Skip to main content
Log in

Mechanisms regulating dendritic arbor patterning

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The nervous system is populated by diverse types of neurons, each of which has dendritic trees with strikingly different morphologies. These neuron-specific morphologies determine how dendritic trees integrate thousands of synaptic inputs to generate different firing properties. To ensure proper neuronal function and connectivity, it is necessary that dendrite patterns are precisely controlled and coordinated with synaptic activity. Here, we summarize the molecular and cellular mechanisms that regulate the formation of cell type-specific dendrite patterns during development. We focus on different aspects of vertebrate dendrite patterning that are particularly important in determining the neuronal function; such as the shape, branching, orientation and size of the arbors as well as the development of dendritic spine protrusions that receive excitatory inputs and compartmentalize postsynaptic responses. Additionally, we briefly comment on the implications of aberrant dendritic morphology for nervous system disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AD:

Alzheimer disease

AMPA:

α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor

ASD:

Autism spectrum disorder

bHLH:

Basic helix-loop-helix

CaM:

Calmodulin

CaMK:

Ca2+/calmodulin-dependent protein kinase

CaMKK:

Ca2+/calmodulin-dependent protein kinase kinase

CBP:

CREB-binding protein

Cdc20:

Cell division cycle protein 20

Cdc42:

Cell division control proteins 42

Cdk5:

Cyclin-dependent kinase 5

CREST:

Calcium-RESponsive Transactivator

CREB:

cAMP-response element binding protein

DSCAM:

Down syndrome cell adhesion molecule

ERK:

Extracellular signal-regulated kinases

FMRP:

Fragile X mental retardation protein

GAP:

GTPases activating proteins

GEF:

Guanine nucleotide exchange factor

GOPs:

Golgi outposts

GSK-3β:

Glycogen synthase kinase 3β

HD:

Huntington disease

HDAC:

Histone deacetylase

JNK:

c-Jun N-terminal kinase

L1CAM:

L1 cell adhesion molecule

LimK1:

LIM domain kinase 1

LTP:

Long-term potentiation

MAP:

Microtubule-associated protein

MAPK:

Mitogen-activated protein kinase

MARCKS:

Myristoylated alanine-rich C-kinase substrate

MEF:

Myocyte enhancer factor 2A

MEK:

MAPK/ERK kinase

mTOR:

Mammalian target of rapamycin

NCAM:

Neural cell adhesion molecule

NHE6:

Na+/H+ exchanger 6

NMDAR:

N-methyl-d-aspartate receptor

PAK:

p21-Activated kinase

PD:

Parkinson disease

Pea3:

Polyoma enhancer activator 3

PI3 K:

Phosphoinositide 3-kinase

PKC:

Protein kinase C

Rac1:

Ras-related C4 botulinum toxin substrate 1

Ret:

Rearrangement in transformation

ROCK:

Rho-associated protein kinase

TAOK2:

Thousand-and-one-amino acid 2 kinase

TrkB:

Tropomyosin receptor kinase B

Tsc1:

Tuberous sclerosis complex 1

VSCC:

Voltage-sensitive calcium channel

References

  1. Barnes AP, Polleux F (2009) Establishment of axon-dendrite polarity in developing neurons. Annu Rev Neurosci 32:347–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Craig AM, Banker G (1994) Neuronal polarity. Annu Rev Neurosci 17:267–310

    Article  CAS  PubMed  Google Scholar 

  3. Grueber WB, Sagasti A (2010) Self-avoidance and tiling: mechanisms of dendrite and axon spacing. Cold Spring Harb Perspect Biol 2:a001750

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. DeFelipe J (2015) The dendritic spine story: an intriguing process of discovery. Front Neuroanat 9:14

    PubMed  PubMed Central  Google Scholar 

  5. Koleske AJ (2013) Molecular mechanisms of dendrite stability. Nat Rev Neurosci 14:536–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kano M, Hashimoto K (2012) Activity-dependent maturation of climbing fiber to Purkinje cell synapses during postnatal cerebellar development. Cerebellum 11:449–450

    Article  PubMed  Google Scholar 

  7. Watanabe M, Kano M (2011) Climbing fiber synapse elimination in cerebellar Purkinje cells. Eur J Neurosci 34:1697–1710

    Article  PubMed  Google Scholar 

  8. Puram SV, Bonni A (2013) Cell-intrinsic drivers of dendrite morphogenesis. Development 140:4657–4671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Valnegri P, Puram SV, Bonni A (2015) Regulation of dendrite morphogenesis by extrinsic cues. Trends Neurosci 38:439–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dong X, Shen K, Bulow HE (2015) Intrinsic and extrinsic mechanisms of dendritic morphogenesis. Annu Rev Physiol 77:271–300

    Article  CAS  PubMed  Google Scholar 

  11. Lefebvre JL, Sanes JR, Kay JN (2015) Development of dendritic form and function. Annu Rev Cell Dev Biol 31:741–777

    Article  CAS  PubMed  Google Scholar 

  12. Sanes JR, Zipursky SL (2010) Design principles of insect and vertebrate visual systems. Neuron 66:15–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Imai T, Sakano H, Vosshall LB (2010) Topographic mapping—the olfactory system. Cold Spring Harb Perspect Biol 2:a001776

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Guy J, Wagener RJ, Mock M, Staiger JF (2015) Persistence of functional sensory maps in the absence of cortical layers in the somatosensory cortex of reeler mice. Cereb Cortex 25:2517–2528

    Article  PubMed  Google Scholar 

  15. Wagener RJ, Witte M, Guy J, Mingo-Moreno N, Kugler S, Staiger JF (2016) Thalamocortical connections drive intracortical activation of functional columns in the mislaminated reeler somatosensory cortex. Cereb Cortex 26:820–837

    PubMed  Google Scholar 

  16. Spruston N (2008) Pyramidal neurons: dendritic structure and synaptic integration. Nat Rev Neurosci 9:206–221

    Article  CAS  PubMed  Google Scholar 

  17. de Wit J, Ghosh A (2014) Control of neural circuit formation by leucine-rich repeat proteins. Trends Neurosci 37:539–550

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Hasselmo ME, Schnell E (1994) Laminar selectivity of the cholinergic suppression of synaptic transmission in rat hippocampal region CA1: computational modeling and brain slice physiology. J Neurosci 14:3898–3914

    CAS  PubMed  Google Scholar 

  19. Yuste R (2013) Electrical compartmentalization in dendritic spines. Annu Rev Neurosci 36:429–449

    Article  CAS  PubMed  Google Scholar 

  20. Adrian M, Kusters R, Wierenga CJ, Storm C, Hoogenraad CC, Kapitein LC (2014) Barriers in the brain: resolving dendritic spine morphology and compartmentalization. Front Neuroanat 8:142

    Article  PubMed  PubMed Central  Google Scholar 

  21. Horton AC, Racz B, Monson EE, Lin AL, Weinberg RJ, Ehlers MD (2005) Polarized secretory trafficking directs cargo for asymmetric dendrite growth and morphogenesis. Neuron 48:757–771

    Article  CAS  PubMed  Google Scholar 

  22. Pfenninger KH (2009) Plasma membrane expansion: a neuron’s Herculean task. Nat Rev Neurosci 10:251–261

    Article  CAS  PubMed  Google Scholar 

  23. McAllister AK, Lo DC, Katz LC (1995) Neurotrophins regulate dendritic growth in developing visual cortex. Neuron 15:791–803

