Skip to main content
Log in

Possible role of the dopamine D1 receptor in the sensorimotor gating deficits induced by high-fat diet

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

High-fat diet (HFD) has been recently reported to induce sensorimotor gating deficits, but the underlying mechanisms are not well understood.

Objective

The purpose of this study is to determine whether HFD induces long-lasting deficits in sensorimotor gating and to examine the involvement of altered dopamine (DA) function.

Methods

C57BL/6J mice were fed HFD for 10 weeks and then normal diet (ND) for 4 weeks. DA D2 receptor (D2R) knockout (KO) mice were also fed HFD for 10 weeks. The mice were evaluated for prepulse inhibition (PPI) of acoustic startle after HFD and the subsequent 4-week ND. We evaluated the effect of SCH23390, a D1 receptor (D1R) antagonist, on PPI and measured protein expression levels of D1R and D2R in the prefrontal cortex (PFC) in HFD mice. The concentrations of monoamines and their metabolites in the cortices of 10-week HFD or ND mice were measured using high performance liquid chromatography.

Results

Long-term HFD-induced PPI disruption in WT and D2R KO mice. Even after 4 weeks of subsequent ND, PPI remained to be disrupted. SCH23390 mitigated the PPI disruption. In HFD animals, D1R protein expression in the PFC was significantly decreased, while DA, homovanillic acid, and 3,4-dihydroxyphenylacetic acid levels in the cortex were increased.

Conclusion

This is the first evidence that HFD can induce long-lasting deficits in sensorimotor gating through alteration of cortical levels of DA and its metabolites. Our data suggest that HFD-induced PPI deficits are related to altered D1R signaling and that D1R antagonists may have therapeutic effects on the deficits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abi-Dargham A, Mawlawi O, Lombardo I, Gil R, Martinez D, Huang Y, Hwang DR, Keilp J, Kochan L, Van Heertum R, Gorman JM, Laruelle M (2002) Prefrontal dopamine D1 receptors and working memory in schizophrenia. J Neurosci 22:3708–3719

    CAS  PubMed  Google Scholar 

  • Abi-Dargham A, Xu X, Thompson JL, Gil R, Kegeles LS, Urban N, Narendran R, Hwang DR, Laruelle M, Slifstein M (2012) Increased prefrontal cortical D1 receptors in drug naive patients with schizophrenia: a PET study with [11C]NNC112. J Psychopharmacol 26:794–805

    Article  PubMed  Google Scholar 

  • Beaulieu JM, Gainetdinov RR (2011) The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 63:182–217

    Article  CAS  PubMed  Google Scholar 

  • Braff DL, Geyer MA (1990) Sensorimotor gating and schizophrenia. Human and animal model studies. Arch Gen Psychiatry 47:181–188

    Article  CAS  PubMed  Google Scholar 

  • Braff D, Stone C, Callaway E, Geyer M, Glick I, Bali L (1978) Prestimulus effects on human startle reflex in normals and schizophrenics. Psychophysiology 15:339–343

    Article  CAS  PubMed  Google Scholar 

  • Buettner R, Scholmerich J, Bollheimer LC (2007) High-fat diets: modeling the metabolic disorders of human obesity in rodents. Obesity (Silver Spring) 15:798–808

    Article  CAS  Google Scholar 

  • Geyer MA, Krebs-Thomson K, Braff DL, Swerdlow NR (2001) Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review. Psychopharmacology (Berl) 156:117–154

    Article  CAS  Google Scholar 

  • Gould TJ, Bizily SP, Tokarczyk J, Kelly MP, Siegel SJ, Kanes SJ, Abel T (2004) Sensorimotor gating deficits in transgenic mice expressing a constitutively active form of Gsα. Neuropsychopharmacology 29:494–501

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kambeitz J, Abi-Dargham A, Kapur S, Howes OD (2014) Alterations in cortical and extrastriatal subcortical dopamine function in schizophrenia: systematic review and meta-analysis of imaging studies. Br J Psychiatry 204:420–429

    Article  PubMed  Google Scholar 

  • Kunugi H, Tanaka M, Hori H, Hashimoto R, Saitoh O, Hironaka N (2007) Prepulse inhibition of acoustic startle in Japanese patients with chronic schizophrenia. Neurosci Res 59:23–28

    Article  PubMed  Google Scholar 

  • Labouesse MA, Stadlbauer U, Langhans W, Meyer U (2013) Chronic high fat diet consumption impairs sensorimotor gating in mice. Psychoneuroendocrinology 38:2562–2574

    Article  CAS  PubMed  Google Scholar 

  • Li XL, Aou S, Oomura Y, Hori N, Fukunaga K, Hori T (2002) Impairment of long-term potentiation and spatial memory in leptin receptor-deficient rodents. Neuroscience 113:607–615

    Article  CAS  PubMed  Google Scholar 

  • McElroy SL, Keck PE Jr (2014) Metabolic syndrome in bipolar disorder: a review with a focus on bipolar depression. J Clin Psychiatry 75:46–61

    Article  CAS  PubMed  Google Scholar 

  • McIntyre RS, Rasgon NL, Kemp DE, Nguyen HT, Law CW, Taylor VH, Woldeyohannes HO, Alsuwaidan MT, Soczynska JK, Kim B, Lourenco MT, Kahn LS, Goldstein BI (2009) Metabolic syndrome and major depressive disorder: co-occurrence and pathophysiologic overlap. Curr Diab Rep 9:51–59

