Skip to main content
Log in

Relationship between limbic and cortical 5-HT neurotransmission and acquisition and reversal learning in a go/no-go task in rats

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Specific brain structures have been suggested to be involved in impulsive responding assessed by a variety of operant tasks. Central serotonin (5-HT) function has also been widely implicated in impulsivity; however, little research has addressed the regional aspect of 5-HT roles in different impulsive indices of task performance.

Objective

We analyzed the relationships between acquisition and reversal learning in a go/no-go task as different behavioral measures of impulsivity and focal concentrations of 5-HT and its metabolites in the brain.

Materials and methods

Rats administered with parachloroamphetamine (PCA) and vehicle were tested in both acquisition and reversal phases in a go/no-go visual discrimination task. Neurochemical analysis was performed to determine 5-HT concentrations in micropunched brain tissues.

Results

PCA administration induced regionally 5-HT depletion in the brain and impaired learning performance in both tests. For both tests, significant negative correlations between learning performance and 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) concentrations were observed in the medial prefrontal cortex (mPFC) and amygdala (Amyg). In contrast, significant negative correlations between learning performance and 5-HT and 5-HIAA concentrations were observed for the orbitofrontal cortex (OFC) exclusively in the reversal learning phase.

Conclusions

The present data indicate that 5-HT neurotransmission to the mPFC and Amyg is involved in inhibitory control over responses to discriminated stimuli associated with the go/no-go paradigm common to both tests. In contrast, 5-HT neurotransmission to the OFC is especially involved in additional processes associated with reversal learning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aggleton JP, Passingham RE (1981) Syndrome produced by lesions of the amygdala in monkeys (Macaca mulatta). J Comp Physiol Psychol 95:961–977

    Article  PubMed  CAS  Google Scholar 

  • Asahi S, Okamoto Y, Okada G, Yamawaki S, Yokota N (2004) Negative correlation between right prefrontal activity during response inhibition and impulsiveness: a fMRI study. Eur Arch Psychiatry Clin Neurosci 254:245–251

    PubMed  Google Scholar 

  • Birrell JM, Brown VJ (2000) Medial frontal cortex mediates perceptual attentional set shifting in the rat. J Neurosci 20:4320–4324

    PubMed  CAS  Google Scholar 

  • Bodnoff SR, Suranyi-Cadotte B, Aitken DH, Quirion R, Meaney MJ (1988) The effects of chronic antidepressant treatment in an animal model of anxiety. Psychopharmacology (Berl) 95:298–302

    CAS  Google Scholar 

  • Cardinal RN, Pennicott DR, Sugathapala CL, Robbins TW, Everitt BJ (2001) Impulsive choice induced in rats by lesions of the nucleus accumbens core. Science 292:2499–2501

    Article  PubMed  CAS  Google Scholar 

  • Clark L, Cools R, Robbins TW (2004) The neuropsychology of ventral prefrontal cortex: decision-making and reversal learning. Brain Cogn 55:41–53

    Article  PubMed  CAS  Google Scholar 

  • Clarke HF, Dalley JW, Crofts HS, Robbins TW, Roberts AC (2004) Cognitive inflexibility after prefrontal serotonin depletion. Science 304:878–880

    Article  PubMed  CAS  Google Scholar 

  • Clarke HF, Walker SC, Crofts HS, Dalley JW, Robbins TW, Roberts AC (2005) Prefrontal serotonin depletion affects reversal learning but not attentional set shifting. J Neurosci 25:532–538

    Article  PubMed  CAS  Google Scholar 

  • Coccaro EF (1996) Neurotransmitter correlates of impulsive aggression in humans. Ann NY Acad Sci 794:82–89

    PubMed  CAS  Google Scholar 

  • Cools R, Clark L, Owen AM, Robbins TW (2002) Defining the neural mechanisms of probabilistic reversal learning using event-related functional magnetic resonance imaging. J Neurosci 22:4563–4567

    PubMed  CAS  Google Scholar 

  • Crean J, Richards JB, de Wit H (2002) Effect of tryptophan depletion on impulsive behavior in men with or without a family history of alcoholism. Behav Brain Res 136:349–357

