Skip to main content

Advertisement

Log in

Auditory cortex projections target the peripheral field representation of primary visual cortex

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The purpose of the present study was to identify projections from auditory to visual cortex and their organization. Retrograde tracers were used to identify the sources of auditory cortical projections to primary visual cortex (areas 17 and 18) in adult cats. Two groups of animals were studied. In the first group, large deposits were centered on the lower visual field representation of the vertical meridian located along the area 17 and 18 border. Following tissue processing, characteristic patterns of cell body labeling were identified in extrastriate visual cortex and the visual thalamus (LGN, MIN, & LPl). In auditory cortex, of the four tonotopically-organized regions, neuronal labeling was identified in the supragranular layers of the posterior auditory field (PAF). Little to no labeling was evident in the primary auditory cortex, the anterior auditory field, the ventral posterior auditory field or in the remaining six non-tonotopically organized regions of auditory cortex. In the second group, small deposits were made into the central or peripheral visual field representations of primary visual cortex. Labeled cells were identified in PAF following deposits into regions of primary visual cortex representing peripheral, but not central, visual field representations. Furthermore, a coarse topography was identified in PAF, with neurons projecting to the upper field representation being located in the gyral portion of PAF and neurons projecting to the lower field representation located in the sulcal portion of PAF. Therefore, direct projections can be identified from tonotopically organized auditory cortex to the earliest stages of visual cortical processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ahveninen J, Jaaskelainen IP, Raij T, Bonmassar G, Devore S, Hamalainen M, Levanen S, Lin FH, Sams M, Sinn-Cunningham BG, Witzel T, Belliveau JW (2006) Task-modulated “what” and “where” pathways in human auditory cortex. Proc Natl Acad Sci USA 103:14608–14613

    Article  PubMed  CAS  Google Scholar 

  • Arnott SR, Binns MA, Grady CL, Alain C (2004) Assessing the auditory dual-pathway model in humans. Neuroimage 22:401–408

    Article  PubMed  Google Scholar 

  • Avillac M, Hamed SB, Duhamel J-R (2007) Multisensory integration in the ventral intraparietal area of the macaque monkey. J Neurosci 27:1922–1932

    Article  PubMed  CAS  Google Scholar 

  • Barlow HB, Blakemore C, Pettigrew JD (1967) The neural mechanisms of binocular depth discrimination. J Physiol 193:327–342

    PubMed  CAS  Google Scholar 

  • Bavelier D, Neville HJ (2002) Cross-modal plasticity: where and how? Nat Rev Neurosci 3:443–452

    PubMed  CAS  Google Scholar 

  • Beaver BV, Reed W, Leary S, McKiernan B, Bain F, Schultz R, Bennett BT, Pascoe P, Shull E, Cork LC, Francis-Floyd R, Amass KD, Johnson RJ, Schmidt RG, Underwood W, Thornton GW, Kohn B (2001) 2000 Report of the American Veterinary Medical Association Panel on Euthanasia. J Am Vet Med Assoc 218:669–696

    Article  Google Scholar 

  • Berson DM, Graybiel AM (1978) Parallel thalamic zones in the LP-pulvinar complex of the cat identified by their afferent and efferent connection. Brain Res 147:139–148

    Article  PubMed  CAS  Google Scholar 

  • Berson DM, Graybiel AM (1983) Organization of the striate-recipient zone of the cats lateralis posterior-pulvinar complex and its relations with the geniculostriate system. Neuroscience 9:337–372

    Article  PubMed  CAS  Google Scholar 

  • Bishop PO, Kozak W, Vakkur GJ (1962) Some quantitative aspects of the cat’s eye: axis and plane of reference, visual field coordinates, and optics. J Physiol 163:466–502

    PubMed  CAS  Google Scholar 

  • Bruce C, Desimone R, Gross CG (1981) Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. J Neurophysiol 46:369–384

    PubMed  CAS  Google Scholar 

  • Buchel C, Price C, Friston K (1998) A multimodal language region in the ventral visual pathway. Nature 394:274–277

    Article  PubMed  CAS  Google Scholar 

  • Bulkin DA, Groh JM (2006) Seeing sounds: visual and auditory interactions in the brain. Curr Opin Neurobiol 16:415–419

    Article  PubMed  CAS  Google Scholar 

  • Bullier J, Kennedy G, Salinger W (1984) Branching and laminar origin of projections between visual cortical areas in the cat. J Comp Neurol 228:329–341