    Article  PubMed  Google Scholar 

  • Missale C, Nash SR, Robinson SW, Jaber M, Caron MG (1998) Dopamine receptors: from structure to function. Physiol Rev 78:189–225

    CAS  PubMed  Google Scholar 

  • Money KM, Stanwood GD (2013) Developmental origins of brain disorders: roles for dopamine. Front Cell Neurosci 7:260

    Article  PubMed Central  PubMed  Google Scholar 

  • Nozaki S, Kato M, Takano H, Ito H, Takahashi H, Arakawa R, Okumura M, Fujimura Y, Matsumoto R, Ota M, Takano A, Otsuka A, Yasuno F, Okubo Y, Kashima H, Suhara T (2009) Regional dopamine synthesis in patients with schizophrenia using L-[β-11C]DOPA PET. Schizophr Res 108:78–84

  • Numakawa T, Kumamaru E, Adachi N, Yagasaki Y, Izumi A, Kunugi H (2009) Glucocorticoid receptor interaction with TrkB promotes BDNF-triggered PLC-γ signaling for glutamate release via a glutamate transporter. Proc Natl Acad Sci U S A 106:647–652

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Okubo Y, Suhara T, Suzuki K, Kobayashi K, Inoue O, Terasaki O, Someya Y, Sassa T, Sudo Y, Matsushima E, Iyo M, Tateno Y, Toru M (1997) Decreased prefrontal dopamine D1 receptors in schizophrenia revealed by PET. Nature 385:634–636

    Article  CAS  PubMed  Google Scholar 

  • Pathan AR, Gaikwad AB, Viswanad B, Ramarao P (2008) Rosiglitazone attenuates the cognitive deficits induced by high fat diet feeding in rats. Eur J Pharmacol 589:176–179

    Article  CAS  PubMed  Google Scholar 

  • Ralph RJ, Caine SB (2005) Dopamine D1 and D2 agonist effects on prepulse inhibition and locomotion: comparison of Sprague–Dawley rats to Swiss-Webster, 129X1/SvJ, C57BL/6J, and DBA/2J mice. J Pharmacol Exp Ther 312:733–741

    Article  CAS  PubMed  Google Scholar 

  • Ralph-Williams RJ, Lehmann-Masten V, Otero-Corchon V, Low MJ, Geyer MA (2002) Differential effects of direct and indirect dopamine agonists on prepulse inhibition: a study in D1 and D2 receptor knock-out mice. J Neurosci 22:9604–9611

    CAS  PubMed  Google Scholar 

  • Ralph-Williams RJ, Lehmann-Masten V, Geyer MA (2003) Dopamine D1 rather than D2 receptor agonists disrupt prepulse inhibition of startle in mice. Neuropsychopharmacology 28:108–118

    Article  CAS  PubMed  Google Scholar 

  • Sharma AN, Elased KM, Garrett TL, Lucot JB (2010) Neurobehavioral deficits in db/db diabetic mice. Physiol Behav 101:381–388

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Van De Werd HJ, Uylings HB (2014) Comparison of (stereotactic) parcellations in mouse prefrontal cortex. Brain Struct Funct 219:433–459

    Article  Google Scholar 

  • Wakabayashi C, Kiyama Y, Kunugi H, Manabe T, Iwakura Y (2011) Age-dependent regulation of depression-like behaviors through modulation of adrenergic receptor α1A subtype expression revealed by the analysis of interleukin-1 receptor antagonist knockout mice. Neuroscience 192:475–484

    Article  CAS  PubMed  Google Scholar 

  • Wakabayashi C, Numakawa T, Ninomiya M, Chiba S, Kunugi H (2012) Behavioral and molecular evidence for psychotropic effects in L-theanine. Psychopharmacology (Berl) 219:1099–1109

    Article  CAS  Google Scholar 

  • Winocur G, Greenwood CE, Piroli GG, Grillo CA, Reznikov LR, Reagan LP, McEwen BS (2005) Memory impairment in obese Zucker rats: an investigation of cognitive function in an animal model of insulin resistance and obesity. Behav Neurosci 119:1389–1395

    Article  CAS  PubMed  Google Scholar 

  • Yamada N, Katsuura G, Ochi Y, Ebihara K, Kusakabe T, Hosoda K, Nakao K (2011) Impaired CNS leptin action is implicated in depression associated with obesity. Endocrinology 152:2634–2643

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi H, Aiba A, Nakamura K, Nakao K, Sakagami H, Goto K, Kondo H, Katsuki M (1996) Dopamine D2 receptor plays a critical role in cell proliferation and proopiomelanocortin expression in the pituitary. Genes Cells 1:253–268

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Intramural Research Grant for Neurological and Psychiatric Disorders of NCNP, Health and Labour Sciences Research Grants, and the Strategic Research Program for Brain Sciences by the Ministry of Education, Culture, Sports, Science and Technology of Japan. We thank Mr. K. Yamamoto for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Kunugi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(pdf 860 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wakabayashi, C., Numakawa, T., Ooshima, Y. et al. Possible role of the dopamine D1 receptor in the sensorimotor gating deficits induced by high-fat diet. Psychopharmacology 232, 4393–4400 (2015). https://doi.org/10.1007/s00213-015-4068-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-015-4068-x

Keywords

Navigation