Skip to main content

Advertisement

Log in

Involvement of dopamine D1 and D2 receptors in the nucleus accumbens core and shell in inhibitory response control

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Impaired inhibitory control over behavior is a key feature in various psychiatric disorders, and recent studies indicated an important role for dopamine D1 and D2 receptors and the nucleus accumbens (Acb) in this respect.

Objective

The present experiments were designed to study the role of dopamine D1 and D2 receptors in the Acb in inhibitory response control.

Methods

Rats were trained in a five-choice serial reaction time task and received bilateral infusions into the Acb core or shell of either SCH 23390 or eticlopride (representing selective dopamine D1 and D2 receptor antagonists, respectively). Subsequently, the effects of systemic amphetamine on inhibitory response control were examined.

Results

Eticlopride into either the Acb core or shell did not affect premature responding, a measure for inhibitory response control, but increased reaction time and errors of omission. In contrast, SCH 23390 into both regions reduced premature responding, slightly improved attentional performance in the core and increased errors of omission in the shell. Amphetamine robustly increased premature responding which was dose-dependently blocked by eticlopride in the Acb core and attenuated by eticlopride in the shell. In addition, amphetamine slightly decreased accuracy and reaction time, and these effects were inhibited by eticlopride in both regions. SCH 23390 infusion into the Acb core or shell did not alter amphetamine’s effects.

Conclusion

Our data provide evidence for the involvement of dopamine D1 and D2 receptors in the Acb core and shell in inhibitory response control and attentional performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amalric M, Berhow M, Polis I, Koob GF (1993) Selective effects of low-dose D2 dopamine receptor antagonism in a reaction-time task in rats. Neuropsychopharmacology 8:195–200

    PubMed  CAS  Google Scholar 

  • Arnsten AF, Li BM (2005) Neurobiology of executive functions: catecholamine influences on prefrontal cortical functions. Biol Psychiatry 57:1377–1384

    Article  PubMed  CAS  Google Scholar 

  • Aron AR, Robbins TW, Poldrack RA (2004) Inhibition and the right inferior frontal cortex. Trends Cogn Sci 8:170–177

    Article  PubMed  Google Scholar 

  • Bauter MR, Brockel BJ, Pankevich DE, Virgolini MB, Cory-Slechta DA (2003) Glutamate and dopamine in the nucleus accumbens core and shell: sequence learning versus performance. Neurotoxicology 24:227–243

    Article  PubMed  CAS  Google Scholar 

  • Bechara A (2005) Decision making, impulse control and loss of willpower to resist drugs: a neurocognitive perspective. Nat Neurosci 8:1458–1463

    Article  PubMed  CAS  Google Scholar 

  • Berendse HW, Galis-de Graaf Y, Groenewegen HJ (1992) Topographical organization and relationship with ventral striatal compartments of prefrontal corticostriatal projections in the rat. J Comp Neurol 316:314–347

    Article  PubMed  CAS  Google Scholar 

  • Berlin HA, Rolls ET, Kischka U (2004) Impulsivity, time perception, emotion and reinforcement sensitivity in patients with orbitofrontal cortex lesions. Brain 127:1108–1126

    Article  PubMed  CAS  Google Scholar 

  • Berridge KC, Robinson TE (1998) What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Brain Res Rev 28:309–369

    Article  PubMed  CAS  Google Scholar 

  • Biederman J, Faraone SV (2005) Attention-deficit hyperactivity disorder. Lancet 366:237–248

    Article  PubMed  Google Scholar 

  • Blokland A, Sik A, Lieben CK (2005) Evaluation of DOI, 8-OH-DPAT, eticlopride and amphetamine on impulsive responding in a reaction time task in rats. Behav Pharmacol 16:93–100

    Article  PubMed  CAS  Google Scholar 

  • Boye SM, Grant RJ, Clarke PBS (2001) Disruption of dopaminergic neurotransmission in nucleus accumbens core inhibits the locomotor stimulant effects of nicotine and D-amphetamine in rats. Neuropharmacology 40:792–805

