Skip to main content

Advertisement

Log in

Shedding light on mitophagy in neurons: what is the evidence for PINK1/Parkin mitophagy in vivo?

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Neurons are highly specialised cells with a large bioenergetic demand, and so require a healthy mitochondrial network to function effectively. This network is compromised in many neurological disorders, in which damaged mitochondria accumulate. Dysfunctional mitochondria can be removed via an organelle-specific autophagic pathway, a process known as mitophagy. The canonical mitophagy pathway is dependent on the actions of PINK1 (PTEN-induced putative kinase 1) and Parkin and has been well studied in immortalised cells and cultured neurons. However, evidence for a role of this mitophagy pathway in the brain is still limited, and studies suggest that there may be important differences in how neurons respond to mitochondrial damage in vitro and in vivo. Here, we first describe the evidence for a functional PINK1/Parkin mitophagy pathway in neurons, and review how this pathway is affected in disease models. We then critically evaluate the literature by comparing findings from in vitro models and more recent in vivo studies in flies and mice. The emerging picture implicates that alternative mitophagy pathways operate in neurons in vivo. New mouse models that employ fluorescent biosensors to monitor mitophagy in vivo will be instrumental to understand the relative role of the different clearance pathways in the brain under physiological and pathological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Sheng Z-H, Cai Q (2012) Mitochondrial transport in neurons: impact on synaptic homeostasis and neurodegeneration. Nat Rev Neurosci 13:77–93. https://doi.org/10.1038/nrn3156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rugarli EI, Langer T (2012) Mitochondrial quality control: a matter of life and death for neurons. EMBO J 31:1336–1349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nguyen TN, Padman BS, Lazarou M (2016) Deciphering the molecular signals of PINK1/Parkin mitophagy. Trends Cell Biol 26:733–744. https://doi.org/10.1016/j.tcb.2016.05.008

    Article  CAS  PubMed  Google Scholar 

  4. Delettre C, Lenaers G, Griffoin J-M et al (2000) Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat Genet 26:207–210. https://doi.org/10.1038/79936

    Article  CAS  PubMed  Google Scholar 

  5. Züchner S, Mersiyanova IV, Muglia M et al (2004) Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat Genet 36:449–451. https://doi.org/10.1038/ng1341

    Article  PubMed  CAS  Google Scholar 

  6. Keeney PM, Xie J, Capaldi RA, Bennett JP (2006) Parkinson’s disease brain mitochondrial complex I has oxidatively damaged subunits and is functionally impaired and misassembled. J Neurosci 26:5256–5264. https://doi.org/10.1523/JNEUROSCI.0984-06.2006

    Article  CAS  PubMed  Google Scholar 

  7. Shirendeb U, Reddy AP, Manczak M et al (2011) Abnormal mitochondrial dynamics, mitochondrial loss and mutant Huntingtin oligomers in Huntington’s disease: implications for selective neuronal damage. Hum Mol Genet 20:1438–1455. https://doi.org/10.1093/hmg/ddr024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795. https://doi.org/10.1038/nature05292

    Article  CAS  PubMed  Google Scholar 

  9. Manczak M, Calkins MJ, Reddy PH (2011) Impaired mitochondrial dynamics and abnormal interaction of amyloid beta with mitochondrial protein Drp1 in neurons from patients with Alzheimer’s disease: implications for neuronal damage. Hum Mol Genet 20:2495–2509. https://doi.org/10.1093/hmg/ddr139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Panov AV, Gutekunst C-A, Leavitt BR et al (2002) Early mitochondrial calcium defects in Huntington’s disease are a direct effect of polyglutamines. Nat Neurosci 5:731–736. https://doi.org/10.1038/nn884

    Article  CAS  PubMed  Google Scholar 

  11. Wang X, Su B, Lee H et al (2009) Impaired balance of mitochondrial fission and fusion in Alzheimer’s disease. J Neurosci 29:9090–9103. https://doi.org/10.1523/JNEUROSCI.1357-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Matsumine H, Saito M, Shimoda-Matsubayashi S et al (1997) Localization of a gene for an autosomal recessive form of juvenile Parkinsonism to chromosome 6q25.2-27. Am J Hum Genet 60:588–596