    Article  CAS  PubMed  Google Scholar 

  24. Rauskolb S, Zagrebelsky M, Dreznjak A, Deogracias R, Matsumoto T, Wiese S, Erne B, Sendtner M, Schaeren-Wiemers N, Korte M et al (2010) Global deprivation of brain-derived neurotrophic factor in the CNS reveals an area-specific requirement for dendritic growth. J Neurosci 30:1739–1749

    Article  CAS  PubMed  Google Scholar 

  25. Bothwell M (2014) NGF, BDNF, NT3, and NT4. Handb Exp Pharmacol 220:3–15

    Article  CAS  PubMed  Google Scholar 

  26. Reichardt LF (2006) Neurotrophin-regulated signalling pathways. Philos Trans R Soc Lond B Biol Sci 361:1545–1564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gates MA, Tai CC, Macklis JD (2000) Neocortical neurons lacking the protein-tyrosine kinase B receptor display abnormal differentiation and process elongation in vitro and in vivo. Neuroscience 98:437–447

    Article  CAS  PubMed  Google Scholar 

  28. Cheung ZH, Chin WH, Chen Y, Ng YP, Ip NY (2007) Cdk5 is involved in BDNF-stimulated dendritic growth in hippocampal neurons. PLoS Biol 5:e63

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Tolwani RJ, Buckmaster PS, Varma S, Cosgaya JM, Wu Y, Suri C, Shooter EM (2002) BDNF overexpression increases dendrite complexity in hippocampal dentate gyrus. Neuroscience 114:795–805

    Article  CAS  PubMed  Google Scholar 

  30. Wang L, Chang X, She L, Xu D, Huang W, Poo MM (2015) Autocrine action of BDNF on dendrite development of adult-born hippocampal neurons. J Neurosci 35:8384–8393

    Article  CAS  PubMed  Google Scholar 

  31. Kwon M, Fernandez JR, Zegarek GF, Lo SB, Firestein BL (2011) BDNF-promoted increases in proximal dendrites occur via CREB-dependent transcriptional regulation of cypin. J Neurosci 31:9735–9745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jaworski J, Spangler S, Seeburg DP, Hoogenraad CC, Sheng M (2005) Control of dendritic arborization by the phosphoinositide-3′-kinase-Akt-mammalian target of rapamycin pathway. J Neurosci 25:11300–11312

    Article  CAS  PubMed  Google Scholar 

  33. Joo W, Hippenmeyer S, Luo L (2014) Neurodevelopment. Dendrite morphogenesis depends on relative levels of NT-3/TrkC signaling. Science 346:626–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yacoubian TA, Lo DC (2000) Truncated and full-length TrkB receptors regulate distinct modes of dendritic growth. Nat Neurosci 3:342–349

    Article  CAS  PubMed  Google Scholar 

  35. Hartmann M, Brigadski T, Erdmann KS, Holtmann B, Sendtner M, Narz F, Lessmann V (2004) Truncated TrkB receptor-induced outgrowth of dendritic filopodia involves the p75 neurotrophin receptor. J Cell Sci 117:5803–5814

    Article  CAS  PubMed  Google Scholar 

  36. Alsina FC, Hita FJ, Fontanet PA, Irala D, Hedman H, Ledda F, Paratcha G (2016) Lrig1 is a cell-intrinsic modulator of hippocampal dendrite complexity and BDNF signaling. EMBO Rep 17:601–616

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Song M, Giza J, Proenca CC, Jing D, Elliott M, Dincheva I, Shmelkov SV, Kim J, Schreiner R, Huang SH et al (2015) Slitrk5 mediates BDNF-dependent TrkB receptor trafficking and signaling. Dev Cell 33:690–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ledda F, Paratcha G (2016) Assembly of neuronal connectivity by neurotrophic factors and leucine-rich repeat proteins. Front Cell Neurosci 10:199

    Article  PubMed  PubMed Central  Google Scholar 

  39. Cosker KE, Segal RA (2014) Neuronal signaling through endocytosis. Cold Spring Harb Perspect Biol 6:a020669

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Bucci C, Alifano P, Cogli L (2014) The role of rab proteins in neuronal cells and in the trafficking of neurotrophin receptors. Membranes (Basel) 4:642–677

    Article  Google Scholar 

  41. Lazo OM, Gonzalez A, Ascano M, Kuruvilla R, Couve A, Bronfman FC (2013) BDNF regulates Rab11-mediated recycling endosome dynamics to induce dendritic branching. J Neurosci 33:6112–6122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ouyang Q, Lizarraga SB, Schmidt M, Yang U, Gong J, Ellisor D, Kauer JA, Morrow EM (2013) Christianson syndrome protein NHE6 modulates TrkB endosomal signaling required for neuronal circuit development. Neuron 80:97–112

    Article  CAS  PubMed  Google Scholar 

  43. Gilfillan GD, Selmer KK, Roxrud I, Smith R, Kyllerman M, Eiklid K, Kroken M, Mattingsdal M, Egeland T, Stenmark H et al (2008) SLC9A6 mutations cause X-linked mental retardation, microcephaly, epilepsy, and ataxia, a phenotype mimicking Angelman syndrome. Am J Hum Genet 82:1003–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chandley MJ, Crawford JD, Szebeni A, Szebeni K, Ordway GA (2015) NTRK2 expression levels are reduced in laser captured pyramidal neurons from the anterior cingulate cortex in males with autism spectrum disorder. Mol Autism 6:28

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Dmitrzak-Weglarz M, Rybakowski JK, Suwalska A, Skibinska M, Leszczynska-Rodziewicz A, Szczepankiewicz A, Hauser J (2008) Association studies of the BDNF and the NTRK2 gene polymorphisms with prophylactic lithium response in bipolar patients. Pharmacogenomics 9:1595–1603

    Article  CAS  PubMed  Google Scholar 

  46. Gupta VK, You Y, Gupta VB, Klistorner A, Graham SL (2013) TrkB receptor signalling: implications in neurodegenerative, psychiatric and proliferative disorders. Int J Mol Sci 14:10122–10142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Liu G, Gu B, He XP, Joshi RB, Wackerle HD, Rodriguiz RM, Wetsel WC, McNamara JO (2013) Transient inhibition of TrkB kinase after status epilepticus prevents development of temporal lobe epilepsy. Neuron 79:31–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mariga A, Mitre M, Chao MV (2017) Consequences of brain-derived neurotrophic factor withdrawal in CNS neurons and implications in disease. Neurobiol Dis 97:73–79

    Article  CAS  PubMed  Google Scholar 

  49. Nguyen KQ, Rymar VV, Sadikot AF (2016) Impaired TrkB signaling underlies reduced BDNF-mediated trophic support of striatal neurons in the R6/2 mouse model of Huntington’s disease. Front Cell Neurosci 10:37

    Article  PubMed  PubMed Central  Google Scholar 

  50. Plotkin JL, Day M, Peterson JD, Xie Z, Kress GJ, Rafalovich I, Kondapalli J, Gertler TS, Flajolet M, Greengard P et al (2014) Impaired TrkB receptor signaling underlies corticostriatal dysfunction in Huntington’s disease. Neuron 83:178–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F (1993) GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260:1130–1132

    Article  CAS  PubMed  Google Scholar 

  52. Ibanez CF, Andressoo JO (2016) Biology of GDNF and its receptors—relevance for disorders of the central nervous system. Neurobiol Dis. doi:10.1016/j.nbd.2016.01.021

    PubMed  Google Scholar 

  53. Paratcha G, Ledda F (2008) GDNF and GFRalpha: a versatile molecular complex for developing neurons. Trends Neurosci 31:384–391

