Skip to main content

Advertisement

Log in

Time of transplantation and cell preparation determine neural stem cell survival in a mouse model of Huntington’s disease

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Cell replacement therapies for neurodegenerative diseases, using multipotent neural stem cells (NSCs), require above all, a good survival of the graft. In this study, we unilaterally injected quinolinic acid (QA) into the striatum of adult mice and transplanted syngeneic NSCs of enhanced green fluorescent protein-transgenic mice into the lesioned striatum. The injection of QA leads to an excitotoxic lesion with selective cell death of the medium sized spiny neurons, the same cells that are affected in Huntington’s disease. In order to investigate the best timing of transplantation for the survival of donor cells, we transplanted the stem cells at 2, 7 and 14 days after injury. In addition, the influence of graft preparation prior to transplantation, i.e., intact neurospheres versus dissociated cell suspension on graft survival was investigated. By far the best survival was found with the combination of early transplantation (i.e., 2 days after QA-lesion) with the use of neurospheres instead of dissociated cell suspension. This might be due to the different states of host’s astrocytic and microglia activation which we found to be moderate at 2, but pronounced at 7 and 14 days after QA-lesion. We also investigated brain derived neurotrophic factor (BDNF)-expression in the striatum after QA-lesion and found no significant change in BDNF protein-level. We conclude that already the method of graft preparation of NSCs for transplantation, as well as the timing of the transplantation procedure strongly affects the survival of the donor cells when grafted into the QA-lesioned striatum of adult mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acarin L, Gonzalez B, Castellano B (2000) Neuronal, astroglial and microglial cytokine expression after an excitotoxic lesion in the immature rat brain. Eur J Neurosci 12:3505–3520

    Article  PubMed  CAS  Google Scholar 

  • Ader M, Meng J, Schachner M, Bartsch U (2000) Formation of myelin after transplantation of neural precursor cells into the retina of young postnatal mice. Glia 30:301–310

    Article  PubMed  CAS  Google Scholar 

  • Ader M, Schachner M, Bartsch U (2001) Transplantation of neural precursor cells into the dysmyelinated CNS of mutant mice deficient in the myelin-associated glycoprotein and Fyn tyrosine kinase. Eur J Neurosci 14:561–566

    Article  PubMed  CAS  Google Scholar 

  • Ader M, Schachner M, Bartsch U (2004) Integration and differentiation of neural stem cells after transplantation into the dysmyelinated central nervous system of adult mice. Eur J Neurosci 20:1205–1210

    Article  PubMed  Google Scholar 

  • Bachoud-Levi AC, Remy P, Nguyen JP, Brugieres P, Lefaucheur JP, Bourdet C, Baudic S, Gaura V, Maison P, Haddad B, Boisse MF, Grandmougin T, Jeny R, Bartolomeo P, Dalla BG, Degos JD, Lisovoski F, Ergis AM, Pailhous E, Cesaro P, Hantraye P, Peschanski M (2000) Motor and cognitive improvements in patients with Huntington’s disease after neural transplantation. Lancet 356:1975–1979

    Article  PubMed  CAS  Google Scholar 

  • Baquet ZC, Gorski JA, Jones KR (2004) Early striatal dendrite deficits followed by neuron loss with advanced age in the absence of anterograde cortical brain-derived neurotrophic factor. J Neurosci 24:4250–4258

    Article  PubMed  CAS  Google Scholar 

  • Beal MF, Kowall NW, Ellison DW, Mazurek MF, Swartz KJ, Martin JB (1986) Replication of the neurochemical characteristics of Huntington’s disease by quinolinic acid. Nature 321:168–171

    Article  PubMed  CAS  Google Scholar 

  • Beal MF, Kowall NW, Swartz KJ, Ferrante RJ, Martin JB (1989) Differential sparing of somatostatin-neuropeptide Y and cholinergic neurons following striatal excitotoxin lesions. Synapse 3:38–47