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Valente EM, Bentivoglio AR, Dixon PH et al (2001) Localization of a novel locus for autosomal recessive early-onset parkinsonism, PARK6, on human chromosome 1p35-p36. Am J Hum Genet 68:895–900. https://doi.org/10.1086/319522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ye X, Sun X, Starovoytov V, Cai Q (2015) Parkin-mediated mitophagy in mutant hAPP neurons and Alzheimer’s disease patient brains. Hum Mol Genet. https://doi.org/10.1093/hmg/ddv056

    Google Scholar 

  15. Guo X, Sun X, Hu D et al (2016) VCP recruitment to mitochondria causes mitophagy impairment and neurodegeneration in models of Huntington’s disease. Nat Commun 7:12646. https://doi.org/10.1038/ncomms12646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hwang S, Disatnik M-H, Mochly-Rosen D (2015) Impaired GAPDH-induced mitophagy contributes to the pathology of Huntington’s disease. EMBO Mol Med 7:1307–1326. https://doi.org/10.15252/emmm.201505256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Khalil B, El Fissi N, Aouane A et al (2015) PINK1-induced mitophagy promotes neuroprotection in Huntington’s disease. Cell Death Dis 6:e1617. https://doi.org/10.1038/cddis.2014.581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Moore AS, Holzbaur ELF (2016) Dynamic recruitment and activation of ALS-associated TBK1 with its target optineurin are required for efficient mitophagy. PNAS 113:E3349–E3358. https://doi.org/10.1073/pnas.1523810113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wong YC, Holzbaur ELF (2014) Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation. PNAS 111:E4439–E4448. https://doi.org/10.1073/pnas.1405752111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Twig G, Elorza A, Molina AJA et al (2008) Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 27:433–446. https://doi.org/10.1038/sj.emboj.7601963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vives-Bauza C, Zhou C, Huang Y et al (2010) PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc Natl Acad Sci 107:378–383. https://doi.org/10.1073/pnas.0911187107

    Article  CAS  PubMed  Google Scholar 

  22. Jin SM, Lazarou M, Wang C et al (2010) Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J Cell Biol 191:933–942. https://doi.org/10.1083/jcb.201008084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Takatori S, Ito G, Iwatsubo T (2008) Cytoplasmic localization and proteasomal degradation of N-terminally cleaved form of PINK1. Neurosci Lett 430:13–17. https://doi.org/10.1016/j.neulet.2007.10.019

    Article  CAS  PubMed  Google Scholar 

  24. Kazlauskaite A, Kondapalli C, Gourlay R et al (2014) Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65. Biochem J 460:127–141. https://doi.org/10.1042/BJ20140334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kim Y, Park J, Kim S et al (2008) PINK1 controls mitochondrial localization of Parkin through direct phosphorylation. Biochem Biophys Res Commun 377:975–980. https://doi.org/10.1016/j.bbrc.2008.10.104

    Article  CAS  PubMed  Google Scholar 

  26. Shiba-Fukushima K, Imai Y, Yoshida S et al (2012) PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy. Sci Rep. https://doi.org/10.1038/srep01002

    PubMed  PubMed Central  Google Scholar 

  27. Koyano F, Okatsu K, Kosako H et al (2014) Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature. https://doi.org/10.1038/nature13392

    PubMed  Google Scholar 

  28. Trempe J-F, Sauvé V, Grenier K et al (2013) Structure of Parkin reveals mechanisms for ubiquitin ligase activation. Science 340:1451–1455. https://doi.org/10.1126/science.1237908

    Article  CAS  PubMed  Google Scholar 

  29. Bingol B, Tea JS, Phu L et al (2014) The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy. Nature 510:370–375. https://doi.org/10.1038/nature13418