    Article  CAS  PubMed  Google Scholar 

  54. Irala D, Bonafina A, Fontanet PA, Alsina FC, Paratcha G, Ledda F (2016) The GDNF-GFRalpha1 complex promotes the development of hippocampal dendritic arbors and spines via NCAM. Development 143:4224–4235

    Article  CAS  PubMed  Google Scholar 

  55. Gutierrez H, Dolcet X, Tolcos M, Davies A (2004) HGF regulates the development of cortical pyramidal dendrites. Development 131:3717–3726

    Article  CAS  PubMed  Google Scholar 

  56. Finsterwald C, Martin JL (2011) Cellular mechanisms underlying the regulation of dendritic development by hepatocyte growth factor. Eur J Neurosci 34:1053–1061

    Article  PubMed  Google Scholar 

  57. Lim CS, Walikonis RS (2008) Hepatocyte growth factor and c-Met promote dendritic maturation during hippocampal neuron differentiation via the Akt pathway. Cell Signal 20:825–835

    Article  CAS  PubMed  Google Scholar 

  58. Qiu S, Lu Z, Levitt P (2014) MET receptor tyrosine kinase controls dendritic complexity, spine morphogenesis, and glutamatergic synapse maturation in the hippocampus. J Neurosci 34:16166–16179

    Article  PubMed  PubMed Central  Google Scholar 

  59. Campbell DB, D’Oronzio R, Garbett K, Ebert PJ, Mirnics K, Levitt P, Persico AM (2007) Disruption of cerebral cortex MET signaling in autism spectrum disorder. Ann Neurol 62:243–250

    Article  PubMed  Google Scholar 

  60. Campbell DB, Li C, Sutcliffe JS, Persico AM, Levitt P (2008) Genetic evidence implicating multiple genes in the MET receptor tyrosine kinase pathway in autism spectrum disorder. Autism Res 1:159–168

    Article  PubMed  PubMed Central  Google Scholar 

  61. Heuer L, Braunschweig D, Ashwood P, Van de Water J, Campbell DB (2011) Association of a MET genetic variant with autism-associated maternal autoantibodies to fetal brain proteins and cytokine expression. Transl Psychiatry 1:e48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Podkowa M, Christova T, Zhao X, Jian Y, Attisano L (2013) p21-Activated kinase (PAK) is required for Bone Morphogenetic Protein (BMP)-induced dendritogenesis in cortical neurons. Mol Cell Neurosci 57:83–92

    Article  CAS  PubMed  Google Scholar 

  63. Osorio C, Chacon PJ, Kisiswa L, White M, Wyatt S, Rodriguez-Tebar A, Davies AM (2013) Growth differentiation factor 5 is a key physiological regulator of dendrite growth during development. Development 140:4751–4762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Buonanno A, Fischbach GD (2001) Neuregulin and ErbB receptor signaling pathways in the nervous system. Curr Opin Neurobiol 11:287–296

    Article  CAS  PubMed  Google Scholar 

  65. Bermingham-McDonogh O, McCabe KL, Reh TA (1996) Effects of GGF/neuregulins on neuronal survival and neurite outgrowth correlate with erbB2/neu expression in developing rat retina. Development 122:1427–1438

    CAS  PubMed  Google Scholar 

  66. Rieff HI, Raetzman LT, Sapp DW, Yeh HH, Siegel RE, Corfas G (1999) Neuregulin induces GABA(A) receptor subunit expression and neurite outgrowth in cerebellar granule cells. J Neurosci 19:10757–10766

    CAS  PubMed  Google Scholar 

  67. Gerecke KM, Wyss JM, Carroll SL (2004) Neuregulin-1beta induces neurite extension and arborization in cultured hippocampal neurons. Mol Cell Neurosci 27:379–393

    Article  CAS  PubMed  Google Scholar 

  68. Barros CS, Calabrese B, Chamero P, Roberts AJ, Korzus E, Lloyd K, Stowers L, Mayford M, Halpain S, Muller U (2009) Impaired maturation of dendritic spines without disorganization of cortical cell layers in mice lacking NRG1/ErbB signaling in the central nervous system. Proc Natl Acad Sci USA 106:4507–4512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Huang YZ, Won S, Ali DW, Wang Q, Tanowitz M, Du QS, Pelkey KA, Yang DJ, Xiong WC, Salter MW et al (2000) Regulation of neuregulin signaling by PSD-95 interacting with ErbB4 at CNS synapses. Neuron 26:443–455

    Article  CAS  PubMed  Google Scholar 

  70. Yau HJ, Wang HF, Lai C, Liu FC (2003) Neural development of the neuregulin receptor ErbB4 in the cerebral cortex and the hippocampus: preferential expression by interneurons tangentially migrating from the ganglionic eminences. Cereb Cortex 13:252–264

    Article  PubMed  Google Scholar 

  71. Vullhorst D, Neddens J, Karavanova I, Tricoire L, Petralia RS, McBain CJ, Buonanno A (2009) Selective expression of ErbB4 in interneurons, but not pyramidal cells, of the rodent hippocampus. J Neurosci 29:12255–12264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Fazzari P, Paternain AV, Valiente M, Pla R, Lujan R, Lloyd K, Lerma J, Marin O, Rico B (2010) Control of cortical GABA circuitry development by Nrg1 and ErbB4 signalling. Nature 464:1376–1380

    Article  CAS  PubMed  Google Scholar 

  73. Glantz LA, Austin MC, Lewis DA (2000) Normal cellular levels of synaptophysin mRNA expression in the prefrontal cortex of subjects with schizophrenia. Biol Psychiatry 48:389–397

    Article  CAS  PubMed  Google Scholar 

  74. Kolomeets NS, Orlovskaya DD, Rachmanova VI, Uranova NA (2005) Ultrastructural alterations in hippocampal mossy fiber synapses in schizophrenia: a postmortem morphometric study. Synapse 57:47–55

    Article  CAS  PubMed  Google Scholar 

  75. Garey LJ, Ong WY, Patel TS, Kanani M, Davis A, Mortimer AM, Barnes TR, Hirsch SR (1998) Reduced dendritic spine density on cerebral cortical pyramidal neurons in schizophrenia. J Neurol Neurosurg Psychiatry 65:446–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ciani L, Salinas PC (2005) WNTs in the vertebrate nervous system: from patterning to neuronal connectivity. Nat Rev Neurosci 6:351–362

    Article  CAS  PubMed  Google Scholar 

  77. Rosso SB, Sussman D, Wynshaw-Boris A, Salinas PC (2005) Wnt signaling through Dishevelled, Rac and JNK regulates dendritic development. Nat Neurosci 8:34–42

    Article  CAS  PubMed  Google Scholar 

  78. Wayman GA, Impey S, Marks D, Saneyoshi T, Grant WF, Derkach V, Soderling TR (2006) Activity-dependent dendritic arborization mediated by CaM-kinase I activation and enhanced CREB-dependent transcription of Wnt-2. Neuron 50:897–909

    Article  CAS  PubMed  Google Scholar 

  79. Pino D, Choe Y, Pleasure SJ (2011) Wnt5a controls neurite development in olfactory bulb interneurons. ASN Neuro 3:e00059

    Article  PubMed  PubMed Central  Google Scholar 

  80. Varela-Nallar L, Alfaro IE, Serrano FG, Parodi J, Inestrosa NC (2010) Wingless-type family member 5A (Wnt-5a) stimulates synaptic differentiation and function of glutamatergic synapses. Proc Natl Acad Sci USA 107:21164–21169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Libro R, Bramanti P, Mazzon E (2016) The role of the Wnt canonical signaling in neurodegenerative diseases. Life Sci 158:78–88

