. Brain Cogn 54:225–227

    Article  PubMed  Google Scholar 

  • Callejas A, Lupianez J, Fumes MJ, Tudela P (2005) Modulations among the alerting, orienting and executive control networks. Exp Brain Res 167:27–37

    Article  PubMed  Google Scholar 

  • Carrier J, Monk TH (2000) Circadian rhythms of performance: new trends. Chronobiol Int 17:719–732

    Article  PubMed  CAS  Google Scholar 

  • Casagrande M, Violani C, Curcio G, Bertini M (1997) Assessing vigilance through a brief pencil and paper letter cancellation task (LCT): effects of one night of sleep deprivation and of the time-of-day. Ergonomics 40:613–630

    Article  PubMed  CAS  Google Scholar 

  • Casagrande M, Martella D, Di Pace E, Pirri F, Guadalupi F (2006) Orienting and alerting: effect of 24 h of prolonged wakefulness. Exp Brain Res 171:184–193

    Article  PubMed  Google Scholar 

  • Clodoré M, Foret J, Benoit O (1986) Diurnal variation in subjective and objective measures of sleepiness: the effects of sleep reduction and circadian type. Chronobiol Int 3:255–263

    Article  PubMed  Google Scholar 

  • Daan S, Pittendrigh CS (1976) A functional analysis of circadian pacemakers in nocturnal rodents. II. The variability of phase response curves. J Comp Physiol 106:253–266

    Article  Google Scholar 

  • Davidson MC, Marrocco RT (2000) Local infusion of scopolamine into intraparietal cortex slows covert orienting in Rhesus monkeys. J Neurophysiol 83:1536–1549

    PubMed  CAS  Google Scholar 

  • Doran AR, Pickar D, Labarca R, Douillet P, Wolkowitz OM, Thomas JW, Roy A, Paul SM (1985) Evidence for a daily rhythm of plasma HVA in normal controls but not in schizophrenic patients. Psychopharmacol Bull 21:694–697

    PubMed  CAS  Google Scholar 

  • Duffy JF, Dijk D-J, Hall EF, Czeisler CA (1999) Relationship of endogenous circadian melatonin and temperature to self-reported preference for morning or evening activity in young and older people. J Investig Med 47:141–150

    PubMed  CAS  Google Scholar 

  • Duffy JF, Rimmer DW, Czeisler CA (2001) Association of intrinsic circadian period with morningness-eveningness, usual wake time, and circadian phase. Behav Neurosci 115:895–899

    Article  PubMed  CAS  Google Scholar 

  • Duncan E, Bollini A, Sanfilipo M, Wieland S, Angrist B, Rotrosen J, Cooper TB (2006) Diurnal variation in plasma homovanillic acid in patients with schizophrenia and healthy controls. Schizophr Res 81:323–326

    Article  PubMed  Google Scholar 

  • Dye MWG, Bari DE, Bavelier D (2007) Which aspects of visual attention are changed by deadness? The case of the attentional network test. Neuropsychologia 45:1801–1811

    Article  PubMed  Google Scholar 

  • Edwards B, Waterhouse J, Reilly T (2007) The effects of circadian rhythmicity and time-awake on a simple motor task. Chronobiol Int 24:1109–1124

    Article  PubMed  Google Scholar 

  • Edwards B, Waterhouse J, Reilly T (2008) Circadian rhythms and their association with body temperature and time awake when performing a simple task with the dominant and non-dominant hand. Chronobiol Int 25:115–132

    Article  PubMed  Google Scholar 

  • Espeseth T, Greenwood PM, Reinvang I, Fjell AM, Walhovd KB, Westlye LT, Wehling E, Lundervold A, Rootwelt H, Parasuraman R (2006) Interactive effects of APOE and CHRNA4 on attention and white matter volume in healthy middle-aged and older adults. Cogn Affect Behav Neurosci 6:31–43

    Article  PubMed  Google Scholar 

  • Eriksen BA, Eriksen CW (1974) Effects of noise letters upon the identification of a target letter in a nonsearch task. Percept Psychophys 16:143–149