    Article  CAS  PubMed  Google Scholar 

  30. Kane LA, Lazarou M, Fogel AI et al (2014) PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J Cell Biol 205:143–153. https://doi.org/10.1083/jcb.201402104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ordureau A, Sarraf SA, Duda DM et al (2014) Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis. Mol Cell 56:360–375. https://doi.org/10.1016/j.molcel.2014.09.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sarraf SA, Raman M, Guarani-Pereira V et al (2013) Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature 496:372–376. https://doi.org/10.1038/nature12043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Heo J-M, Ordureau A, Paulo JA et al (2015) The PINK1-PARKIN mitochondrial ubiquitylation pathway drives a program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy. Mol Cell 60:7–20. https://doi.org/10.1016/j.molcel.2015.08.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lazarou M, Sliter DA, Kane LA et al (2015) The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524:309–314. https://doi.org/10.1038/nature14893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. McLelland G-L, Lee SA, McBride HM, Fon EA (2016) Syntaxin-17 delivers PINK1/parkin-dependent mitochondrial vesicles to the endolysosomal system. J Cell Biol 214:275–291. https://doi.org/10.1083/jcb.201603105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. McLelland G-L, Soubannier V, Chen CX et al (2014) Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control. EMBO J 33:282–295. https://doi.org/10.1002/embj.201385902

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Soubannier V, McLelland G-L, Zunino R et al (2012) A vesicular transport pathway shuttles cargo from mitochondria to lysosomes. Curr Biol 22:135–141. https://doi.org/10.1016/j.cub.2011.11.057

    Article  CAS  PubMed  Google Scholar 

  38. Soubannier V, Rippstein P, Kaufman BA et al (2012) Reconstitution of mitochondria derived vesicle formation demonstrates selective enrichment of oxidized cargo. PLoS One 7:e52830. https://doi.org/10.1371/journal.pone.0052830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hammerling BC, Najor RH, Cortez MQ et al (2017) A Rab5 endosomal pathway mediates Parkin-dependent mitochondrial clearance. Nat Commun 8:14050. https://doi.org/10.1038/ncomms14050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Laar VSV, Arnold B, Cassady SJ et al (2011) Bioenergetics of neurons inhibit the translocation response of Parkin following rapid mitochondrial depolarization. Hum Mol Genet 20:927–940. https://doi.org/10.1093/hmg/ddq531

    Article  PubMed  CAS  Google Scholar 

  41. Rakovic A, Shurkewitsch K, Seibler P et al (2013) Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1)-dependent ubiquitination of endogenous Parkin attenuates mitophagy: study in human primary fibroblasts and induced pluripotent stem cell-derived neurons. J Biol Chem 288:2223–2237. https://doi.org/10.1074/jbc.M112.391680

    Article  CAS  PubMed  Google Scholar 

  42. Amadoro G, Corsetti V, Florenzano F et al (2014) AD-linked, toxic NH2 human tau affects the quality control of mitochondria in neurons. Neurobiol Dis 62:489–507. https://doi.org/10.1016/j.nbd.2013.10.018

    Article  CAS  PubMed  Google Scholar 

  43. Ashrafi G, Schlehe JS, LaVoie MJ, Schwarz TL (2014) Mitophagy of damaged mitochondria occurs locally in distal neuronal axons and requires PINK1 and Parkin. J Cell Biol 206:655–670. https://doi.org/10.1083/jcb.201401070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cai Q, Zakaria HM, Simone A, Sheng Z-H (2012) Spatial Parkin translocation and degradation of damaged mitochondria via mitophagy in live cortical neurons. Curr Biol 22:545–552. https://doi.org/10.1016/j.cub.2012.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Corsetti V, Florenzano F, Atlante A et al (2015) NH2-truncated human tau induces deregulated mitophagy in neurons by aberrant recruitment of Parkin and UCHL-1: implications in Alzheimer’s disease. Hum Mol Genet. https://doi.org/10.1093/hmg/ddv059

    PubMed  Google Scholar 

  46. Joselin AP, Hewitt SJ, Callaghan SM et al (2012) ROS-dependent regulation of Parkin and DJ-1 localization during oxidative stress in neurons. Hum Mol Genet 21:4888–4903. https://doi.org/10.1093/hmg/dds325

    Article  CAS  PubMed  Google Scholar 

  47. Koyano F, Okatsu K, Ishigaki S et al (2013) The principal PINK1 and Parkin cellular events triggered in response to dissipation of mitochondrial membrane potential occur in primary neurons. Genes Cells 18:672–681. https://doi.org/10.1111/gtc.12066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Van Laar VS, Roy N, Liu A et al (2015) Glutamate excitotoxicity in neurons triggers mitochondrial and endoplasmic reticulum accumulation of Parkin, and in the presence of N-acetyl cysteine, mitophagy. Neurobiol Dis 74:180–193. https://doi.org/10.1016/j.nbd.2014.11.015