    Article  PubMed  CAS  Google Scholar 

  • Benoit BO, Savarese T, Joly M, Engstrom CM, Pang L, Reilly J, Recht LD, Ross AH, Quesenberry PJ (2001) Neurotrophin channeling of neural progenitor cell differentiation. J Neurobiol 46:265–280

    Article  PubMed  CAS  Google Scholar 

  • Boockvar JA, Schouten J, Royo N, Millard M, Spangler Z, Castelbuono D, Snyder E, O’Rourke D, McIntosh T (2005) Experimental traumatic brain injury modulates the survival, migration, and terminal phenotype of transplanted epidermal growth factor receptor-activated neural stem cells. Neurosurgery 56:163–171

    PubMed  Google Scholar 

  • Brasted PJ, Watts C, Robbins TW, Dunnett SB (1999) Associative plasticity in striatal transplants. Proc Natl Acad Sci USA 96:10524–10529

    Article  PubMed  CAS  Google Scholar 

  • Caldwell MA, He X, Wilkie N, Pollack S, Marshall G, Wafford KA, Svendsen CN (2001) Growth factors regulate the survival and fate of cells derived from human neurospheres. Nat Biotechnol 19:475–479

    Article  PubMed  CAS  Google Scholar 

  • Canals JM, Marco S, Checa N, Michels A, Perez-Navarro E, Arenas E, Alberch J (1998) Differential regulation of the expression of nerve growth factor, brain-derived neurotrophic factor, and neurotrophin-3 after excitotoxicity in a rat model of Huntington’s disease. Neurobiol Dis 5:357–364

    Article  PubMed  CAS  Google Scholar 

  • Canals JM, Checa N, Marco S, Akerud P, Michels A, Perez-Navarro E, Tolosa E, Arenas E, Alberch J (2001) Expression of brain-derived neurotrophic factor in cortical neurons is regulated by striatal target area. J Neurosci 21:117–124

    PubMed  CAS  Google Scholar 

  • Cao Q, Benton RL, Whittemore SR (2002) Stem cell repair of central nervous system injury. J Neurosci Res 68:501–510

    Article  PubMed  CAS  Google Scholar 

  • Carpenter MK, Winkler C, Fricker R, Emerich DF, Wong SC, Greco C, Chen EY, Chu Y, Kordower JH, Messing A, Bjorklund A, Hammang JP (1997) Generation and transplantation of EGF-responsive neural stem cells derived from GFAP-hNGF transgenic mice. Exp Neurol 148:187–204

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Swanson RA (2003) Astrocytes and brain injury. J Cereb Blood Flow Metab 23:137–149

    Article  PubMed  Google Scholar 

  • Ciccolini F, Svendsen CN (2001) Neurotrophin responsiveness is differentially regulated in neurons and precursors isolated from the developing striatum. J Mol Neurosci 17:25–33

    Article  PubMed  CAS  Google Scholar 

  • Clarke DJ, Dunnett SB, Isacson O, Sirinathsinghji DJ, Bjorklund A (1988) Striatal grafts in rats with unilateral neostriatal lesions—I. Ultrastructural evidence of afferent synaptic inputs from the host nigrostriatal pathway. Neuroscience 24:791–801

    Article  PubMed  CAS  Google Scholar 

  • Dihne M, Bernreuther C, Sibbe M, Paulus W, Schachner M (2003) A new role for the cell adhesion molecule L1 in neural precursor cell proliferation, differentiation, and transmitter-specific subtype generation. J Neurosci 23:6638–6650

    PubMed  CAS  Google Scholar 

  • Dihne M, Bernreuther C, Hagel C, Wesche KO, Schachner M (2006) Embryonic stem cell-derived neuronally committed precursor cells with reduced teratoma formation after transplantation into the lesioned adult mouse brain. Stem Cells 24:1458–1466

