Skip to main content
Log in

A role for mesencephalic dopamine in activation: commentary on Berridge (2006)

  • Review
  • Published:
Psychopharmacology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Apicella P, Scarnati E, Schultz W (1991) Tonically discharging neurons of monkey striatum respond to preparatory and rewarding stimuli. Exp Brain Res 84:672–675

    Article  PubMed  CAS  Google Scholar 

  • Bardo MT, Bowling SL, Pierce RC (1990) Changes in locomotion and dopamine neurotransmission following amphetamine, haloperidol and exposure to novel environmental stimuli. Psychopharmacology 101:338–343

    Article  PubMed  CAS  Google Scholar 

  • Berridge KC (2006) The debate over dopamine’s role in reward: the case for incentive salience. Psychopharmacology DOI 10.1007/s00213-006-0578-x

  • Bilder RM, Volavka J, Lachman HM, Grace AA (2004) The catechol-o-methyltransferase polymorphism: relations to the tonic-phasic dopamine hypothesis and neuropsychiatric phenotypes. Neuropsychopharmacology 29:1943–1961

    Article  PubMed  CAS  Google Scholar 

  • Blackburn JR, Phillips AG (1987) Dopamine and preparatory behavior. I Effects of pimozide. Behav Neurosci 101:352–360

    Article  PubMed  CAS  Google Scholar 

  • Brown VJ, Robbins TW (1991) Simple and choice reaction time performance following unilateral striatal dopamine depletion in the rat: impaired motor readiness but preserved response preparation. Brain 114:513–525

    Article  PubMed  Google Scholar 

  • Crow TJ (1976) Specific monoamine systems as reward pathways. In: Wauquier A, Rolls ET (eds) Brain-stimulation reward. North-Holland, Amsterdam, pp 211–238

    Google Scholar 

  • Dalley JW, Laane K, Theobald DE, Armstrong HC, Corlett PR, Chudasama Y, Robbins TW (2005) Time-limited modulation of appetitive Pavlovian memory by D1 and NMDA receptors in the nucleus accumbens. Proc Acad Natl Sci USA 102:6189–6194

    Article  CAS  Google Scholar 

  • DiCiano P, Everitt BJ (2003) Differential control over drug-seeking behavior by drug-associated conditioned reinforcers and discriminative stimuli predictive of drug availability. Behav Neurosci 117:952–960

    Article  Google Scholar 

  • Everitt BJ (1990) Sexual motivation—a neural and behavioral analysis of the mechanisms underlying appetitive and copulatory responses of male rats. Neurosci Biobehav Rev 14:217–232

    Article  PubMed  CAS  Google Scholar 

  • Everitt BJ, Robbins TW (2005) Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci 8:1481–1489

    Article  PubMed  CAS  Google Scholar 

  • Everitt BJ, Parkinson JA, Olmstead MC, Arroyo M, Robledo P, Robbins TW (1999) Associative processes in addiction and reward: the role of amygdala–ventral striatal subsystems. Ann N Y Acad Sci 877:412–438

    Article  PubMed  CAS  Google Scholar 

  • Ferrario CR, Gorny G, Cromberg HS, Li YL, Kolb B, Robinson TE (2005) Neural and behavioral plasticity associated with the transition from controlled to escalated cocaine use. Biol Psychiatry 58:751–759

    Article  PubMed  CAS  Google Scholar 

  • Frank MJ, O’Reilly RC (2006) A mechanistic account of striatal dopamine function in human cognition: psychopharmacological studies with cabergoline and haloperidol. Behav Neurosci 120:497–517

    Article  PubMed  CAS  Google Scholar 

  • Goto Y, Grace AA (2005) Dopaminergic modulation of limbic and cortical drive of nucleus accumbens in goal-directed behavior. Nat Neurosci 8:805–812

    Article  PubMed  CAS  Google Scholar 

  • Herberg LJ, Stephans DN, Franklin K (1976) Catecholamines and self-stimulation—evidence suggesting a reinforcing role for noradrenaline and a motivating role for dopamine. Pharmacol Biochem Behav 4:575–582

    Article  PubMed  CAS  Google Scholar 

  • Ito R, Dalley JW, Robbins TW, Everitt BJ (2002) Dopamine release in the dorsal striatum during cocaine-seeking behavior under control of a drug-associated cue. J Neurosci 22:6247–6253

    PubMed  CAS  Google Scholar 

  • Iversen SD, Koob GF (1977) Behavioral implications of dopaminergic neurones in the mesolimbic system. In: Costa E, Gessa GL (eds) Advances in biochemical psychopharmacology, vol. 16. Raven, New York, pp 209–214