    Article  PubMed  CAS  Google Scholar 

  • Cardinal RN, Pennicott DR, Sugathapala CL, Robbins TW, Everitt BJ (2001) Impulsive choice induced in rats by lesions of the nucleus accumbens core. Science 292:2499–2501

    Article  PubMed  CAS  Google Scholar 

  • Cardinal RN, Parkinson JA, Hall J, Everitt BJ (2002) Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci Biobehav Rev 26:321–352

    Article  PubMed  Google Scholar 

  • Castellanos FX, Tannock R (2002) Neuroscience of attention-deficit/hyperactivity disorder: the search for endophenotypes. Nat Rev Neurosci 3:617–628

    PubMed  CAS  Google Scholar 

  • Christakou A, Robbins TW, Everitt BJ (2004) Prefrontal cortical–ventral striatal interactions involved in affective modulation of attentional performance: implications for corticostriatal circuit function. J Neurosci 24:773–780

    Article  PubMed  CAS  Google Scholar 

  • Chudasama Y, Passetti F, Rhodes SEV, Lopian D, Desai A, Robbins TW (2003) Dissociable aspects following lesions of the dorsal anterior cingulate, infralimbic and orbitofrontal cortex in the rat: differential effects on selectivity, impulsivity and compulsivity. Behav Brain Res 146:105–119

    Article  PubMed  CAS  Google Scholar 

  • Cole BJ, Robbins TW (1987) Amphetamine impairs the discriminative performance of rats with dorsal noradrenergic bundle lesions on a 5-choice serial reaction time task: new evidence for central dopaminergic–noradrenergic interactions. Psychopharmacology 91:458–466

    Article  PubMed  CAS  Google Scholar 

  • Cole BJ, Robbins TW (1989) Effects of 6-hydroxydopamine lesions of the nucleus accumbens septi on performance of a 5-choice serial reaction time task in rats: implications for theories of selective attention and arousal. Behav Brain Res 33:165–179

    Article  PubMed  CAS  Google Scholar 

  • Courtiere A, Hardouin J, Goujon A, Vidal F, Hasbroucq T (2003) Selective effects of low-dose dopamine D1 and D2 receptor antagonists on rat information processing. Behav Pharmacol 14:589–598

    Article  PubMed  CAS  Google Scholar 

  • Di Chiara G (2002) Nucleus accumbens shell and core dopamine: differential role in behavior and addiction. Behav Brain Res 137:75–114

    Article  PubMed  Google Scholar 

  • Eagle DM, Robbins TW (2003) Lesions of the medial prefrontal cortex or nucleus accumbens core do not impair inhibitory control in rats performing a stop-signal reaction time task. Behav Brain Res 146:131–144

    Article  PubMed  CAS  Google Scholar 

  • Evenden JL (1998) The pharmacology of impulsive behaviour in rats III: the effects of amphetamine, haloperidol, imipramine, chlordiazepoxide and ethanol on a paced fixed consecutive number schedule. Psychopharmacology 138:295–304

    Article  PubMed  CAS  Google Scholar 

  • Evenden JL (1999) Varieties of impulsivity. Psychopharmacology 146:348–361

    Article  PubMed  CAS  Google Scholar 

  • Fillmore MT, Rush CR, Marczinski CA (2003) Effects of d-amphetamine on behavioral control in stimulant abusers: the role of prepotent response tendencies. Drug Alcohol Depend 71:143–152

    Article  PubMed  CAS  Google Scholar 

  • Granon S, Passetti F, Thomas KL, Dalley JW, Everitt BJ, Robbins TW (2000) Enhanced and impaired attentional performance after infusion of D1 dopaminergic receptor agents into rat prefrontal cortex. J Neurosci 20:1208–1215

    PubMed  CAS  Google Scholar 

  • Groenewegen HJ, Wright CI, Beijer AVJ, Voorn P (1999) Convergence and segregation of ventral striatal inputs and outputs. Ann N Y Acad Sci 877:49–63

    Article  PubMed  CAS  Google Scholar 

  • Hahn B, Shoaib M, Stolerman IP (2002) Effects of dopamine receptor antagonists on nicotine-induced attentional enhancement. Behav Pharmacol 13:621–632