    Article  PubMed  CAS  Google Scholar 

  • Burton H, McLaren DG (2006) Visual cortex activation in late-onset Braille naïve blind individuals: an fMRI study during semantic and phonological tasks with heard words. Neurosci Lett 392:38–42

    Article  PubMed  CAS  Google Scholar 

  • Burton G, Snyder AZ, Conturo TE, Akbudak E, Ollinger JM, Raichle ME (2002) Adaptive changes in early and late blind: a fMRI study of Braille reading. J Neurophys 87:589–607

    CAS  Google Scholar 

  • Burton G, Sinclair RJ, McLaren DG (2004) Cortical activity to vibrotactile stimulation: an fMRE study in blind and sighted individuals. Hum Brain Mapp 23:210–228

    Article  PubMed  Google Scholar 

  • Cappe C, Barone P (2005) Heteromodal connections supporting multisensory integration at low levels of cortical processing in the monkey. Eur J NeuroSci 22:2886–2902

    Article  PubMed  Google Scholar 

  • Clarey JC, Irvine DRF (1986) Auditory response properties of neurons in the anterior ectosylvian sulcus of the cat. Brain Res 386:12–19

    Article  PubMed  CAS  Google Scholar 

  • Clarke S, Innocenti GM (1986) Organization of immature intrahemispheric connections. J Comp Neurol 251:1–22

    Article  PubMed  CAS  Google Scholar 

  • Clarke S, Innocenti GM (1990) Auditory neurons with transitory axons to visual areas form short permanent projections. Eur J NeuroSci 2:227–242

    Article  PubMed  Google Scholar 

  • Clarke S, Bellmann A, Meuli RA, Assal G, Steck AJ (2000) Auditory agnosia and auditory spatial deficits following left hemispheric lesions: evidence for distinct processing. Neuropsychologia 28:797–807

    Article  Google Scholar 

  • Clasca F, Llamas A, Reinoso-Suárez F (1997) Insular cortex and neighboring fields in the cat: a redefinition based on cortical microarchitecture and connections with the thalamus. J Comp Neurol 384:456–482

    Article  PubMed  CAS  Google Scholar 

  • Clasca F, Llamas A, Reinoso-Suárez F (2000) Cortical connections of the insular and adjacent parieto-temporal fields in the cat. Cereb Cortex 10:371–399

    Article  PubMed  CAS  Google Scholar 

  • Clavagnier S, Falchier A, Kennedy H (2004) Long-distance feedback projections to area V1: implications for multisensory integration, spatial awareness, and visual consciousness. Cogn Affect Behav Neurosci 4:117–126

    Article  PubMed  Google Scholar 

  • Dehay C, Kennedy H, Bullier J (1988) Characterization of transient cortical projections from auditory, somatosensory, and motor cortices to visual areas 17, 18, and 19 in the kitten. J Comp Neurol 272:68–89

    Article  PubMed  CAS  Google Scholar 

  • Dehner LR, Keniston LP, Clemo HR, Meredith MA (2004) Cross-modal circuitry between auditory and somatosensory areas of the cat anterior ectosylvian sulcal cortex: a ‘new’ inhibitory form of multisensory convergence. Cereb Cortex 14:387–403

    Article  PubMed  Google Scholar 

  • Einstein G (1996) Reciprocal projections of cat extrastriate cortex: I. Distribution and morphology of neurons projecting from posterior medial lateral suprasylvian sulcus to area 17. J Comp Neurol 376:518–529

    Article  PubMed  CAS  Google Scholar 

  • Falchier A, Clavagnier S, Barone P, Kennedy G (2002) Anatomical evidence of multimodal integration in primate striate cortex. J Neurosci 22:5749–5759

    PubMed  CAS  Google Scholar 

  • Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47

    Article  PubMed  CAS  Google Scholar 

  • Fu K-MG, Johnston TA, Shah AS, Arnold L, Smiley J, Hackett TA, Garraghty PE, Schroeder CE (2003) Auditory cortical neurons respond to somatosensory stimulation. J Neurosci 23:7510–7515

    PubMed  CAS  Google Scholar 

  • Galletti C, Gamberini M, Kutz DF, Fattori P, Luppino G, Matelli M (2001) The cortical connections of area V6: an occipito-parietal network processing visual information. Eur J NeuroSci 13:1572–1588

    Article  PubMed  CAS  Google Scholar 

  • Gallyas F (1979) Silver staining of myelin by means of physical development. Neurol Res 1:203–209