    Article  PubMed  Google Scholar 

  • Dobrossy MD, Dunnett SB (2004) Environmental enrichment affects striatal graft morphology and functional recovery. Eur J Neurosci 19:159–168

    Article  PubMed  Google Scholar 

  • Dunnett SB, Bjorklund A (1992) Neural transplantation: a practical approach. IRL Press, Oxford. Ref Type: serial (Book, Monograph)

  • Dunnett SB, Isacson O, Sirinathsinghji DJ, Clarke DJ, Bjorklund A (1988) Striatal grafts in rats with unilateral neostriatal lesions—III. Recovery from dopamine-dependent motor asymmetry and deficits in skilled paw reaching. Neuroscience 24:813–820

    Article  PubMed  CAS  Google Scholar 

  • Dunnett SB, Carter RJ, Watts C, Torres EM, Mahal A, Mangiarini L, Bates G, Morton AJ (1998) Striatal transplantation in a transgenic mouse model of Huntington’s disease. Exp Neurol 154:31–40

    Article  PubMed  CAS  Google Scholar 

  • Dunnett SB, Boulton AA, Baker GB (2000) Neural transplantation methods. Neuromethods, vol 36. Humana Press, Totowa. Ref Type: serial (Book, Monograph)

  • Dusart I, Marty S, Peschanski M (1991) Glial changes following an excitotoxic lesion in the CNS—I. Astrocytes. Neuroscience 45:541–549

    Article  PubMed  CAS  Google Scholar 

  • Eriksson C, Bjorklund A, Wictorin K (2003) Neuronal differentiation following transplantation of expanded mouse neurosphere cultures derived from different embryonic forebrain regions. Exp Neurol 184:615–635

    Article  PubMed  Google Scholar 

  • Fricker RA, Carpenter MK, Winkler C, Greco C, Gates MA, Bjorklund A (1999) Site-specific migration and neuronal differentiation of human neural progenitor cells after transplantation in the adult rat brain. J Neurosci 19:5990–6005

    PubMed  CAS  Google Scholar 

  • Fricker-Gates RA, Muir JA, Dunnett SB (2004) Transplanted hNT cells (“LBS neurons”) in a rat model of huntington’s disease: good survival, incomplete differentiation, and limited functional recovery. Cell Transplant 13:123–136

    PubMed  Google Scholar 

  • Haas SJP, Ahrens A, Petrov S, Schmitt O, Wree A (2004) Quinolinic acid lesions of the caudate putamen in the rat lead to a local increase of ciliary neurotrophic factor. J Anatomy 204:271–281

    Article  CAS  Google Scholar 

  • Hammang JP, Archer DR, Duncan ID (1997) Myelination following transplantation of EGF-responsive neural stem cells into a myelin-deficient environment. Exp Neurol 147:84–95

    Article  PubMed  CAS  Google Scholar 

  • Hansson O, Petersen A, Leist M, Nicotera P, Castilho RF, Brundin P (1999) Transgenic mice expressing a Huntington’s disease mutation are resistant to quinolinic acid-induced striatal excitotoxicity. Proc Natl Acad Sci USA 96:8727–8732

    Article  PubMed  CAS  Google Scholar 

  • Hurelbrink CB, Armstrong RJ, Dunnett SB, Rosser AE, Barker RA (2002) Neural cells from primary human striatal xenografts migrate extensively in the adult rat CNS. Eur J Neurosci 15:1255–1266

    Article  PubMed  Google Scholar 

  • Isacson O, Fischer W, Wictorin K, Dawbarn D, Bjorklund A (1987) Astroglial response in the excitotoxically lesioned neostriatum and its projection areas in the rat. Neuroscience 20:1043–1056

    Article  PubMed  CAS  Google Scholar 

  • Karbanova J, Mokry J, Kotingova L (2004) Neural stem cells transplanted into intact brains as neurospheres form solid grafts composed of neurons, astrocytes and oligodendrocyte precursors. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 148:217–220