    Article  PubMed  CAS  Google Scholar 

  • Dalley JW, Theobald DE, Eagle DM, Passetti F, Robbins TW (2002) Deficits in impulse control associated with tonically-elevated serotonergic function in rat prefrontal cortex. Neuropsychopharmacology 26:716–728

    Article  PubMed  CAS  Google Scholar 

  • Evenden JL (1999) Varieties of impulsivity. Psychopharmacology (Berl) 146:348–361

    Article  CAS  Google Scholar 

  • Fellows LK, Farah MJ (2003) Ventromedial frontal cortex mediates affective shifting in humans: evidence from a reversal learning paradigm. Brain 126:1830–1837

    Article  PubMed  Google Scholar 

  • Fuller RW (1992) Effects of p-chloroamphetamine on brain serotonin neurons. Neurochem Res 17:449–456

    Article  PubMed  CAS  Google Scholar 

  • Green AR, McGregor IS (2002) On the anxiogenic and anxiolytic nature of long-term cerebral 5-HT depletion following MDMA. Psychopharmacology (Berl) 162:448–450

    Article  CAS  Google Scholar 

  • Griebel G (1995) 5-Hydroxytryptamine-interacting drugs in animal models of anxiety disorders: more than 30 years of research. Pharmacol Ther 65:319–395

    Article  PubMed  CAS  Google Scholar 

  • Harrison AA, Everitt BJ, Robbins TW (1999) Central serotonin depletion impairs both the acquisition and performance of a symmetrically reinforced go/no-go conditional visual discrimination. Behav Brain Res 100:99–112

    Article  PubMed  CAS  Google Scholar 

  • Jones B, Mishkin M (1972) Limbic lesions and the problem of stimulus–reinforcement associations. Exp Neurol 36:362–377

    Article  PubMed  CAS  Google Scholar 

  • Kawashima R, Satoh K, Itoh H, Ono S, Furumoto S, Gotoh R, Koyama M, Yoshioka S, Takahashi T, Takahashi K, Yanagisawa T, Fukuda H (1996) Functional anatomy of GO/NO-GO discrimination and response selection—a PET study in man. Brain Res 728:79–89

    PubMed  CAS  Google Scholar 

  • Konishi S, Nakajima K, Uchida I, Sekihara K, Miyashita Y (1998) No-go dominant brain activity in human inferior prefrontal cortex revealed by functional magnetic resonance imaging. Eur J Neurosci 10:1209–1213

    Article  PubMed  CAS  Google Scholar 

  • Kringelbach ML, Rolls ET (2003) Neural correlates of rapid reversal learning in a simple model of human social interaction. Neuroimage 20:1371–1383

    Article  PubMed  Google Scholar 

  • LeMarquand DG, Pihl RO, Young SN, Tremblay RE, Seguin JR, Palmour RM, Benkelfat C (1998) Tryptophan depletion, executive functions, and disinhibition in aggressive, adolescent males. Neuropsychopharmacology 19:333–341

    Article  PubMed  CAS  Google Scholar 

  • Leyton M, Okazawa H, Diksic M, Paris J, Rosa P, Mzengeza S, Young SN, Blier P, Benkelfat C (2001) Brain regional alpha-[11C]methyl-L-tryptophan trapping in impulsive subjects with borderline personality disorder. Am J Psychiatry 158:775–782

    Article  PubMed  CAS  Google Scholar 

  • Manuck SB, Flory JD, McCaffery JM, Matthews KA, Mann JJ, Muldoon MF (1998) Aggression, impulsivity, and central nervous system serotonergic responsivity in a nonpatient sample. Neuropsychopharmacology 19:287–299

    Article  PubMed  CAS  Google Scholar 

  • Mazur JE (1994) Learning and behavior, 3rd edn. Prentice-Hall, Englewood Cliffs, New Jersey

    Google Scholar 

  • Mobini S, Body S, Ho MY, Bradshaw CM, Szabadi E, Deakin JF, Anderson IM (2002) Effects of lesions of the orbitofrontal cortex on sensitivity to delayed and probabilistic reinforcement. Psychopharmacology (Berl) 160:290–298