    PubMed  CAS  Google Scholar 

  • Ghazanfar AA, Schroeder CE (2006) Is neocortex essentially multisensory? Trends Cogn Sci 10:278–285

    Article  PubMed  Google Scholar 

  • Giard MH, Peronnet F (1999) Auditory–visual integration during multimodal object recognition in humans: a behavioral and electrophysiological study. J Cogn Neurosci 11:473–490

    Article  PubMed  CAS  Google Scholar 

  • Gonatas NK, Harper C, Mizutani T, Gonatas JO (1979) Superior sensitivity of conjugates of horseradish peroxidase with wheat germ agglutinin for studies of retrograde axonal transport. J Histochem Cytochem 27:728–734

    PubMed  CAS  Google Scholar 

  • Grant S, Shipp S (1991) Visuaotopic organization of the lateral suprasylvian area and of an adjacent area of the ectosylvian gyrus of the cat cortex: a physiological and connectional study. Vis Neurosci 6:315–338

    PubMed  CAS  Google Scholar 

  • Graybiel AM (1972) Some extrageniculate visual pathways in the cat. Invest Ophthalmol 11:322–332

    PubMed  CAS  Google Scholar 

  • Griffiths TD, Buchel C, Frackowiak RS, Patterson RD (1998) Analysis of temporal structure in sound by the human brain. Nat Neurosci 1:422–427

    Article  PubMed  CAS  Google Scholar 

  • Hackett TA, Stepniewska I, Kaas JH (1998) Subdivisions of auditory cortex and ipsilateral cortical connections of the parabelt auditory cortex in macaque monkeys. J Comp Neurol 394:475–495

    Article  PubMed  CAS  Google Scholar 

  • Hammond P (1978) Inadequacy of nitrous oxide/oxygen mixtures for maintaining anaesthesia in cats: satisfactory alternatives. Pain 5:143–151

    Article  PubMed  CAS  Google Scholar 

  • Hikosaka K, Iwai E, Saito HA, Tanaka K (1988) Polysensory properties of neurons in the anterior bank of the caudal superior temporal sulcus of the macaque monkey. J Neurophys 60:1615–1637

    CAS  Google Scholar 

  • Huffman KJ, Krubitzer L (2001) Area 3a: topographic organization and cortical connections in marmoset monkeys. Cereb Cortex 11:849–867

    Article  PubMed  CAS  Google Scholar 

  • Hutchins B, Updyke BV (1989) Retinotopic organization within the lateral posterior complex of the cat. J Comp Neurol 285:350–398

    Article  PubMed  CAS  Google Scholar 

  • Hyvarinen J, Shelepin Y (1979) Distribution of visual and somatic functions in the parietal associative area 7 of the monkey. Brain Res 169:561–564

    Article  PubMed  CAS  Google Scholar 

  • Imig TJ, Reale RA (1980) Patterns of cortico-cortical connections related to Tonotopic maps in cat auditory cortex. J Comp Neurol 192:293–332

    Article  PubMed  CAS  Google Scholar 

  • Innocenti GM, Clarke S (1984) Bilateral transitory projection to visual areas from auditory cortex in kittens. Brain Res Dev Brain Res 14:143–148

    Article  Google Scholar 

  • Innocenti GM, Berbel P, Clarke S (1988) Development of projections from auditory to visual areas in the cat. J Comp Neurol 272:242–259

    Article  PubMed  CAS  Google Scholar 

  • Jones EG, Powell TP (1970) An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. Brain 93:793–820

    Article  PubMed  CAS  Google Scholar 

  • Joshua DE, Bishop PO (1970) Binocular single vision and depth discrimination. Receptive-field disparities for central and peripheral vision and the binocular interaction on peripheral single units in cat striate cortex. Exp Brain Res 10:389–416

    Article  PubMed  CAS  Google Scholar 

  • Kaas JH, Hackett TA (1998) Subdivisions of auditory cortex and levels of processing in primates. Audiol Neurootol 3:73–85

    Article  PubMed  CAS  Google Scholar 

  • Kaas JH, Hackett TA (2000) Subdivisions of auditory cortex and processing streams in primates. Proc Natl Acad Sci USA 97:11793–11799

    Article  PubMed  CAS  Google Scholar 

  • Kaas JH, Morel A (1993) Connections of visual areas of the upper temporal lobe of owl monkeys: the MT crescent and dorsal and ventral subdivisions of FST. J Neurosci 13:534–546