    PubMed  CAS  Google Scholar 

  • Harrison AA, Everitt BJ, Robbins TW (1997) Central 5-HT depletion enhances impulsive responding without affecting the accuracy of attentional performance: interactions with dopaminergic mechanisms. Psychopharmacology 133:329–342

    Article  PubMed  CAS  Google Scholar 

  • Heidbreder C, Feldon J (1998) Amphetamine-induced neurochemical and locomotor responses are expressed differentially across the anteroposterior axis of the core and shell subterritories of the nucleus accumbens. Synapse 29:310–322

    Article  PubMed  CAS  Google Scholar 

  • Ikemoto S (2002) Ventral striatal anatomy of locomotor activity induced by cocaine, D-amphetamine, dopamine and D1/D2 agonists. Neuroscience 113:939–955

    Article  PubMed  CAS  Google Scholar 

  • Iversen SD, Mishkin M (1970) Perseverative interference in monkeys following selective lesions of the inferior prefrontal convexity. Exp Brain Res 11:376–386

    Article  PubMed  CAS  Google Scholar 

  • Jentsch JD, Taylor JR (1999) Impulsivity resulting from frontostriatal dysfunction in drug abuse: implications for the control of behavior by reward-related stimuli. Psychopharmacology 146:373–390

    Article  PubMed  CAS  Google Scholar 

  • Kelley AE (2004) Ventral striatal control of appetitive motivation: role in ingestive behavior and reward-related learning. Neurosci Biobehav Rev 27:765–776

    Article  PubMed  Google Scholar 

  • Kelly PH, Seviour PW, Iversen SD (1975) Amphetamine and apomorphine responses in the rat following 6-OHDA lesions of the nucleus accumbens septi and corpus striatum. Brain Res 94:507–522

    Article  PubMed  CAS  Google Scholar 

  • Kuczenski R, Segal D (1989) Concomitant characterization of behavioral and striatal neurotransmitter response to amphetamine using in vivo microdialysis. J Neurosci 9:2051–2065

    PubMed  CAS  Google Scholar 

  • Millan MJ, Newman-Tancredi A, Quentric Y, Cussac D (2001) The ‘selective’ dopamine D1 receptor antagonist, SCH23390, is a potent and high efficacy agonist at cloned human serotonin2C receptors. Psychopharmacology 156:58–62

    Article  PubMed  CAS  Google Scholar 

  • Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24:167–202

    Article  PubMed  CAS  Google Scholar 

  • Mogenson GJ, Jones DL, Yim CY (1980) From motivation to action: functional interface between the limbic system and the motor system. Prog Neurobiol 14:69–97

    Article  PubMed  CAS  Google Scholar 

  • Muir JL, Everitt BJ, Robbins TW (1996) The cerebral cortex of the rat and visual attentional function: dissociable effects of mediofrontal, cingulate, anterior, dorsolateral and parietal cortex lesions on a five choice serial reaction time task. Cereb Cortex 6:470–481

    Article  PubMed  CAS  Google Scholar 

  • Ohlstein EH, Berkowitz BA (1985) SCH 23390 and SKF 83566 are antagonists at vascular dopamine and serotonin receptors. Eur J Pharmacol 108:205–208

    Article  PubMed  CAS  Google Scholar 

  • Passetti F, Levita L, Robbins TW (2003) Sulpiride alleviates the attentional impairments of rats with medial prefrontal cortex lesions. Behav Brain Res 138:59–69

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates. Academic, Sydney

    Google Scholar 

  • Parkinson JA, Olmstead MC, Burns LH, Robbins TW, Everitt BJ (1999) Dissociation in effects of lesions of the nucleus accumbens core and shell on appetitive pavlovian approach behavior and the potentiation of conditioned reinforcement and locomotor activity by D-amphetamine. J Neurosci 19:2401–2411

    PubMed  CAS  Google Scholar 

  • Pierce RC, Kumaseran V (2006) The mesolimbic dopamine system: the final common pathway for the reinforcing effect of drugs of abuse? Neurosci Biobehav Rev 30:215–238