    PubMed  Google Scholar 

  • Li XJ (1999) The early cellular pathology of Huntington’s disease. Mol Neurobiol 20:111–124

    PubMed  Google Scholar 

  • Liberto CM, Albrecht PJ, Herx LM, Yong VW, Levison SW (2004) Pro-regenerative properties of cytokine-activated astrocytes. J Neurochem 89:1092–1100

    Article  PubMed  CAS  Google Scholar 

  • Lundberg C, MartinezSerrano A, Cattaneo E, Mckay RDG, Bjorklund A (1997) Survival, integration, and differentiation of neural stem cell lines after transplantation to the adult rat striatum. Exp Neurol 145:342–360

    Article  PubMed  CAS  Google Scholar 

  • Mangiarini L, Sathasivam K, Seller M, Cozens B, Harper A, Hetherington C, Lawton M, Trottier Y, Lehrach H, Davies S, Bates G (1996) Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87:493–506

    Article  PubMed  CAS  Google Scholar 

  • Marco S, Canudas AM, Canals JM, Gavalda N, Perez-Navarro E, Alberch J (2002) Excitatory amino acids differentially regulate the expression of GDNF, neurturin, and their receptors in the adult rat striatum. Exp Neurol 174:243–252

    Article  PubMed  CAS  Google Scholar 

  • Marty S, Dusart I, Peschanski M (1991) Glial changes following an excitotoxic lesion in the CNS—I. Microglia/macrophages. Neuroscience 45:529–539

    Article  PubMed  CAS  Google Scholar 

  • McBride JL, Behrstock SP, Chen EY, Jakel RJ, Siegel I, Svendsen CN, Kordower JH (2004) Human neural stem cell transplants improve motor function in a rat model of Huntington’s disease. J Comp Neurol 475:211–219

    Article  PubMed  Google Scholar 

  • Mizuno K, Carnahan J, Nawa H (1994) Brain-derived neurotrophic factor promotes differentiation of striatal GABAergic neurons. Dev Biol 165:243–256

    Article  PubMed  CAS  Google Scholar 

  • Mouton PR (2002) Principles and practices of unbiased stereology. An introduction for bioscientist. John Hopkins University Press, Baltimore

    Google Scholar 

  • Nakao N, Brundin P, Funa K, Lindvall O, Odin P (1995) Trophic and protective actions of brain-derived neurotrophic factor on striatal DARPP-32-containing neurons in vitro. Brain Res Dev Brain Res 90:92–101

    Article  PubMed  CAS  Google Scholar 

  • Okabe M, Ikawa M, Kominami K, Nakanishi T, Nishimune Y (1997) Green mice as a source of ubiquitous green cells. FEBS Lett. 407:313–319

    Article  PubMed  CAS  Google Scholar 

  • Perez-Navarro E, Canudas AM, Akerund P, Alberch J, Arenas E (2000) Brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4/5 prevent the death of striatal projection neurons in a rodent model of Huntington’s disease. J Neurochem 75:2190–2199

    Article  PubMed  CAS  Google Scholar 

  • Peschanski M, Bachoud-Levi AC, Hantraye P (2004) Integrating fetal neural transplants into a therapeutic strategy: the example of Huntington’s disease. Brain 127:1219–1228

    Article  PubMed  Google Scholar 

  • Polazzi E, Gianni T, Contestabile A (2001) Microglial cells protect cerebellar granule neurons from apoptosis: evidence for reciprocal signaling. Glia 36:271–280

    Article  PubMed  CAS  Google Scholar 

  • Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255:1707–1710

    Article  PubMed  CAS  Google Scholar 

  • Reynolds BA, Weiss S (1996) Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev Biol 175:1–13

    Article  PubMed  CAS  Google Scholar 

  • Reynolds BA, Tetzlaff W, Weiss S (1992) A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J Neurosci 12:4565–4574