    PubMed  CAS  Google Scholar 

  • Krubitzer LA, Kaas JH (1990) The organization and connections of somatosensory cortex in marmosets. J Neurosci 10:952–974

    PubMed  CAS  Google Scholar 

  • Krumbholz K, Schonwiesner M, Von Cramon DY, Rubsamen R, Shah NJ, Zilles K, Fink GR (2005) Representation of interaural temporal information from left and right auditory space in the human planum temporale and inferior parietal lobe. Cereb Cortex 15:317–324

    Article  PubMed  Google Scholar 

  • Lee CC, Winer JA (2008) Connections of cat auditory cortex: III. Corticocortical system. J Comp Neurol 507:1920–1943

    Article  PubMed  Google Scholar 

  • Lewis JW, Van Essen DC (2000) Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey. J Comp Neurol 428:112–137

    Article  PubMed  CAS  Google Scholar 

  • Lomber SG, MacNeil MA, Payne BR (1995) Amplification of the thalamic projections to middle suprasylvian cortex following ablation of immature primary visual cortex in the cat. Cereb Cortex 5:166–191

    Article  PubMed  CAS  Google Scholar 

  • Malhotra S, Lomber SG (2007) Sound localization during homotopic and heterotopic bilateral cooling deactivation of primary and nonprimary auditory cortical areas in the cat. J Neurophysiol 97:26–43

    Article  PubMed  Google Scholar 

  • Malhotra S, Hall AJ, Lomber SG (2004) Cortical control of sound localization in the cat: unilateral cooling deactivation of 19 cerebral areas. J Neurophysiol 92:1625–1643

    Article  PubMed  Google Scholar 

  • Malhotra S, Stecker GC, Middlebrooks JC, Lomber SG (2008) Sound localization deficits during reversible deactivation of primary auditory cortex and/or the dorsal zone. J Neurophysiol 99:1628–1642

    Article  PubMed  Google Scholar 

  • Mazzoni P, Bracewell RM, Barash S, Andersen RA (1996) Spatially tuned auditory responses in area LIP of macaques performing delayed memory saccades to acoustic targets. J Neurophysiol 75:1233–1241

    PubMed  CAS  Google Scholar 

  • Meredith MA, Clemo GR (1989) Auditory cortical projection from the anterior ectosylvian sulcus (field AES) to the superior colliculus in the cat: an anatomical and electrophysiological study. J Comp Neurol 289:687–707

    Article  PubMed  CAS  Google Scholar 

  • Mesulam MM (1982) Tracing neural connections with horseradish peroxidase. Wiley, Chichester

    Google Scholar 

  • Nikara T, Bishop PO, Pettigrew JD (1968) Analysis of retinal correspondence by studying receptive fields of binocular single units in cat striate cortex. Exp Brain Res 6:353–372

    Article  PubMed  CAS  Google Scholar 

  • Noesselt T, Rieger JW, Schoenfeld MA, Kanowski M, Hinrichs H, Heinze HJ, Driver J (2007) Audiovisual temporal correspondence modulates human multisensory superior temporal sulcus plus primary sensory cortices. J Neurosci 27:11431–11441

    Article  PubMed  CAS  Google Scholar 

  • Noppeney U (2007) The effects of visual deprivation on functional and structural organization of the human brain. Neurosci Biobehav Rev 31:1169–1180

    Article  PubMed  Google Scholar 

  • Olfert ED, Cross, BM, McWilliam AA (1993) Guide to the Care and Use of Experimental Animals. Canadian Council on Animal Care

  • Olucha F, Martinez-Garcia F, Lopez-Garcia C (1985) A new stabilizing agent for the tetramethyl benzidine (TMB) reaction product in the histochemical detection of horseradish peroxidase. J Neurosci Methods 13:131–138

    Article  PubMed  CAS  Google Scholar 

  • Palmer SM, Rosa MGP (2006) A distinct anatomical network of cortical areas for analysis of motion in far peripheral vision. Eur J NeuroSci 24:2389–2405

    Article  PubMed  CAS  Google Scholar 

  • Palmer LA, Rosenquist AC, Tusa RJ (1978) The retinotopic organization of lateral suprasylvian visual areas in the cat. J Comp Neurol 177:237–356

    Article  PubMed  CAS  Google Scholar 

  • Payne BR (1990) Representation of the ipsilateral visual field in the transition zone between areas 17 and 18 of the cat’s cerebral cortex. Vis Neurosci 4:445–474