    Article  PubMed  CAS  Google Scholar 

  49. Balietti M, Giorgetti B, Casoli T et al (2013) Early selective vulnerability of synapses and synaptic mitochondria in the hippocampal CA1 region of the Tg2576 mouse model of Alzheimer’s disease. J Alzheimer’s Dis 34:887–896

    CAS  Google Scholar 

  50. Baloyannis SJ (2006) Mitochondrial alterations in Alzheimer’s disease. J Alzheimers Dis 9:119–126

    Article  PubMed  Google Scholar 

  51. Ferreiro E, Oliveira CR, Pereira CMF (2008) The release of calcium from the endoplasmic reticulum induced by amyloid-beta and prion peptides activates the mitochondrial apoptotic pathway. Neurobiol Dis 30:331–342. https://doi.org/10.1016/j.nbd.2008.02.003

    Article  CAS  PubMed  Google Scholar 

  52. Paula-Lima AC, Adasme T, SanMartín C et al (2010) Amyloid β-peptide oligomers stimulate RyR-mediated Ca2+ release inducing mitochondrial fragmentation in hippocampal neurons and prevent RyR-mediated dendritic spine remodeling produced by BDNF. Antioxid Redox Signal 14:1209–1223. https://doi.org/10.1089/ars.2010.3287

    Article  CAS  Google Scholar 

  53. Qiao H, Koya RC, Nakagawa K et al (2005) Inhibition of Alzheimer’s amyloid-β peptide-induced reduction of mitochondrial membrane potential and neurotoxicity by gelsolin. Neurobiol Aging 26:849–855. https://doi.org/10.1016/j.neurobiolaging.2004.08.003

    Article  CAS  PubMed  Google Scholar 

  54. Rhein V, Baysang G, Rao S et al (2009) Amyloid-beta leads to impaired cellular respiration, energy production and mitochondrial electron chain complex activities in human neuroblastoma cells. Cell Mol Neurobiol 29:1063–1071. https://doi.org/10.1007/s10571-009-9398-y

    Article  CAS  PubMed  Google Scholar 

  55. Amadoro G, Corsetti V, Stringaro A et al (2010) A NH2 tau fragment targets neuronal mitochondria at AD synapses: possible implications for neurodegeneration. J Alzheimer’s Dis 21:445–470. https://doi.org/10.3233/JAD-2010-100120

    Article  CAS  Google Scholar 

  56. Hu Y, Li X-C, Wang Z et al (2016) Tau accumulation impairs mitophagy via increasing mitochondrial membrane potential and reducing mitochondrial Parkin. Oncotarget 7:17356–17368

    PubMed  PubMed Central  Google Scholar 

  57. Schulz KL, Eckert A, Rhein V et al (2012) A new link to mitochondrial impairment in tauopathies. Mol Neurobiol 46:205–216. https://doi.org/10.1007/s12035-012-8308-3

    Article  CAS  PubMed  Google Scholar 

  58. Katayama H, Kogure T, Mizushima N et al (2011) A sensitive and quantitative technique for detecting autophagic events based on lysosomal delivery. Chem Biol 18:1042–1052. https://doi.org/10.1016/j.chembiol.2011.05.013

    Article  CAS  PubMed  Google Scholar 

  59. Kitada T, Asakawa S, Hattori N et al (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392:605–608. https://doi.org/10.1038/33416

    Article  CAS  PubMed  Google Scholar 

  60. Burman JL, Yu S, Poole AC et al (2012) Analysis of neural subtypes reveals selective mitochondrial dysfunction in dopaminergic neurons from parkin mutants. PNAS 109:10438–10443. https://doi.org/10.1073/pnas.1120688109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Clark IE, Dodson MW, Jiang C et al (2006) Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441:1162–1166. https://doi.org/10.1038/nature04779