    Google Scholar 

  • Koob GF, Riley S, Smith SC, Robbins TW (1978) Effects of 6-hydroxydopamine lesions to nucleus accumbens septi and olfactory tubercle on food intake, locomotor activity and amphetamine anorexia in the rat. J Comp Physiol Psychol 92:917–927

    Article  PubMed  CAS  Google Scholar 

  • Montague PR, Hyman SE, Cohen JD (2004) Computational roles for dopamine in behavioural control. Nature 431:760–767

    Article  PubMed  CAS  Google Scholar 

  • Nelson A, Killcross S (2006) Amphetamine exposure enhances habit formation. J Neurosci 26:3805–3812

    Article  PubMed  CAS  Google Scholar 

  • Niv Y, Daw ND, Joel D, Dayan P (2006) Tonic dopamine: opportunity costs and the control of response vigor. Psychopharmacology DOI 10.1007/s00213-006-0502-4

  • Robbins TW, Everitt BJ (1982) Functional studies of the central catecholamines. Int Rev Neurobiol 23:303–365

    Article  PubMed  CAS  Google Scholar 

  • Robbins TW, Everitt BJ (1987) Psychopharmacological studies of arousal and attention. In: Stahl S, Iversen SD, Goodman E (eds) Cognitive neurochemistry. Oxford University Press OUP, Oxford, pp 135–170

    Google Scholar 

  • Robbins TW, Everitt BJ (1992) Functions of dopamine in the dorsal and ventral striatum. Semin Neurosci 4:119–127

    Article  Google Scholar 

  • Robbins TW, Everitt BJ (1995) Arousal systems and attention. In: Gazzaniga M et al (eds) The cognitive neurosciences. MIT, Cambridge, MA, pp 703–720

    Google Scholar 

  • Robbins TW, Taylor JR, Cador M, Everitt BJ (1989) Limbic–striatal interactions and reward-related processes. Neurosci Biobehav Rev 13:155–162

    Article  PubMed  CAS  Google Scholar 

  • Robinson TE, Berridge KC (2003) Addiction. Annu Rev Psychol 54:25–53

    Article  PubMed  Google Scholar 

  • Salamone JD, Correa M, Mingote SM, Weber SM (2005) Beyond the reward hypothesis: alternative functions of nucleus accumbens dopamine. Curr Opin Pharmacol 5:34–41

    Article  PubMed  CAS  Google Scholar 

  • Schultz W (2002) Getting formal with dopamine and reward. Neuron 36:241–253

    Article  PubMed  CAS  Google Scholar 

  • Spryaki C, Fibiger HC, Phillips AG (1982) The attenuation by haloperidol of place preference conditioning using food reinforcement. Psychopharmacology 77:379–382

    Article  Google Scholar 

  • Taylor JR, Robbins TW (1984) Enhanced behavioral control by conditioned reinforcers produced by intracerebral injections of d-amphetamine in the rat. Psychopharmacology 84:405–412

    Article  PubMed  CAS  Google Scholar 

  • Taylor JR, Robbins TW (1986) 6-Hydroxydopamine lesions of the nucleus accumbens, but not of the caudate nucleus, attenuate enhanced responding with reward-related stimuli produced by intra-accumbens d-amphetamine. Psychopharmacology 90:390–397

    Article  PubMed  CAS  Google Scholar 

  • Volkow N, Wang G-J, Telang F, Fowler JS, Logan J, Childress A-R, Jayne M, Ma Y, Wong C (2006) Cocaine cues and dopamine in dorsal striatum: mechanism of craving in cocaine addiction. J Neurosci 26:6583–6588

    Article  PubMed  CAS  Google Scholar 

  • Walton ME, Bannerman DM, Rushworth MFS (2002) The role of medial frontal cortex in effort-based decision-making. J Neurosci 22:10996–11003

    PubMed  CAS  Google Scholar 

  • Wise R (2004) Dopamine, learning and motivation. Nat Rev Neurosci 5:483–494

    Article  PubMed  CAS  Google Scholar 

  • Wyvell C, Berridge KC (2001) Incentive-sensitization by previous amphetamine exposure: increased cue-triggered ‘wanting’ for sucrose reward. J Neurosci 21:7831–7840

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Thanks are due to all of our colleagues who have contributed to these ideas, Kent Berridge, and an anonymous referee who both commented on a first draft. The University of Cambridge Behavioral and Clinical Neurosciences Institute is supported by a joint grant from the MRC and the Wellcome Trust. The work is also supported by an MRC Programme Grant to BJE, TWR, and A. Dickinson.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. W. Robbins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robbins, T.W., Everitt, B.J. A role for mesencephalic dopamine in activation: commentary on Berridge (2006). Psychopharmacology 191, 433–437 (2007). https://doi.org/10.1007/s00213-006-0528-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-006-0528-7

Keywords

Navigation