    Google Scholar 

  • Fan J, Posner M (2004) Human attentional networks. Psychiatr Prax 31:S210–S214

    Article  PubMed  Google Scholar 

  • Fan J, Wu Y, Fossella JA, Posner MI (2001) Assessing the heritability of attentional networks. BMC Neurosci 2:14

    Article  PubMed  CAS  Google Scholar 

  • Fan J, McCandliss BD, Sommer T, Raz A, Posner MI (2002) Testing the efficiency and independence of attentional networks. J Cogn Neurosci 14:340–347

    Article  PubMed  Google Scholar 

  • Fan J, Flombaum JI, McCandliss BD, Thomas KM, Posner MI (2003) Cognitive and brain consequences of conflict. Neuroimage 18:42–57

    Article  PubMed  Google Scholar 

  • Fan J, McCandliss BD, Fossella JA, Flombaum JI, Posner MI (2005) The activation of attentional networks. Neuroimage 26:471–479

    Article  PubMed  Google Scholar 

  • Fan J, Byrne J, Worden MS, Guise KG, McCandliss BD, Fossella J, Posner MI (2007) The relation of brain oscillations to attentional networks. J Neurosci 27:6197–6206

    Article  PubMed  CAS  Google Scholar 

  • Faucheux B, Kuchel O, Cuche JL, Messerli FH, Buu NT, Barbeau A, Genest J (1976) Circadian variations of urinary excretion of catecholamines and electrolytes. Endocr Res Commun 3:257–272

    Article  PubMed  CAS  Google Scholar 

  • Fibiger W, Singer G, Miller AJ, Armstrong S, Datar M (1984) Cortisol and catecholamines changes as functions of time-of-day and self-reported mood. Neurosci Biobehav Rev 8:523–530

    Article  PubMed  CAS  Google Scholar 

  • Folkard S (1983) Diurnal variation in human performance. In: Hockey GRJ (ed) Stress and fatigue in human performance. Wiley, Chichester, pp 245–272

    Google Scholar 

  • Folkard S, Spelten E, Totterdell P, Barton J, Smith L (1995) The use of survey measures to assess circadian variations in alertness. Sleep 18:355–361

    PubMed  CAS  Google Scholar 

  • Foote SL, Berridge CW, Adams LM, Pineda JA (1991) Electrophysiological evidence for the involvement of the locus coeruleus in alerting, orienting, and attending. Prog Brain Res 88:521–532

    Article  PubMed  CAS  Google Scholar 

  • Fossella J, Sommer T, Fan J, Wu Y, Swanson JM, Pfaff DW, Posner MI (2002) Assessing the molecular genetics of attention networks. BMC Neurosci 3:14

    Article  PubMed  Google Scholar 

  • Fuentes LJ, Campoy G (2008) The time course of alerting effect over orienting in the attention network test. Exp Brain Res 185:667–672

    Article  PubMed  Google Scholar 

  • Goldstein D, Hahn CS, Hasher L, Wiprzycka UJ, Zelazo PD (2007) Time of day, intellectual performance, and behavioral problems in morning versus evening type adolescents: is there a synchrony effect? Pers Individ Dif 42:431–440

    Article  PubMed  Google Scholar 

  • Guérin N, Boulenguiez S, Reinberg A, Di Costanzo G, Guran P, Touitou T (1991) Diurnal changes in psychophysiological variables of school girls: comparisons with regard to age and teacher’s appreciation of learning. Chronobiol Int 8:131–148

    Article  PubMed  Google Scholar 

  • Hansen AM, Garde AH, Skovgaard LT, Christensen JM (2001) Seasonal and biological variation of urinary epinephrine, norepinephrine, and cortisol in healthy women. Clin Chim Acta 309:25–35

    Article  PubMed  CAS  Google Scholar 

  • Horne JA, Ostberg O (1976) Self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. Int J Chronbiol 4:179–190

    Google Scholar 

  • Horne JA, Ostberg O (1977) Individual differences in human circadian rhythms. Biol Psychol 5:179–190

    Article  PubMed  CAS  Google Scholar 

  • Horne JA, Brass CG, Pettitt AN (1980) Circadian performance differences between morning and evening types. Ergonomics 23:29–36

    Article  PubMed  CAS  Google Scholar 

  • Intons-Peterson MJ, Rocchi P, West T, McLellan K, Hackney A (1998) Aging, optimal testing times, and negative priming. J Exp Psychol Learn Mem Cog 24:362–376