    Article  CAS  PubMed  Google Scholar 

  82. Polleux F, Morrow T, Ghosh A (2000) Semaphorin 3A is a chemoattractant for cortical apical dendrites. Nature 404:567–573

    Article  CAS  PubMed  Google Scholar 

  83. Nakamura F, Ugajin K, Yamashita N, Okada T, Uchida Y, Taniguchi M, Ohshima T, Goshima Y (2009) Increased proximal bifurcation of CA1 pyramidal apical dendrites in sema3A mutant mice. J Comp Neurol 516:360–375

    Article  PubMed  Google Scholar 

  84. de Anda FC, Rosario AL, Durak O, Tran T, Graff J, Meletis K, Rei D, Soda T, Madabhushi R, Ginty DD et al (2012) Autism spectrum disorder susceptibility gene TAOK2 affects basal dendrite formation in the neocortex. Nat Neurosci 15:1022–1031

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Koropouli E, Kolodkin AL (2014) Semaphorins and the dynamic regulation of synapse assembly, refinement, and function. Curr Opin Neurobiol 27:1–7

    Article  CAS  PubMed  Google Scholar 

  86. Tran TS, Rubio ME, Clem RL, Johnson D, Case L, Tessier-Lavigne M, Huganir RL, Ginty DD, Kolodkin AL (2009) Secreted semaphorins control spine distribution and morphogenesis in the postnatal CNS. Nature 462:1065–1069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Whitford KL, Marillat V, Stein E, Goodman CS, Tessier-Lavigne M, Chedotal A, Ghosh A (2002) Regulation of cortical dendrite development by Slit–Robo interactions. Neuron 33:47–61

    Article  CAS  PubMed  Google Scholar 

  88. Gibson DA, Tymanskyj S, Yuan RC, Leung HC, Lefebvre JL, Sanes JR, Chedotal A, Ma L (2014) Dendrite self-avoidance requires cell-autonomous slit/robo signaling in cerebellar purkinje cells. Neuron 81:1040–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Niu S, Renfro A, Quattrocchi CC, Sheldon M, D’Arcangelo G (2004) Reelin promotes hippocampal dendrite development through the VLDLR/ApoER2-Dab1 pathway. Neuron 41:71–84

    Article  CAS  PubMed  Google Scholar 

  90. Kim J, Kwon N, Chang S, Kim KT, Lee D, Kim S, Yun SJ, Hwang D, Kim JW, Hwu Y et al (2011) Altered branching patterns of Purkinje cells in mouse model for cortical development disorder. Sci Rep 1:122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Niu S, Yabut O, D’Arcangelo G (2008) The Reelin signaling pathway promotes dendritic spine development in hippocampal neurons. J Neurosci 28:10339–10348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Rogers JT, Rusiana I, Trotter J, Zhao L, Donaldson E, Pak DT, Babus LW, Peters M, Banko JL, Chavis P et al (2011) Reelin supplementation enhances cognitive ability, synaptic plasticity, and dendritic spine density. Learn Mem 18:558–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Nishimura-Akiyoshi S, Niimi K, Nakashiba T, Itohara S (2007) Axonal netrin-Gs transneuronally determine lamina-specific subdendritic segments. Proc Natl Acad Sci USA 104:14801–14806

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. DeNardo LA, de Wit J, Otto-Hitt S, Ghosh A (2012) NGL-2 regulates input-specific synapse development in CA1 pyramidal neurons. Neuron 76:762–775

    Article  CAS  PubMed  Google Scholar 

  95. Matsukawa H, Akiyoshi-Nishimura S, Zhang Q, Lujan R, Yamaguchi K, Goto H, Yaguchi K, Hashikawa T, Sano C, Shigemoto R et al (2014) Netrin-G/NGL complexes encode functional synaptic diversification. J Neurosci 34:15779–15792

    Article  PubMed  CAS  Google Scholar 

  96. Soto F, Watkins KL, Johnson RE, Schottler F, Kerschensteiner D (2013) NGL-2 regulates pathway-specific neurite growth and lamination, synapse formation, and signal transmission in the retina. J Neurosci 33:11949–11959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Takeichi M (1995) Morphogenetic roles of classic cadherins. Curr Opin Cell Biol 7:619–627

    Article  CAS  PubMed  Google Scholar 

  98. Shima Y, Kengaku M, Hirano T, Takeichi M, Uemura T (2004) Regulation of dendritic maintenance and growth by a mammalian 7-pass transmembrane cadherin. Dev Cell 7:205–216

    Article  CAS  PubMed  Google Scholar 

  99. Shima Y, Kawaguchi SY, Kosaka K, Nakayama M, Hoshino M, Nabeshima Y, Hirano T, Uemura T (2007) Opposing roles in neurite growth control by two seven-pass transmembrane cadherins. Nat Neurosci 10:963–969

    Article  CAS  PubMed  Google Scholar 

  100. Garrett AM, Schreiner D, Lobas MA, Weiner JA (2012) gamma-protocadherins control cortical dendrite arborization by regulating the activity of a FAK/PKC/MARCKS signaling pathway. Neuron 74:269–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Molumby MJ, Keeler AB, Weiner JA (2016) Homophilic protocadherin cell–cell interactions promote dendrite complexity. Cell reports 15:1037–1050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lefebvre JL, Kostadinov D, Chen WV, Maniatis T, Sanes JR (2012) Protocadherins mediate dendritic self-avoidance in the mammalian nervous system. Nature 488:517–521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Choi JH, Law MY, Chien CB, Link BA, Wong RO (2010) In vivo development of dendritic orientation in wild-type and mislocalized retinal ganglion cells. Neural Dev 5:29

    Article  PubMed  PubMed Central  Google Scholar 

  104. Deans MR, Krol A, Abraira VE, Copley CO, Tucker AF, Goodrich LV (2011) Control of neuronal morphology by the atypical cadherin Fat3. Neuron 71:820–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Krol A, Henle SJ, Goodrich LV (2016) Fat3 and Ena/VASP proteins influence the emergence of asymmetric cell morphology in the developing retina. Development 143:2172–2182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Alves-Sampaio A, Troca-Marin JA, Montesinos ML (2010) NMDA-mediated regulation of DSCAM dendritic local translation is lost in a mouse model of Down’s syndrome. J Neurosci 30:13537–13548

    Article  CAS  PubMed  Google Scholar 

  107. Yamagata M, Sanes JR (2008) Dscam and Sidekick proteins direct lamina-specific synaptic connections in vertebrate retina. Nature 451:465–469

    Article  CAS  PubMed  Google Scholar 

  108. Zhu K, Xu Y, Liu J, Xu Q, Ye H (2011) Down syndrome cell adhesion molecule and its functions in neural development. Neurosci Bull 27:45–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Fuerst PG, Bruce F, Tian M, Wei W, Elstrott J, Feller MB, Erskine L, Singer JH, Burgess RW (2009) DSCAM and DSCAML1 function in self-avoidance in multiple cell types in the developing mouse retina. Neuron 64:484–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Keeley PW, Sliff BJ, Lee SC, Fuerst PG, Burgess RW, Eglen SJ, Reese BE (2012) Neuronal clustering and fasciculation phenotype in Dscam- and Bax-deficient mouse retinas. J Comp Neurol 520:1349–1364

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Maynard KR, Stein E (2012) DSCAM contributes to dendrite arborization and spine formation in the developing cerebral cortex. J Neurosci 32:16637–16650

    Article  CAS  PubMed  Google Scholar 

  112. Benavides-Piccione R, Ballesteros-Yanez I, de Lagran MM, Elston G, Estivill X, Fillat C, Defelipe J, Dierssen M (2004) On dendrites in Down syndrome and DS murine models: a spiny way to learn. Prog Neurobiol 74:111–126