    Article  PubMed  CAS  Google Scholar 

  • Puumula T, Sirvio J (1998) Changes in activities of dopamine and serotonin systems in the frontal cortex underlie poor choice accuracy and impulsivity of rats in an attention task. Neuroscience 83:489–499

    Article  Google Scholar 

  • Quraishi S, Frangou S (2002) Neuropsychology of bipolar disorder: a review. J Affect Disord 72:209–236

    Article  PubMed  Google Scholar 

  • Robbins TW (2002) The 5-choice serial reaction time task: behavioural pharmacology and functional neurochemistry. Psychopharmacology 163:362–380

    Article  PubMed  CAS  Google Scholar 

  • Robbins TW, Everitt BJ (2002) Limbic–striatal memory systems and drug addiction. Neurobiol Learn Mem 78:625–636

    Article  PubMed  CAS  Google Scholar 

  • Robbins TW, Roberts DC, Koob G (1983) Effects of d-amphetamine and apomorphine upon operant behavior and schedule-induced licking in rats with 6-hydroxydopamine-induced lesions of the nucleus accumbens. J Pharmacol Exp Ther 224:662–673

    PubMed  CAS  Google Scholar 

  • Rogers RD, Robbins TW (2001) Investigating the neurocognitive deficits associated with chronic drug misuse. Curr Opin Neurobiol 11:250–257

    Article  PubMed  CAS  Google Scholar 

  • Rothman RB, Baumann MH, Dersch CM, Romero DV, Rice KC, Caroll FI et al (2001) Amphetamine-type central nervous system stimulants release norepinephrine more potently than they release dopamine and serotonin. Synapse 39:32–41

    Article  PubMed  CAS  Google Scholar 

  • Salamone JD, Correa M, Mingote SM, Weber SM (2005) Beyond the reward hypothesis: alternative functions of nucleus accumbens dopamine. Curr Opin Pharmacol 5:34–41

    Article  PubMed  CAS  Google Scholar 

  • Smith AD, Smith DL, Zigmond MJ, Amalric M, Koob GF (2000) Differential effects of dopamine receptor subtype blockade on performance of rats in a reaction-time paradigm. Psychopharmacology 148:355–360

    Article  PubMed  CAS  Google Scholar 

  • Van Gaalen MM, Brueggeman RJ, Bronius PFC, Schoffelmeer ANM, Vanderschuren LJMJ (2006) Behavioral disinhibition requires dopamine receptor activation. Psychopharmacology 187:73–85

    Article  PubMed  CAS  Google Scholar 

  • Verdejo-Garcia AJ, Lopez-Torrecillas F, Aguilar de Arcos F, Perez-Garcia M (2005) Differential effects of MDMA, cocaine, and cannabis use severity on distinctive components of the executive functions in polysubstance abusers: a multiple regression analysis. Addict Behav 30:89–101

    Article  PubMed  Google Scholar 

  • Voorn P, Vanderschuren LJMJ, Groenewegen HJ, Robbins TW, Pennartz CMA (2004) Putting a spin on the dorsal–ventral divide of the striatum. Trends Neurosci 27:468–474

    Article  PubMed  CAS  Google Scholar 

  • Wallis JD, Dias R, Robbins TW, Roberts AC (2001) Dissociable contributions of the orbitofrontal and lateral prefrontal cortex of the marmoset to performance on a detour reaching task. Eur J Neurosci 13:1797–1808

    Article  PubMed  CAS  Google Scholar 

  • Wise RA (2004) Dopamine, learning and motivation. Nat Rev Neurosci 5:483–494

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Rob Binnekade and Halfdan Raasø for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tommy Pattij.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pattij, T., Janssen, M.C.W., Vanderschuren, L.J.M.J. et al. Involvement of dopamine D1 and D2 receptors in the nucleus accumbens core and shell in inhibitory response control. Psychopharmacology 191, 587–598 (2007). https://doi.org/10.1007/s00213-006-0533-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-006-0533-x

Keywords

Navigation