    Article  CAS  PubMed  Google Scholar 

  62. Deng H, Dodson MW, Huang H, Guo M (2008) The Parkinson’s disease genes pink1 and parkin promote mitochondrial fission and/or inhibit fusion in Drosophila. PNAS 105:14503–14508. https://doi.org/10.1073/pnas.0803998105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Devireddy S, Liu A, Lampe T, Hollenbeck PJ (2015) The organization of mitochondrial quality control and life cycle in the nervous system in vivo in the absence of PINK1. J Neurosci 35:9391–9401. https://doi.org/10.1523/JNEUROSCI.1198-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Park J, Lee SB, Lee S et al (2006) Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by Parkin. Nature 441:1157–1161. https://doi.org/10.1038/nature04788

    Article  CAS  PubMed  Google Scholar 

  65. Pesah Y, Pham T, Burgess H et al (2004) Drosophila parkin mutants have decreased mass and cell size and increased sensitivity to oxygen radical stress. Development 131:2183–2194. https://doi.org/10.1242/dev.01095

    Article  CAS  PubMed  Google Scholar 

  66. Sung H, Tandarich LC, Nguyen K, Hollenbeck PJ (2016) Compartmentalized regulation of Parkin-mediated mitochondrial quality control in the Drosophila nervous system in vivo. J Neurosci 36:7375–7391. https://doi.org/10.1523/JNEUROSCI.0633-16.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Vincow ES, Merrihew G, Thomas RE et al (2013) The PINK1-Parkin pathway promotes both mitophagy and selective respiratory chain turnover in vivo. PNAS 110:6400–6405. https://doi.org/10.1073/pnas.1221132110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Glauser L, Sonnay S, Stafa K, Moore DJ (2011) Parkin promotes the ubiquitination and degradation of the mitochondrial fusion factor mitofusin 1. J Neurochem 118:636–645. https://doi.org/10.1111/j.1471-4159.2011.07318.x

    Article  CAS  PubMed  Google Scholar 

  69. Tanaka A, Cleland MM, Xu S et al (2010) Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J Cell Biol 191:1367–1380. https://doi.org/10.1083/jcb.201007013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. von Coelln R, Thomas B, Savitt JM et al (2004) Loss of locus coeruleus neurons and reduced startle in parkin null mice. PNAS 101:10744–10749. https://doi.org/10.1073/pnas.0401297101

    Article  Google Scholar 

  71. Goldberg MS, Fleming SM, Palacino JJ et al (2003) Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons. J Biol Chem 278:43628–43635. https://doi.org/10.1074/jbc.M308947200

    Article  CAS  PubMed  Google Scholar 

  72. Kitada T, Tong Y, Gautier CA, Shen J (2009) Absence of nigral degeneration in aged parkin/DJ-1/PINK1 triple knockout mice. J Neurochem 111:696–702. https://doi.org/10.1111/j.1471-4159.2009.06350.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Perez FA, Palmiter RD (2005) Parkin-deficient mice are not a robust model of parkinsonism. PNAS 102:2174–2179. https://doi.org/10.1073/pnas.0409598102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhou H, Falkenburger BH, Schulz JB, et al (2007) Silencing of the Pink1 gene expression by conditional RNAi does not induce dopaminergic neuron death in mice. Department of Pathology, Anatomy and Cell Biology Faculty Papers, pp 242–250

  75. Pickrell AM, Youle RJ (2015) The roles of PINK1, Parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron 85:257–273. https://doi.org/10.1016/j.neuron.2014.12.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Palacino JJ, Sagi D, Goldberg MS et al (2004) Mitochondrial dysfunction and oxidative damage in parkin-deficient mice. J Biol Chem 279:18614–18622. https://doi.org/10.1074/jbc.M401135200

    Article  CAS  PubMed  Google Scholar 

  77. Damiano M, Gautier CA, Bulteau A-L et al (2014) Tissue- and cell-specific mitochondrial defect in Parkin-deficient mice. PLoS One 9:e99898. https://doi.org/10.1371/journal.pone.0099898