    Article  CAS  PubMed  Google Scholar 

  113. Rosenthal A, Jouet M, Kenwrick S (1992) Aberrant splicing of neural cell adhesion molecule L1 mRNA in a family with X-linked hydrocephalus. Nat Genet 2:107–112

    Article  CAS  PubMed  Google Scholar 

  114. Stumpel C, Vos YJ (1993–2017) L1 syndrome. In: Pagon RA, Adam MP, Ardinger HH et al (eds) GeneReviews. University of Washington, Seattle

  115. Vos YJ, de Walle HE, Bos KK, Stegeman JA, Ten Berge AM, Bruining M, van Maarle MC, Elting MW, den Hollander NS, Hamel B et al (2010) Genotype-phenotype correlations in L1 syndrome: a guide for genetic counselling and mutation analysis. J Med Genet 47:169–175

    Article  CAS  PubMed  Google Scholar 

  116. Chidsey BA, Baldwin EE, Toydemir R, Ahles L, Hanson H, Stevenson DA (2014) L1CAM whole gene deletion in a child with L1 syndrome. Am J Med Genet A 164A:1555–1558

    Article  PubMed  CAS  Google Scholar 

  117. Adle-Biassette H, Saugier-Veber P, Fallet-Bianco C, Delezoide AL, Razavi F, Drouot N, Bazin A, Beaufrere AM, Bessieres B, Blesson S et al (2013) Neuropathological review of 138 cases genetically tested for X-linked hydrocephalus: evidence for closely related clinical entities of unknown molecular bases. Acta Neuropathol 126:427–442

    Article  CAS  PubMed  Google Scholar 

  118. Patzke C, Acuna C, Giam LR, Wernig M, Sudhof TC (2016) Conditional deletion of L1CAM in human neurons impairs both axonal and dendritic arborization and action potential generation. J Exp Med 213:499–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Warren MS, Bradley WD, Gourley SL, Lin YC, Simpson MA, Reichardt LF, Greer CA, Taylor JR, Koleske AJ (2012) Integrin beta1 signals through Arg to regulate postnatal dendritic arborization, synapse density, and behavior. J Neurosci 32:2824–2834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Webb DJ, Zhang H, Majumdar D, Horwitz AF (2007) alpha5 integrin signaling regulates the formation of spines and synapses in hippocampal neurons. J Biol Chem 282:6929–6935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kerrisk ME, Greer CA, Koleske AJ (2013) Integrin alpha3 is required for late postnatal stability of dendrite arbors, dendritic spines and synapses, and mouse behavior. J Neurosci 33:6742–6752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kania A, Klein R (2016) Mechanisms of ephrin-Eph signalling in development, physiology and disease. Nat Rev Mol Cell Biol 17:240–256

    Article  CAS  PubMed  Google Scholar 

  123. Hoogenraad CC, Milstein AD, Ethell IM, Henkemeyer M, Sheng M (2005) GRIP1 controls dendrite morphogenesis by regulating EphB receptor trafficking. Nat Neurosci 8:906–915

    Article  CAS  PubMed  Google Scholar 

  124. Xu NJ, Sun S, Gibson JR, Henkemeyer M (2011) A dual shaping mechanism for postsynaptic ephrin-B3 as a receptor that sculpts dendrites and synapses. Nat Neurosci 14:1421–1429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Clifford MA, Athar W, Leonard CE, Russo A, Sampognaro PJ, Van der Goes MS, Burton DA, Zhao X, Lalchandani RR, Sahin M et al (2014) EphA7 signaling guides cortical dendritic development and spine maturation. Proc Natl Acad Sci USA 111:4994–4999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Konur S, Ghosh A (2005) Calcium signaling and the control of dendritic development. Neuron 46:401–405

    Article  CAS  PubMed  Google Scholar 

  127. Cline H, Haas K (2008) The regulation of dendritic arbor development and plasticity by glutamatergic synaptic input: a review of the synaptotrophic hypothesis. J Physiol 586:1509–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Puram SV, Riccio A, Koirala S, Ikeuchi Y, Kim AH, Corfas G, Bonni A (2011) A TRPC5-regulated calcium signaling pathway controls dendrite patterning in the mammalian brain. Genes Dev 25:2659–2673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Puram SV, Kim AH, Ikeuchi Y, Wilson-Grady JT, Merdes A, Gygi SP, Bonni A (2011) A CaMKIIbeta signaling pathway at the centrosome regulates dendrite patterning in the brain. Nat Neurosci 14:973–983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Gaudilliere B, Konishi Y, de la Iglesia N, Yao G, Bonni A (2004) A CaMKII-NeuroD signaling pathway specifies dendritic morphogenesis. Neuron 41:229–241

    Article  CAS  PubMed  Google Scholar 

  131. Saneyoshi T, Wayman G, Fortin D, Davare M, Hoshi N, Nozaki N, Natsume T, Soderling TR (2008) Activity-dependent synaptogenesis: regulation by a CaM-kinase kinase/CaM-kinase I/betaPIX signaling complex. Neuron 57:94–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Liang Z, Zhan Y, Shen Y, Wong CC, Yates JR 3rd, Plattner F, Lai KO, Ip NY (2016) The pseudokinase CaMKv is required for the activity-dependent maintenance of dendritic spines. Nat Commun 7:13282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Wu GY, Deisseroth K, Tsien RW (2001) Spaced stimuli stabilize MAPK pathway activation and its effects on dendritic morphology. Nat Neurosci 4:151–158

    Article  CAS  PubMed  Google Scholar 

  134. Espinosa JS, Wheeler DG, Tsien RW, Luo L (2009) Uncoupling dendrite growth and patterning: single-cell knockout analysis of NMDA receptor 2B. Neuron 62:205–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Hoekman MF, Jacobs FM, Smidt MP, Burbach JP (2006) Spatial and temporal expression of FoxO transcription factors in the developing and adult murine brain. Gene Expr Patterns 6:134–140

    Article  CAS  PubMed  Google Scholar 

  136. Jacobs FM, van der Heide LP, Wijchers PJ, Burbach JP, Hoekman MF, Smidt MP (2003) FoxO6, a novel member of the FoxO class of transcription factors with distinct shuttling dynamics. J Biol Chem 278:35959–35967

    Article  CAS  PubMed  Google Scholar 

  137. Puto LA, Pestonjamasp K, King CC, Bokoch GM (2003) p21-activated kinase 1 (PAK1) interacts with the Grb2 adapter protein to couple to growth factor signaling. J Biol Chem 278:9388–9393

    Article  CAS  PubMed  Google Scholar 

  138. Jacobs T, Causeret F, Nishimura YV, Terao M, Norman A, Hoshino M, Nikolic M (2007) Localized activation of p21-activated kinase controls neuronal polarity and morphology. J Neurosci 27:8604–8615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Causeret F, Terao M, Jacobs T, Nishimura YV, Yanagawa Y, Obata K, Hoshino M, Nikolic M (2009) The p21-activated kinase is required for neuronal migration in the cerebral cortex. Cereb Cortex 19:861–875