    Article  CAS  Google Scholar 

  • Muir JL, Everitt BJ, Robbins TW (1996) The cerebral cortex of the rat and visual attentional function: dissociable effects of mediofrontal, cingulate, anterior dorsolateral, and parietal cortex lesions on a five-choice serial reaction time task. Cereb Cortex 6:470–481

    PubMed  CAS  Google Scholar 

  • Murphy FC, Smith KA, Cowen PJ, Robbins TW, Sahakian BJ (2002) The effects of tryptophan depletion on cognitive and affective processing in healthy volunteers. Psychopharmacology (Berl) 163:42–53

    Article  CAS  Google Scholar 

  • Nomura M (1992) Effects of bifemelane on discrimination learning of serotonergic-dysfunction rats. Pharmacol Biochem Behav 42:721–731

    Article  PubMed  CAS  Google Scholar 

  • Nomura M, Kusumi I, Kaneko M, Masui T, Daiguji M, Ueno T, Koyama T, Nomura Y (2006) Involvement of a polymorphism in the 5-HT2A receptor gene in impulsive behavior. Psychopharmacology (Berl) 187:30–35

    Article  CAS  Google Scholar 

  • Oishi T, Mikami A, Kubota K (1995) Local injection of bicuculline into area 8 and area 6 of the rhesus monkey induces deficits in performance of a visual discrimination GO/NO-GO task. Neurosci Res 22:163–177

    Article  PubMed  CAS  Google Scholar 

  • Park SB, Coull JT, McShane RH, Young AH, Sahakian BJ, Robbins TW, Cowen PJ (1994) Tryptophan depletion in normal volunteers produces selective impairments in learning and memory. Neuropharmacology 33:575–588

    Article  PubMed  CAS  Google Scholar 

  • Passetti F, Chudasama Y, Robbins TW (2002) The frontal cortex of the rat and visual attentional performance: dissociable functions of distinct medial prefrontal subregions. Cereb Cortex 12:1254–1268

    Article  PubMed  Google Scholar 

  • Paxinos D, Watson C (1998) The rat brain in stereotaxic coordinates, 4th edn. Academic, Sydney

    Google Scholar 

  • Peinado-Manzano A (1988) Effects of bilateral lesions of the central and lateral amygdala on free operant successive discrimination. Behav Brain Res 29:61–71

    Article  PubMed  CAS  Google Scholar 

  • Remijnse PL, Nielen MM, Uylings HB, Veltman DJ (2005) Neural correlates of a reversal learning task with an affectively neutral baseline: an event-related fMRI study. Neuroimage 26:609–618

    Article  PubMed  Google Scholar 

  • Rogers RD, Blackshaw AJ, Middleton HC, Matthews K, Hawtin K, Crowley C, Hopwood A, Wallace C, Deakin JF, Sahakian BJ, Robbins TW (1999) Tryptophan depletion impairs stimulus–reward learning while methylphenidate disrupts attentional control in healthy young adults: implications for the monoaminergic basis of impulsive behaviour. Psychopharmacology (Berl) 146:482–491

    Article  CAS  Google Scholar 

  • Rogers RD, Andrews TC, Grasby PM, Brooks DJ, Robbins TW (2000) Contrasting cortical and subcortical activations produced by attentional-set shifting and reversal learning in humans. J Cogn Neurosci 12:142–162

    Article  PubMed  CAS  Google Scholar 

  • Rolls ET, Thorpe SJ, Maddison SP (1983) Responses of striatal neurons in the behaving monkey. 1. Head of the caudate nucleus. Behav Brain Res 7:179–210

    Article  PubMed  CAS  Google Scholar 

  • Rolls ET, Hornak J, Wade D, McGrath J (1994) Emotion-related learning in patients with social and emotional changes associated with frontal lobe damage. J Neurol Neurosurg Psychiatry 57:1518–1524