    Article  PubMed  PubMed Central  Google Scholar 

  78. Gautier CA, Kitada T, Shen J (2008) Loss of PINK1 causes mitochondrial functional defects and increased sensitivity to oxidative stress. PNAS 105:11364–11369. https://doi.org/10.1073/pnas.0802076105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lee Y, Stevens DA, Kang S-U et al (2017) PINK1 primes Parkin-mediated ubiquitination of PARIS in dopaminergic neuronal survival. Cell Reports 18:918–932. https://doi.org/10.1016/j.celrep.2016.12.090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Shin J-H, Ko HS, Kang H et al (2011) PARIS (ZNF746) repression of PGC-1α contributes to neurodegeneration in Parkinson’s disease. Cell 144:689–702. https://doi.org/10.1016/j.cell.2011.02.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Stevens DA, Lee Y, Kang HC et al (2015) Parkin loss leads to PARIS-dependent declines in mitochondrial mass and respiration. PNAS 112:11696–11701. https://doi.org/10.1073/pnas.1500624112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sterky FH, Lee S, Wibom R et al (2011) Impaired mitochondrial transport and Parkin-independent degeneration of respiratory chain-deficient dopamine neurons in vivo. PNAS 108:12937–12942. https://doi.org/10.1073/pnas.1103295108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Pickrell AM, Huang C-H, Kennedy SR et al (2015) Endogenous Parkin preserves dopaminergic substantia nigral neurons following mitochondrial DNA mutagenic stress. Neuron 87:371–381. https://doi.org/10.1016/j.neuron.2015.06.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Larsson N-G, Wang J, Wilhelmsson H et al (1998) Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nat Genet 18:231–236. https://doi.org/10.1038/ng0398-231

    Article  CAS  PubMed  Google Scholar 

  85. Kujoth GC, Hiona A, Pugh TD et al (2005) Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 309:481–484. https://doi.org/10.1126/science.1112125

    Article  CAS  PubMed  Google Scholar 

  86. Chen L, Xie Z, Turkson S, Zhuang X (2015) A53T human α-Synuclein overexpression in transgenic mice induces pervasive mitochondria macroautophagy defects preceding dopamine neuron degeneration. J Neurosci 35:890–905. https://doi.org/10.1523/JNEUROSCI.0089-14.2015

    Article  PubMed  CAS  Google Scholar 

  87. Ghio S, Kamp F, Cauchi R et al (2016) Interaction of α-synuclein with biomembranes in Parkinson’s disease—role of cardiolipin. Prog Lipid Res 61:73–82. https://doi.org/10.1016/j.plipres.2015.10.005

    Article  CAS  PubMed  Google Scholar 

  88. Chu CT, Ji J, Dagda RK et al (2013) Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells. Nat Cell Biol 15:1197–1205. https://doi.org/10.1038/ncb2837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hsu P, Liu X, Zhang J et al (2015) Cardiolipin remodeling by TAZ/tafazzin is selectively required for the initiation of mitophagy. Autophagy 11:643–652. https://doi.org/10.1080/15548627.2015.1023984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Shen Z, Li Y, Gasparski AN et al (2017) Cardiolipin regulates mitophagy through the protein kinase C pathway. J Biol Chem 292:2916–2923. https://doi.org/10.1074/jbc.M116.753574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kagan VE, Jiang J, Huang Z et al (2016) NDPK-D (NM23-H4)-mediated externalization of cardiolipin enables elimination of depolarized mitochondria by mitophagy. Cell Death Differ 23:1140–1151. https://doi.org/10.1038/cdd.2015.160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Yogalingam G, Hwang S, Ferreira JCB, Mochly-Rosen D (2013) Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) phosphorylation by protein kinase Cδ (PKCδ) inhibits mitochondria elimination by lysosomal-like structures following ischemia and reoxygenation-induced injury. J Biol Chem 288:18947–18960. https://doi.org/10.1074/jbc.M113.466870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Allen GFG, Toth R, James J, Ganley IG (2013) Loss of iron triggers PINK1/Parkin-independent mitophagy. EMBO Rep 14:1127–1135. https://doi.org/10.1038/embor.2013.168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kageyama Y, Hoshijima M, Seo K et al (2014) Parkin-independent mitophagy requires Drp1 and maintains the integrity of mammalian heart and brain. EMBO J 33:2798–2813. https://doi.org/10.15252/embj.201488658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Matak P, Matak A, Moustafa S et al (2016) Disrupted iron homeostasis causes dopaminergic neurodegeneration in mice. PNAS 113:3428–3435. https://doi.org/10.1073/pnas.1519473113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Davis C-HO, Kim K-Y, Bushong EA et al (2014) Transcellular degradation of axonal mitochondria. Proceed Natl Acad Sci. https://doi.org/10.1073/pnas.1404651111