    Article  PubMed  Google Scholar 

  140. Christensen R, de la Torre-Ubieta L, Bonni A, Colon-Ramos DA (2011) A conserved PTEN/FOXO pathway regulates neuronal morphology during C. elegans development. Development 138:5257–5267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Salih DA, Rashid AJ, Colas D, de la Torre-Ubieta L, Zhu RP, Morgan AA, Santo EE, Ucar D, Devarajan K, Cole CJ et al (2012) FoxO6 regulates memory consolidation and synaptic function. Genes Dev 26:2780–2801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Hand R, Bortone D, Mattar P, Nguyen L, Heng JI, Guerrier S, Boutt E, Peters E, Barnes AP, Parras C et al (2005) Phosphorylation of Neurogenin2 specifies the migration properties and the dendritic morphology of pyramidal neurons in the neocortex. Neuron 48:45–62

    Article  CAS  PubMed  Google Scholar 

  143. Florio M, Leto K, Muzio L, Tinterri A, Badaloni A, Croci L, Zordan P, Barili V, Albieri I, Guillemot F et al (2012) Neurogenin 2 regulates progenitor cell-cycle progression and Purkinje cell dendritogenesis in cerebellar development. Development 139:2308–2320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Zheng H, Zeng Y, Chu J, Kam AY, Loh HH, Law PY (2010) Modulations of NeuroD activity contribute to the differential effects of morphine and fentanyl on dendritic spine stability. J Neurosci 30:8102–8110

    Article  CAS  PubMed  Google Scholar 

  145. Rubio-Cabezas O, Minton JA, Kantor I, Williams D, Ellard S, Hattersley AT (2010) Homozygous mutations in NEUROD1 are responsible for a novel syndrome of permanent neonatal diabetes and neurological abnormalities. Diabetes 59:2326–2331

    Article  PubMed  PubMed Central  Google Scholar 

  146. Dijkhuizen PA, Ghosh A (2005) Regulation of dendritic growth by calcium and neurotrophin signaling. Prog Brain Res 147:17–27

    CAS  PubMed  Google Scholar 

  147. Bito H, Deisseroth K, Tsien RW (1996) CREB phosphorylation and dephosphorylation: a Ca(2+)- and stimulus duration-dependent switch for hippocampal gene expression. Cell 87:1203–1214

    Article  CAS  PubMed  Google Scholar 

  148. Redmond L, Kashani AH, Ghosh A (2002) Calcium regulation of dendritic growth via CaM kinase IV and CREB-mediated transcription. Neuron 34:999–1010

    Article  CAS  PubMed  Google Scholar 

  149. Greer PL, Greenberg ME (2008) From synapse to nucleus: calcium-dependent gene transcription in the control of synapse development and function. Neuron 59:846–860

    Article  CAS  PubMed  Google Scholar 

  150. Impey S, McCorkle SR, Cha-Molstad H, Dwyer JM, Yochum GS, Boss JM, McWeeney S, Dunn JJ, Mandel G, Goodman RH (2004) Defining the CREB regulon: a genome-wide analysis of transcription factor regulatory regions. Cell 119:1041–1054

    CAS  PubMed  Google Scholar 

  151. Vo N, Klein ME, Varlamova O, Keller DM, Yamamoto T, Goodman RH, Impey S (2005) A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proc Natl Acad Sci USA 102:16426–16431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Zubenko GS, Maher B, Hughes HB 3rd, Zubenko WN, Stiffler JS, Kaplan BB, Marazita ML (2003) Genome-wide linkage survey for genetic loci that influence the development of depressive disorders in families with recurrent, early-onset, major depression. Am J Med Genet B Neuropsychiatr Genet 123B:1–18

    Article  PubMed  Google Scholar 

  153. Aizawa H, Hu SC, Bobb K, Balakrishnan K, Ince G, Gurevich I, Cowan M, Ghosh A (2004) Dendrite development regulated by CREST, a calcium-regulated transcriptional activator. Science 303:197–202

    Article  CAS  PubMed  Google Scholar 

  154. Wu JI, Lessard J, Olave IA, Qiu Z, Ghosh A, Graef IA, Crabtree GR (2007) Regulation of dendritic development by neuron-specific chromatin remodeling complexes. Neuron 56:94–108

    Article  CAS  PubMed  Google Scholar 

  155. Qiu Z, Ghosh A (2008) A brief history of neuronal gene expression: regulatory mechanisms and cellular consequences. Neuron 60:449–455

    Article  CAS  PubMed  Google Scholar 

  156. Chesi A, Staahl BT, Jovicic A, Couthouis J, Fasolino M, Raphael AR, Yamazaki T, Elias L, Polak M, Kelly C et al (2013) Exome sequencing to identify de novo mutations in sporadic ALS trios. Nat Neurosci 16:851–855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Shalizi A, Gaudilliere B, Yuan Z, Stegmuller J, Shirogane T, Ge Q, Tan Y, Schulman B, Harper JW, Bonni A (2006) A calcium-regulated MEF2 sumoylation switch controls postsynaptic differentiation. Science 311:1012–1017

    Article  CAS  PubMed  Google Scholar 

  158. Cubelos B, Sebastian-Serrano A, Beccari L, Calcagnotto ME, Cisneros E, Kim S, Dopazo A, Alvarez-Dolado M, Redondo JM, Bovolenta P et al (2010) Cux1 and Cux2 regulate dendritic branching, spine morphology, and synapses of the upper layer neurons of the cortex. Neuron 66:523–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Davies W, Isles A, Smith R, Karunadasa D, Burrmann D, Humby T, Ojarikre O, Biggin C, Skuse D, Burgoyne P et al (2005) Xlr3b is a new imprinted candidate for X-linked parent-of-origin effects on cognitive function in mice. Nat Genet 37:625–629

    Article  CAS  PubMed  Google Scholar 

  160. Raefski AS, O’Neill MJ (2005) Identification of a cluster of X-linked imprinted genes in mice. Nat Genet 37:620–624

    Article  CAS  PubMed  Google Scholar 

  161. Cubelos B, Nieto M (2010) Intrinsic programs regulating dendrites and synapses in the upper layer neurons of the cortex. Commun Integr Biol 3:483–486

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Cubelos B, Briz CG, Esteban-Ortega GM, Nieto M (2015) Cux1 and Cux2 selectively target basal and apical dendritic compartments of layer II-III cortical neurons. Dev Neurobiol 75:163–172

    Article  CAS  PubMed  Google Scholar 

  163. Mao X, Yang SH, Simpkins JW, Barger SW (2007) Glutamate receptor activation evokes calpain-mediated degradation of Sp3 and Sp4, the prominent Sp-family transcription factors in neurons. J Neurochem 100:1300–1314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Zhou X, Qyang Y, Kelsoe JR, Masliah E, Geyer MA (2007) Impaired postnatal development of hippocampal dentate gyrus in Sp4 null mutant mice. Genes Brain Behav 6:269–276

    Article  PubMed  CAS  Google Scholar 

  165. Ramos B, Gaudilliere B, Bonni A, Gill G (2007) Transcription factor Sp4 regulates dendritic patterning during cerebellar maturation. Proc Natl Acad Sci USA 104:9882–9887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Ramos B, Valin A, Sun X, Gill G (2009) Sp4-dependent repression of neurotrophin-3 limits dendritic branching. Mol Cell Neurosci 42:152–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Sun X, Pinacho R, Saia G, Punko D, Meana JJ, Ramos B, Gill G (2015) Transcription factor Sp4 regulates expression of nervous wreck 2 to control NMDAR1 levels and dendrite patterning. Dev Neurobiol 75:93–108

    Article  CAS  PubMed  Google Scholar 

  168. Tam GW, van de Lagemaat LN, Redon R, Strathdee KE, Croning MD, Malloy MP, Muir WJ, Pickard BS, Deary IJ, Blackwood DH et al (2010) Confirmed rare copy number variants implicate novel genes in schizophrenia. Biochem Soc Trans 38:445–451