    Article  PubMed  CAS  Google Scholar 

  • Sakado K, Sakado M, Muratake T, Mundt C, Someya T (2003) A psychometrically derived impulsive trait related to a polymorphism in the serotonin transporter gene-linked polymorphic region (5-HTTLPR) in a Japanese nonclinical population: assessment by the Barratt impulsiveness scale (BIS). Am J Med Genet B Neuropsychiatr Genet 121:71–75

    Article  PubMed  Google Scholar 

  • Schoenbaum G, Nugent SL, Saddoris MP, Setlow B (2002) Orbitofrontal lesions in rats impair reversal but not acquisition of go, no-go odor discriminations. Neuroreport 13:885–890

    Article  PubMed  Google Scholar 

  • Schoenbaum G, Setlow B, Nugent SL, Saddoris MP, Gallagher M (2003) Lesions of orbitofrontal cortex and basolateral amygdala complex disrupt acquisition of odor-guided discriminations and reversals. Learn Mem 10:129–140

    Article  PubMed  Google Scholar 

  • Schultz W, Apicella P, Scarnati E, Ljungberg T (1992) Neuronal activity in monkey ventral striatum related to the expectation of reward. J Neurosci 12:4595–4610

    PubMed  CAS  Google Scholar 

  • Sommer W, Moller C, Wiklund L, Thorsell A, Rimondini R, Nissbrandt H, Heilig M (2001) Local 5,7-dihydroxytryptamine lesions of rat amygdala: release of punished drinking, unaffected plus-maze behavior and ethanol consumption. Neuropsychopharmacology 24:430–440

    Article  PubMed  CAS  Google Scholar 

  • Stern CE, Passingham RE (1995) The nucleus accumbens in monkeys (Macaca fascicularis). III. Reversal learning. Exp Brain Res 106:239–247

    Article  PubMed  CAS  Google Scholar 

  • Thorpe SJ, Rolls ET, Maddison S (1983) The orbitofrontal cortex: neuronal activity in the behaving monkey. Exp Brain Res 49:93–115

    Article  PubMed  CAS  Google Scholar 

  • Tremblay L, Schultz W (2000) Reward-related neuronal activity during go-nogo task performance in primate orbitofrontal cortex. J Neurophysiol 83:1864–1876

    PubMed  CAS  Google Scholar 

  • Ward BO, Wilkinson LS, Robbins TW, Everitt BJ (1999) Forebrain serotonin depletion facilitates the acquisition and performance of a conditional visual discrimination task in rats. Behav Brain Res 100:51–65

    Article  PubMed  CAS  Google Scholar 

  • Winstanley CA, Dalley JW, Theobald DE, Robbins TW (2004a) Fractionating impulsivity: contrasting effects of central 5-HT depletion on different measures of impulsive behavior. Neuropsychopharmacology 29:1331–1343

    Article  PubMed  CAS  Google Scholar 

  • Winstanley CA, Theobald DE, Cardinal RN, Robbins TW (2004b) Contrasting roles of basolateral amygdala and orbitofrontal cortex in impulsive choice. J Neurosci 24:4718–4722

    Article  PubMed  CAS  Google Scholar 

  • Winstanley CA, Theobald DE, Dalley JW, Cardinal RN, Robbins TW (2006) Double dissociation between serotonergic and dopaminergic modulation of medial prefrontal and orbitofrontal cortex during a test of impulsive choice. Cereb Cortex 16:106–114

    Article  PubMed  Google Scholar 

  • Yoshimoto K, Komura S (1989) Genetic differences in the effects of voluntary ethanol consumption on brain monoamine levels in inbred strains of mice, C57BL/6J, C3H/He and DBA/2Cr. Alcohol Alcohol 24:225–229

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by grants from the Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research (C) No. 17591226) and the Kobayashi Magobe Memorial Medical Foundation (2004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chihiro Yokoyama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masaki, D., Yokoyama, C., Kinoshita, S. et al. Relationship between limbic and cortical 5-HT neurotransmission and acquisition and reversal learning in a go/no-go task in rats. Psychopharmacology 189, 249–258 (2006). https://doi.org/10.1007/s00213-006-0559-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-006-0559-0

Keywords

Navigation