    Google Scholar 

  97. Lin M-Y, Cheng X-T, Tammineni P et al (2017) Releasing syntaphilin removes stressed mitochondria from axons independent of mitophagy under pathophysiological conditions. Neuron 94(595–610):e6. https://doi.org/10.1016/j.neuron.2017.04.004

    Google Scholar 

  98. Cummins N, Bartlett CA, Archer M et al (2013) Changes to mitochondrial ultrastructure in optic nerve vulnerable to secondary degeneration in vivo are limited by irradiation at 670 nm. BMC Neurosci 14:98. https://doi.org/10.1186/1471-2202-14-98

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Rosado C, Mijaljica D, Hatzinisiriou I et al (2008) Rosella: a fluorescent pH-biosensor for reporting vacuolar turnover of cytosol and organelles in yeast. Autophagy 4:205–213. https://doi.org/10.4161/auto.5331

    Article  CAS  PubMed  Google Scholar 

  100. Sun N, Malide D, Liu J et al (2017) A fluorescence-based imaging method to measure in vitro and in vivo mitophagy using mt-Keima. Nat Protoc 12:1576–1587. https://doi.org/10.1038/nprot.2017.060

    Article  CAS  PubMed  Google Scholar 

  101. Sun N, Yun J, Liu J et al (2015) Measuring in vivo mitophagy. Mol Cell 60:685–696. https://doi.org/10.1016/j.molcel.2015.10.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. McWilliams TG, Prescott AR, Allen GFG et al (2016) mito-QC illuminates mitophagy and mitochondrial architecture in vivo. J Cell Biol 214:333–345. https://doi.org/10.1083/jcb.201603039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Palikaras K, Lionaki E, Tavernarakis N (2015) Coordination of mitophagy and mitochondrial biogenesis during ageing in C. elegans. Nature 521:525–528. https://doi.org/10.1038/nature14300

    Article  CAS  PubMed  Google Scholar 

  104. Hsieh C-H, Shaltouki A, Gonzalez AE et al (2016) Functional impairment in Miro degradation and mitophagy is a shared feature in familial and sporadic Parkinson’s disease. Cell Stem Cell 19:709–724. https://doi.org/10.1016/j.stem.2016.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Seibler P, Graziotto J, Jeong H et al (2011) Mitochondrial Parkin recruitment is impaired in neurons derived from mutant PINK1 induced pluripotent stem cells. J Neurosci 31:5970–5976. https://doi.org/10.1523/JNEUROSCI.4441-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Geisler S, Holmström KM, Treis A et al (2010) The PINK1/Parkin-mediated mitophagy is compromised by PD-associated mutations. Autophagy 6:871–878. https://doi.org/10.4161/auto.6.7.13286

    Article  CAS  PubMed  Google Scholar 

  107. Hirai K, Aliev G, Nunomura A et al (2001) Mitochondrial abnormalities in Alzheimer’s disease. J Neurosci 21:3017–3023

    CAS  PubMed  Google Scholar 

  108. Martín-Maestro P, Gargini R, Perry G et al (2016) PARK2 enhancement is able to compensate mitophagy alterations found in sporadic Alzheimer’s disease. Hum Mol Genet 25:792–806. https://doi.org/10.1093/hmg/ddv616

    Article  PubMed  CAS  Google Scholar 

  109. Goiran T, Duplan E, Chami M et al (2017) β-Amyloid precursor protein intracellular domain controls mitochondrial function by modulating phosphatase and tensin homolog-induced kinase 1 transcription in cells and in Alzheimer mice models. Biol Psychiat. https://doi.org/10.1016/j.biopsych.2017.04.011

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors’ work is supported by the Estate of Dr Clem Jones AO and by Grants from the Australian Research Council (DP130101932), and the National Health and Medical Research Council of Australia (GNT1037746, GNT1003150). N. C. is supported by an Australian Government Research Training Program Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Götz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cummins, N., Götz, J. Shedding light on mitophagy in neurons: what is the evidence for PINK1/Parkin mitophagy in vivo?. Cell. Mol. Life Sci. 75, 1151–1162 (2018). https://doi.org/10.1007/s00018-017-2692-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-017-2692-9

Keywords

Navigation