    Article  CAS  PubMed  Google Scholar 

  169. Zhou X, Tang W, Greenwood TA, Guo S, He L, Geyer MA, Kelsoe JR (2009) Transcription factor SP4 is a susceptibility gene for bipolar disorder. PLoS One 4:e5196

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Pinacho R, Villalmanzo N, Lalonde J, Haro JM, Meana JJ, Gill G, Ramos B (2011) The transcription factor SP4 is reduced in postmortem cerebellum of bipolar disorder subjects: control by depolarization and lithium. Bipolar Disord 13:474–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Pinacho R, Villalmanzo N, Roca M, Iniesta R, Monje A, Haro JM, Meana JJ, Ferrer I, Gill G, Ramos B (2013) Analysis of Sp transcription factors in the postmortem brain of chronic schizophrenia: a pilot study of relationship to negative symptoms. J Psychiatr Res 47:926–934

    Article  PubMed  Google Scholar 

  172. Zhou X, Long JM, Geyer MA, Masliah E, Kelsoe JR, Wynshaw-Boris A, Chien KR (2005) Reduced expression of the Sp4 gene in mice causes deficits in sensorimotor gating and memory associated with hippocampal vacuolization. Mol Psychiatry 10:393–406

    Article  CAS  PubMed  Google Scholar 

  173. Zhou X, Nie Z, Roberts A, Zhang D, Sebat J, Malhotra D, Kelsoe JR, Geyer MA (2010) Reduced NMDAR1 expression in the Sp4 hypomorphic mouse may contribute to endophenotypes of human psychiatric disorders. Hum Mol Genet 19:3797–3805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Fontanet P, Irala D, Alsina FC, Paratcha G, Ledda F (2013) Pea3 transcription factor family members Etv4 and Etv5 mediate retrograde signaling and axonal growth of DRG sensory neurons in response to NGF. J Neurosci 33:15940–15951

    Article  CAS  PubMed  Google Scholar 

  175. Patel TD, Kramer I, Kucera J, Niederkofler V, Jessell TM, Arber S, Snider WD (2003) Peripheral NT3 signaling is required for ETS protein expression and central patterning of proprioceptive sensory afferents. Neuron 38:403–416

    Article  CAS  PubMed  Google Scholar 

  176. Arber S, Ladle DR, Lin JH, Frank E, Jessell TM (2000) ETS gene Er81 controls the formation of functional connections between group Ia sensory afferents and motor neurons. Cell 101:485–498

    Article  CAS  PubMed  Google Scholar 

  177. Liu D, Liu Z, Liu H, Li H, Pan X, Li Z (2016) Brain-derived neurotrophic factor promotes vesicular glutamate transporter 3 expression and neurite outgrowth of dorsal root ganglion neurons through the activation of the transcription factors Etv4 and Etv5. Brain Res Bull 121:215–226

    Article  CAS  PubMed  Google Scholar 

  178. Vrieseling E, Arber S (2006) Target-induced transcriptional control of dendritic patterning and connectivity in motor neurons by the ETS gene Pea3. Cell 127:1439–1452

    Article  CAS  PubMed  Google Scholar 

  179. Fontanet PRA, Alsina FC, Paratcha G, Ledda F (2016) Pea3 Transcription factors, Etv4 and Etv5, are required for proper hippocampal dendrite development and plasticity. Cereb Cortex (in press)

  180. Schuman EM, Dynes JL, Steward O (2006) Synaptic regulation of translation of dendritic mRNAs. J Neurosci 26:7143–7146

    Article  CAS  PubMed  Google Scholar 

  181. Klann E, Dever TE (2004) Biochemical mechanisms for translational regulation in synaptic plasticity. Nat Rev Neurosci 5:931–942

    Article  CAS  PubMed  Google Scholar 

  182. Doyle M, Kiebler MA (2011) Mechanisms of dendritic mRNA transport and its role in synaptic tagging. EMBO J 30:3540–3552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Andreassi C, Riccio A (2009) To localize or not to localize: mRNA fate is in 3′UTR ends. Trends Cell Biol 19:465–474

    Article  CAS  PubMed  Google Scholar 

  184. Bramham CR, Wells DG (2007) Dendritic mRNA: transport, translation and function. Nat Rev Neurosci 8:776–789

    Article  CAS  PubMed  Google Scholar 

  185. Cajigas IJ, Tushev G, Will TJ, TomDieck S, Fuerst N, Schuman EM (2012) The local transcriptome in the synaptic neuropil revealed by deep sequencing and high-resolution imaging. Neuron 74:453–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Dahm R, Kiebler M, Macchi P (2007) RNA localisation in the nervous system. Semin Cell Dev Biol 18:216–223

    Article  CAS  PubMed  Google Scholar 

  187. Miller S, Yasuda M, Coats JK, Jones Y, Martone ME, Mayford M (2002) Disruption of dendritic translation of CaMKIIalpha impairs stabilization of synaptic plasticity and memory consolidation. Neuron 36:507–519

    Article  CAS  PubMed  Google Scholar 

  188. An JJ, Gharami K, Liao GY, Woo NH, Lau AG, Vanevski F, Torre ER, Jones KR, Feng Y, Lu B et al (2008) Distinct role of long 3′ UTR BDNF mRNA in spine morphology and synaptic plasticity in hippocampal neurons. Cell 134:175–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Orefice LL, Waterhouse EG, Partridge JG, Lalchandani RR, Vicini S, Xu B (2013) Distinct roles for somatically and dendritically synthesized brain-derived neurotrophic factor in morphogenesis of dendritic spines. J Neurosci 33:11618–11632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Martin KC, Ephrussi A (2009) mRNA localization: gene expression in the spatial dimension. Cell 136:719–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Lebeau G, DesGroseillers L, Sossin W, Lacaille JC (2011) mRNA binding protein staufen 1-dependent regulation of pyramidal cell spine morphology via NMDA receptor-mediated synaptic plasticity. Mol Brain 4:22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Vessey JP, Macchi P, Stein JM, Mikl M, Hawker KN, Vogelsang P, Wieczorek K, Vendra G, Riefler J, Tubing F et al (2008) A loss of function allele for murine Staufen1 leads to impairment of dendritic Staufen1-RNP delivery and dendritic spine morphogenesis. Proc Natl Acad Sci USA 105:16374–16379

    Article  PubMed  PubMed Central  Google Scholar 

  193. Siemen H, Colas D, Heller HC, Brustle O, Pera RA (2011) Pumilio-2 function in the mouse nervous system. PLoS One 6:e25932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Wu XL, Huang H, Huang YY, Yuan JX, Zhou X, Chen YM (2015) Reduced Pumilio-2 expression in patients with temporal lobe epilepsy and in the lithium-pilocarpine induced epilepsy rat model. Epilepsy Behav 50:31–39

    Article  PubMed  Google Scholar 

  195. Eom T, Antar LN, Singer RH, Bassell GJ (2003) Localization of a beta-actin messenger ribonucleoprotein complex with zipcode-binding protein modulates the density of dendritic filopodia and filopodial synapses. J Neurosci 23:10433–10444

    CAS  PubMed  Google Scholar 

  196. Tiruchinapalli DM, Oleynikov Y, Kelic S, Shenoy SM, Hartley A, Stanton PK, Singer RH, Bassell GJ (2003) Activity-dependent trafficking and dynamic localization of zipcode binding protein 1 and beta-actin mRNA in dendrites and spines of hippocampal neurons. J Neurosci 23:3251–3261