    Article  Google Scholar 

  • Kerkhof GA, Korving HJ, Willemse-vd Geest HM, Rietveld WJ (1980) Diurnal differences between morning-type and evening-type subjects in self-rated alertness, body temperature, and the visual and auditory evoked potential. Neurosci Lett 16:11–15

    Article  PubMed  CAS  Google Scholar 

  • Kleitman N (1963) Sleep and wakefulness. University of Chicago Press, Chicago

    Google Scholar 

  • Konishi S, Chikazoe J, Jimura K, Asari T, Miyashita Y (2005) Neural mechanism in anterior prefrontal cortex for inhibition of prolonged set interference. Proc Natl Acad Sci USA 102:12584–12588

    Article  PubMed  CAS  Google Scholar 

  • Kraemer S, Danker-Hopfe H, Dorn H, Schmidt A, Ehlert I, Herrmann WM (2000) Time-of-day variations of indicators of attention: performance, physiologic parameters, and self-assessment of sleepiness. Biol Psychiatry 48:1069–1080

    Article  PubMed  CAS  Google Scholar 

  • Lafrance C, Paquet J, Dumont M (2002) Diurnal time courses in psychomotor performance and waking EEG frequencies. Brain Cogn 48:625–631

    PubMed  CAS  Google Scholar 

  • Latenkov VP (1985) Circadian rhythms of adrenalin and noradrenalin excretion in man under normal conditions and after taking alcohol. Biull Eksp Biol Med 99:344–346

    Article  PubMed  CAS  Google Scholar 

  • Lal S, Tesfaye Y, Thavundayil JX, Skorzewska A, Schwartz G (2000) Effect of time-of-day on the yawning response to apomorhine in normal subjects. Neuropsychobiology 41:178–180

    Article  PubMed  CAS  Google Scholar 

  • Lin JS, Hou Y, Sakai K, Jouvet M (1996) Histaminergic descending inputs to the mesopontine tegmentum and their role in the control of cortical activation and wakefulness in the cat. J Neurosci 16:1523–1537

    PubMed  CAS  Google Scholar 

  • Linsell CR, Lightman SL, Mullen PE, Brown MJ, Causon RC (1985) Circadian rhythms of epinephrine and norepinephrine in man. J Clin Endocrinol Metab 60:1210–1215

    PubMed  CAS  Google Scholar 

  • MacDonald AW, Cohen JD, Stenger VA, Carter CS (2000) Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science 288:1835–1838

    Article  PubMed  CAS  Google Scholar 

  • Martin SK, Eastman CI (2002) Sleep logs of young adults with self-selected sleep times predict the dim light melatonin onset. Chronobiol Int 19:695–707

    Article  PubMed  Google Scholar 

  • Matchock RL, Mordkoff JT (2007) Visual attention, reaction time, and self-reported alertness upon awakening from sleep bouts of varying lengths. Exp Brain Res 178:228–239

    Article  PubMed  Google Scholar 

  • May CP, Hasher L (1998) Synchrony effects in inhibitory control over thought and action. J Exp Psychol Hum Percept Perform 24:363–379

    Article  PubMed  CAS  Google Scholar 

  • May CP, Hasher L, Foong N (2005) Implicit memory, age, and time of day: paradoxical priming effects. Psychol Sci 16:96–100

    Article  PubMed  Google Scholar 

  • Natale V, Cicogna P (1996) Circadian regulation of subjective alertness in morning and evening types. Pers Individ Dif 20:491–497

    Article  Google Scholar 

  • Oken BS, Salinsky MC, Elsas SM (2006) Vigilance, alertness, or sustained attention: physiological basis and measurement. Clin Neurophysiol 17:1885–1901

    Article  Google Scholar 

  • Parasuraman R, Warm JS, See JE (1998) Brain systems of vigilance. In: Parasuraman R (ed) The attentive brain. MIT Press, Cambridge, pp 221–256

    Google Scholar 

  • Pierdomenico SD, Bucci A, Constantini F, Lapenna D, Cuccurullo F, Mezzetti A (2000) Twenty-four-hour autonomic nervous function in sustained and “white coat” hypertension. Am Heart J 140:672–677