    PubMed  CAS  Google Scholar 

  • Rubio FJ, Bueno C, Villa A, Navarro B, Martinez-Serrano A (2000) Genetically perpetuated human neural stem cells engraft and differentiate into the adult mammalian brain. Mol Cell Neurosci 16:1–13

    Article  PubMed  CAS  Google Scholar 

  • Schiefer J, Topper R, Schmidt W, Block F, Heinrich PC, Noth J, Schwarz M (1998) Expression of interleukin 6 in the rat striatum following stereotaxic injection of quinolinic acid. J Neuroimmunol 89:168–176

    Article  PubMed  CAS  Google Scholar 

  • Sharp AH, Ross CA (1996) Neurobiology of Huntington’s disease. Neurobiol Dis 3:3–15

    Article  PubMed  CAS  Google Scholar 

  • Sirinathsinghji DJ, Dunnett SB, Isacson O, Clarke DJ, Kendrick K, Bjorklund A (1988) Striatal grafts in rats with unilateral neostriatal lesions—II. In vivo monitoring of GABA release in globus pallidus and substantia nigra. Neuroscience 24:803–811

    Article  PubMed  CAS  Google Scholar 

  • Strauss S, Otten U, Joggerst B, Pluss K, Volk B (1994) Increased levels of nerve growth factor (NGF) protein and mRNA and reactive gliosis following kainic acid injection into the rat striatum. Neurosci Lett 168:193–196

    Article  PubMed  CAS  Google Scholar 

  • Suslov ON, Kukekov VG, Ignatova TN, Steindler DA (2002) Neural stem cell heterogeneity demonstrated by molecular phenotyping of clonal neurospheres. Proc Natl Acad Sci USA 99:14506–14511

    Article  PubMed  CAS  Google Scholar 

  • Svendsen CN, Clarke DJ, Rosser AE, Dunnett SB (1996) Survival and differentiation of rat and human epidermal growth factor-responsive precursor cells following grafting into the lesioned adult central nervous system. Exp Neurol 137:376–388

    Article  PubMed  CAS  Google Scholar 

  • The Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72:971–983

    Article  Google Scholar 

  • Topper R, Gehrmann J, Schwarz M, Block F, Noth J, Kreutzberg GW (1993) Remote microglial activation in the quinolinic acid model of Huntington’s disease. Exp Neurol 123:271–283

    Article  PubMed  CAS  Google Scholar 

  • Ventimiglia R, Mather PE, Jones BE, Lindsay RM (1995) The neurotrophins BDNF, NT-3 and NT-4/5 promote survival and morphological and biochemical differentiation of striatal neurons in vitro. Eur J Neurosci 7:213–222

    Article  PubMed  CAS  Google Scholar 

  • Winkler C, Fricker RA, Gates MA, Olsson M, Hammang JP, Carpenter MK, Bjorklund A (1998) Incorporation and glial differentiation of mouse EGF-responsive neural progenitor cells after transplantation into the embryonic rat brain. Mol Cell Neurosci 11:99–116

    Article  PubMed  CAS  Google Scholar 

  • Yoshida K, Toya S (1997) Neurotrophic activity in cytokine-activated astrocytes. Keio J Med 46:55–60

    PubMed  CAS  Google Scholar 

  • Zietlow R, Dunnett SB, Fawcett JW (1999) The effect of microglia on embryonic dopaminergic neuronal survival in vitro: diffusible signals from neurons and glia change microglia from neurotoxic to neuroprotective. Eur J Neurosci 11:1657–1667

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was funded by a START grant from the Medical Faculty RWTH Aachen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph M. Kosinski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johann, V., Schiefer, J., Sass, C. et al. Time of transplantation and cell preparation determine neural stem cell survival in a mouse model of Huntington’s disease. Exp Brain Res 177, 458–470 (2007). https://doi.org/10.1007/s00221-006-0689-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-006-0689-y

Keywords

Navigation