    PubMed  CAS  Google Scholar 

  • Payne BR, Lomber SG (1996) Age dependent modification of cytochrome oxidase activity in the cat dorsal lateral geniculate nucleus following removal of primary visual cortex. Vis Neurosci 13:805–816

    PubMed  CAS  Google Scholar 

  • Payne BR, Berman N, Murphy EH (1981) A quantitative assessment of eye alignment in cats after corpus callosum transaction. Exp Brain Res 43:371–376

    PubMed  CAS  Google Scholar 

  • Pettigrew JD, Cooper ML, Blasdel GG (1979) Improved use of tapetal reflection for eye-position monitoring. Invest Ophthalmol Vis Sci 18:490–495

    PubMed  CAS  Google Scholar 

  • Ptito M, Kupers R (2005) Cross-modal plasticity in early blindness. J Integr Neurosci 4:479–488

    Article  PubMed  Google Scholar 

  • Ptito M, Schneider FCG, Paulson OB, Kupers R (2008) Alterations of the visual pathways in congenital blindness. Exp Brain Res 187:41–49

    Article  PubMed  Google Scholar 

  • Raczkowski D, Rosenquest AC (1981) Retinotopic organization in the cat lateral posterior-pulvinar complex. Brain Res 221:185–191

    Article  PubMed  CAS  Google Scholar 

  • Rauschecker JP (1998a) Parallel processing in the auditory cortex of primates. Audiol Neurootol 3:86–103

    Article  PubMed  CAS  Google Scholar 

  • Rauschecker JP (1998b) Cortical processing of complex sounds. Curr Opin Neurobiol 8:516–521

    Article  PubMed  CAS  Google Scholar 

  • Raz N, Amedi A, Zohary E (2005) V1 activation in congenitally blind humans is associated with episodic retrieval. Cereb Cortex 15:1459–1468

    Article  PubMed  Google Scholar 

  • Reale RA, Imig TJ (1980) Tonotopic organization in auditory cortex of the cat. J Comp Neurol 192:265–291

    Article  PubMed  CAS  Google Scholar 

  • Recanzone GH (2000) Spatial processing in the auditory cortex of the macaque monkey. Proc Natl Acad Sci USA 97:11829–11835

    Article  PubMed  CAS  Google Scholar 

  • Reinoso-Suárez F (1961) Topographischer Hirnatlas der Katze fur experimental-physiologische Untersuchungen [Topographical atlas of the cat brain for experimental-physiological research]. Darmstadt: Merck.

  • Rizzolatti G, Scandolara C, Matelli M, Gentilucci M (1981) Afferent properties of periarcuate neurons in macaque monkeys. I. Somatosensory responses. Behav Brain Res 2:125–146

    Article  PubMed  CAS  Google Scholar 

  • Rockland KS, Ojima H (2003) Multisensory convergence in calcarine visual areas in macaque monkey. J Psychophys 50:19–26

    Article  Google Scholar 

  • Rockland KS, Pandya DN (1979) Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey. Brain Res 179:3–20

    Article  PubMed  CAS  Google Scholar 

  • Roder B, Stock O, Bien S, Neville H, Rosler F (2002) Speech processing activates visual cortex in congenitally blind humans. Eur J NeuroSci 16:930–936

    Article  PubMed  Google Scholar 

  • Rose JE (1949) The cellular structure of the auditory region of the cat. J Comp Neurol 91:409–440

    Article  PubMed  CAS  Google Scholar 

  • Sanderson KJ (1971) The projection of the visual field to the lateral geniculate and medial interlaminar nuclei in the cat. J Comp Neurol 143:101–118

    Article  PubMed  CAS  Google Scholar 

  • Schall JD, Morel A, King DJ, Bullier J (1995) Topography of visual cortex connections with frontal eye field in macaque: convergence and segregation of processing streams. 15:4464–4487

    CAS  Google Scholar 

  • Schlack A, Sterbing-D’Angelo SJ, Hartung K, Hoffmann K-P, Bremmer J (2005) Multisensory space representations in the macaque ventral intraparietal area. J Neurosci 25:4616–4625

    Article  PubMed  CAS  Google Scholar 

  • Schroeder CE, Foxe JJ (2002) The timing and laminar profile of converging inputs to multisensory areas of the macaque neocortex. Brain Res Cogn Brain Res 14:187–198

    Article  PubMed  Google Scholar 

  • Schroeder CE, Foxe J (2005) Multisensory contributions to low-level, ‘unisensory’ processing. Curr Opin Neurobiol 15:454–458