    Article  PubMed  CAS  Google Scholar 

  • Perry EK, Perry RH, Tomlinson BE (1977) Circadian variation in cholinergic enzymes and muscarinic receptor binding in human cerebral cortex. Neurosci Lett 4:185–189

    Article  CAS  PubMed  Google Scholar 

  • Posener JA, Schildkraut JJ, Samson JA, Schatzberg AF (1996) Diurnal variation of plasma cortisol and homovanillic acid in healthy subjects. Psychoneuroendocrinology 21:33–38

    Article  PubMed  CAS  Google Scholar 

  • Posner MI, Petersen SE (1990) The attention system of the human brain. Ann Rev Neurosci 13:25–42

    Article  PubMed  CAS  Google Scholar 

  • Raz A, Buhle J (2006) Typologies of attentional networks. Nat Rev Neurosci 7:367–379

    Article  PubMed  CAS  Google Scholar 

  • Refinetti R (2006) Circadian Physiology, 2nd edn. Taylor & Francis, New York

    Google Scholar 

  • Reilly T, Atkinson G, Edwards B, Waterhouse J, Farrelly K, Fairhurst E (2007) Diurnal variation in temperature, mental and physical performance, and tasks specifically related to football (soccer). Chronobiol Int 24:507–519

    Article  PubMed  Google Scholar 

  • Rosenthal L, Day R, Gerhardstein R, Meixner R, Roth T, Guido P, Fortier J (2001) Sleepiness/alertness among healthy evening and morning type individuals. Sleep Med 2:243–248

    Article  PubMed  Google Scholar 

  • Schmidt C, Collette F, Cajochen C, Peigneux P (2007) A time to think: circadian rhythms in human cognition. Cogn Neuropsychol 24:755–789

    Article  PubMed  Google Scholar 

  • Smith CS, Folkard S, Schmieder RA, Parra LF, Spelten E, Almiral H, Sen RN, Sahu S, Perez LM, Tisak J (2002) Investigation of morning-evening orientation in six countries using the preferences scale. Pers Individ Dif 32:949–968

    Article  Google Scholar 

  • Sturm W, Willmes K (2001) On the functional neuroanatomy of intrinsic and phasic alertness. Neuroimage 14(1 Pt 2):S76–S84

    Article  PubMed  CAS  Google Scholar 

  • Taillard J, Moore N, Claustrat B, Coste O, Bioulac B, Philip P (2006) Nocturnal sustained attention during sleep deprivation can be predicted by specific periods of subjective daytime alertness in normal young humans. J Sleep Res 15:41–45

    Article  PubMed  Google Scholar 

  • Tanji J, Hoshi E (2008) Role of the lateral prefrontal cortex in executive behavioral control. Physiol Rev 88:37–57

    Article  PubMed  Google Scholar 

  • Thayer RE (1967) Measurement of activation through self-report. Psychol Rep 20:663–678

    PubMed  CAS  Google Scholar 

  • Thayer RE (1978) Factor analytic and reliability studies on the activation-deactivation adjective check list. Psychol Rep 42:747–756

    PubMed  CAS  Google Scholar 

  • Toth M, Kiss A, Kosztolanyi P, Kondakor I (2007) Diurnal alterations of brain electrical activity in healthy adults: a LORETA study. Brain Topogr 20:63–76

    Article  PubMed  Google Scholar 

  • Witte EA, Marrocco RT (1997) Alteration of brain noradrenergic activity in rhesus monkeys affects the alerting component of covert orienting. Psychopharmacology 132:315–323

    Article  PubMed  CAS  Google Scholar 

  • Wright KP, Hull JT, Czeisler CA (2002) Relationship between alertness, performance, and body temperature in humans. Am J Physiol Regul Integr Comp Physiol 283:R1370–R1377

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Owen Camuso, Jessica Leer, and William Rusnak for their assistance with data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert L. Matchock.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00221-008-1619-y

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matchock, R.L., Toby Mordkoff, J. Chronotype and time-of-day influences on the alerting, orienting, and executive components of attention. Exp Brain Res 192, 189–198 (2009). https://doi.org/10.1007/s00221-008-1567-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-008-1567-6

Keywords

Navigation