    Article  PubMed  CAS  Google Scholar 

  • Schroeder CE, Lindsley RW, Specht C, Marcovici A, Smiley JF, Javitt DC (2001) Somatosensory input to auditory association cortex in the macaque monkey. J Neurophysiol 85:1322–1327

    PubMed  CAS  Google Scholar 

  • Schroeder CE, Smiley J, Kaiming GF, McGinnis T, O’Connell MN, Hackett TA (2003) Anatomical mechanisms and functional implications of multisensory convergence in early cortical processing. Int J Psychophysiol 50:5–17

    Article  PubMed  Google Scholar 

  • Shipp S, Zeki S (1989) The organization of connections between areas V5 and V1 in macaque monkey visual cortex. Eur J NeuroSci 1:309–332

    Article  PubMed  Google Scholar 

  • Shupert C, Cornwell P, Payne B (1993) Differential sparing of depth perception, orienting, and optokinetic nystagmus after neonatal versus adult lesions of cortical areas 17, 18, and 19 in the cat. Behav Neurosci 107:633–850

    Article  PubMed  CAS  Google Scholar 

  • Stecker GC, Mickey BJ, Macpherson EA, Middlebrooks JC (2003) Spatial sensitivity in field PAF of cat auditory cortex. J Neurophysiol 89:2889–2903

    Article  PubMed  Google Scholar 

  • Symonds LL, Rosenquist AC (1984a) Coricocortical connections among visual areas in the cat. J Comp Neurol 229:1–38

    Article  PubMed  CAS  Google Scholar 

  • Symonds LL, Rosenquist AC (1984b) Laminar origins of visual corticocortical connections in the cat. J Comp Neurol 229:39–47

    Article  PubMed  CAS  Google Scholar 

  • Symonds LL, Rosenquist AC, Edwards SB, Palmer LA (1981) Projections of the pulvinar-lateral posterior complex to visual cortical areas in the cat. Neuroscience 6:1995–2020

    Article  PubMed  CAS  Google Scholar 

  • Tian B, Reser D, Durham A, Kustov A, Rauschecker JP (2001) Functional specialization in rhesus monkey auditory cortex. Science 292:290–293

    Article  PubMed  CAS  Google Scholar 

  • Tretter F, Cynader M, Singer W (1975) Cat parastriate cortex: a primary or secondary visual area. J Neurophysiol 38:1099–1113

    PubMed  CAS  Google Scholar 

  • Tusa RJ, Palmer LA (1980) Retinotopic organization of areas 20 and 21 in the cat. J Comp Neurol 193:147–164

    Article  PubMed  CAS  Google Scholar 

  • Tusa RJ, Palmer LA, Rosenquist AC (1978) The retinotopic organization of area 17 (Striate Cortex) in the cat. J Comp Neurol 177:213–236

    Article  PubMed  CAS  Google Scholar 

  • Tusa RJ, Rosenquist AC, Palmer LA (1979) Retinotopic organization of areas 18 and 19 in the cat. J Comp Neurol 185:657–678

    Article  PubMed  CAS  Google Scholar 

  • Updyke BV (1983) A reevaluation of the functional organization and cytoarchitecture of the feline lateral posterior complex, with observations on adjoining cell groups. J Comp Neurol 219:143–181

    Article  PubMed  CAS  Google Scholar 

  • Updyke BV (1986) Retinotopic organization within the cat’s posterior suprasylvian sulcus and gyrus. J Comp Neurol 246:265–280

    Article  PubMed  CAS  Google Scholar 

  • Watkins S, Shams L, Josephs O, Rees G (2007) Activity in the human V1 follows multisensory perception. NeuroImage 37:572–578

    Article  PubMed  CAS  Google Scholar 

  • Weeks R, Horwitz B, Aziz-Sultan A, Tian B, Wessinger CM, Cohen LG (2004) A positron emission tomographic study of auditory localization in the congenitally blind. J Neurosci 20:2664–2672

    Google Scholar 

Download references

Acknowledgments

We would like to thank Jeffrey Mellott for assistance with the preparation of the tissue. This research was supported by grants from the Canadian Institutes of Health Research and the Natural Science and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen G. Lomber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hall, A.J., Lomber, S.G. Auditory cortex projections target the peripheral field representation of primary visual cortex. Exp Brain Res 190, 413–430 (2008). https://doi.org/10.1007/s00221-008-1485-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-008-1485-7

Keywords

Navigation