    CAS  PubMed  Google Scholar 

  197. Perycz M, Urbanska AS, Krawczyk PS, Parobczak K, Jaworski J (2011) Zipcode binding protein 1 regulates the development of dendritic arbors in hippocampal neurons. J Neurosci 31:5271–5285

    Article  CAS  PubMed  Google Scholar 

  198. Richter JD, Bassell GJ, Klann E (2015) Dysregulation and restoration of translational homeostasis in fragile X syndrome. Nat Rev Neurosci 16:595–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Bingol B, Schuman EM (2006) Activity-dependent dynamics and sequestration of proteasomes in dendritic spines. Nature 441:1144–1148

    Article  CAS  PubMed  Google Scholar 

  200. Hanus C, Schuman EM (2013) Proteostasis in complex dendrites. Nat Rev Neurosci 14:638–648

    Article  CAS  PubMed  Google Scholar 

  201. Sosanya NM, Cacheaux LP, Workman ER, Niere F, Perrone-Bizzozero NI, Raab-Graham KF (2015) Mammalian target of rapamycin (mTOR) tagging promotes dendritic branch variability through the capture of Ca2+/calmodulin-dependent protein kinase II alpha (CaMKIIalpha) mRNAs by the RNA-binding protein HuD. J Biol Chem 290:16357–16371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Urbanska M, Gozdz A, Swiech LJ, Jaworski J (2012) Mammalian target of rapamycin complex 1 (mTORC1) and 2 (mTORC2) control the dendritic arbor morphology of hippocampal neurons. J Biol Chem 287:30240–30256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Jung H, Yoon BC, Holt CE (2012) Axonal mRNA localization and local protein synthesis in nervous system assembly, maintenance and repair. Nat Rev Neurosci 13:308–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Ramaswami M, Taylor JP, Parker R (2013) Altered ribostasis: rNA-protein granules in degenerative disorders. Cell 154:727–736

    Article  CAS  PubMed  Google Scholar 

  205. Cao X, Yeo G, Muotri AR, Kuwabara T, Gage FH (2006) Noncoding RNAs in the mammalian central nervous system. Annu Rev Neurosci 29:77–103

    Article  CAS  PubMed  Google Scholar 

  206. Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler M, Greenberg ME (2006) A brain-specific microRNA regulates dendritic spine development. Nature 439:283–289

    Article  CAS  PubMed  Google Scholar 

  207. Giusti SA, Vogl AM, Brockmann MM, Vercelli CA, Rein ML, Trumbach D, Wurst W, Cazalla D, Stein V, Deussing JM et al (2014) MicroRNA-9 controls dendritic development by targeting REST. eLife. doi:10.7554/eLife.02755

    PubMed  PubMed Central  Google Scholar 

  208. Choe EA, Liao L, Zhou JY, Cheng D, Duong DM, Jin P, Tsai LH, Peng J (2007) Neuronal morphogenesis is regulated by the interplay between cyclin-dependent kinase 5 and the ubiquitin ligase mind bomb 1. J Neurosci 27:9503–9512

    Article  CAS  PubMed  Google Scholar 

  209. Smrt RD, Szulwach KE, Pfeiffer RL, Li X, Guo W, Pathania M, Teng ZQ, Luo Y, Peng J, Bordey A et al (2010) MicroRNA miR-137 regulates neuronal maturation by targeting ubiquitin ligase mind bomb-1. Stem Cells 28:1060–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Fiore R, Khudayberdiev S, Christensen M, Siegel G, Flavell SW, Kim TK, Greenberg ME, Schratt G (2009) Mef2-mediated transcription of the miR379-410 cluster regulates activity-dependent dendritogenesis by fine-tuning Pumilio2 protein levels. EMBO J 28:697–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Schroder J, Ansaloni S, Schilling M, Liu T, Radke J, Jaedicke M, Schjeide BM, Mashychev A, Tegeler C, Radbruch H et al (2014) MicroRNA-138 is a potential regulator of memory performance in humans. Front Hum Neurosci 8:501

    Article  PubMed  PubMed Central  Google Scholar 

  212. Wayman GA, Davare M, Ando H, Fortin D, Varlamova O, Cheng HY, Marks D, Obrietan K, Soderling TR, Goodman RH et al (2008) An activity-regulated microRNA controls dendritic plasticity by down-regulating p250GAP. Proc Natl Acad Sci USA 105:9093–9098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Lipovich L, Dachet F, Cai J, Bagla S, Balan K, Jia H, Loeb JA (2012) Activity-dependent human brain coding/noncoding gene regulatory networks. Genetics 192:1133–1148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Mercer TR, Dinger ME, Sunkin SM, Mehler MF, Mattick JS (2008) Specific expression of long noncoding RNAs in the mouse brain. Proc Natl Acad Sci USA 105:716–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Djebali S, Lagarde J, Kapranov P, Lacroix V, Borel C, Mudge JM, Howald C, Foissac S, Ucla C, Chrast J et al (2012) Evidence for transcript networks composed of chimeric RNAs in human cells. PLoS One 7:e28213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Chen W, Schuman E (2016) Circular RNAs in brain and other tissues: a functional enigma. Trends Neurosci 39:597–604

    Article  CAS  PubMed  Google Scholar 

  217. Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N, Kadener S (2014) circRNA biogenesis competes with pre-mRNA splicing. Mol Cell 56:55–66

    Article  CAS  PubMed  Google Scholar 

  218. van Rossum D, Verheijen BM, Pasterkamp RJ (2016) Circular RNAs: novel regulators of neuronal development. Front Mol Neurosci 9:74

    PubMed  PubMed Central  Google Scholar 

  219. Rybak-Wolf A, Stottmeister C, Glazar P, Jens M, Pino N, Giusti S, Hanan M, Behm M, Bartok O, Ashwal-Fluss R et al (2015) Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell 58:870–885

    Article  CAS  PubMed  Google Scholar 

  220. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495:384–388

    Article  CAS  PubMed  Google Scholar 

  221. You X, Vlatkovic I, Babic A, Will T, Epstein I, Tushev G, Akbalik G, Wang M, Glock C, Quedenau C et al (2015) Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat Neurosci 18:603–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Chen H, Firestein BL (2007) RhoA regulates dendrite branching in hippocampal neurons by decreasing cypin protein levels. J Neurosci 27:8378–8386

    Article  CAS  PubMed  Google Scholar 

  223. Leemhuis J, Boutillier S, Barth H, Feuerstein TJ, Brock C, Nurnberg B, Aktories K, Meyer DK (2004) Rho GTPases and phosphoinositide 3-kinase organize formation of branched dendrites. J Biol Chem 279:585–596

    Article  CAS  PubMed  Google Scholar 

  224. Newey SE, Velamoor V, Govek EE, Van Aelst L (2005) Rho GTPases, dendritic structure, and mental retardation. J Neurobiol 64:58–74

    Article  CAS  PubMed  Google Scholar 

  225. Nakayama AY, Harms MB, Luo L (2000) Small GTPases Rac and Rho in the maintenance of dendritic spines and branches in hippocampal pyramidal neurons. J Neurosci 20:5329–5338

    CAS  PubMed  Google Scholar 

  226. Threadgill R, Bobb K, Ghosh A (1997) Regulation of dendritic growth and remodeling by Rho, Rac, and Cdc42. Neuron 19:625–634

    Article  CAS  PubMed  Google Scholar 

  227. Tashiro A, Minden A, Yuste R (2000) Regulation of dendritic spine morphology by the rho family of small GTPases: antagonistic roles of Rac and Rho. Cereb Cortex 10:927–938

    Article  CAS  PubMed  Google Scholar 

  228. Xing L, Yao X, Williams KR, Bassell GJ (2012) Negative regulation of RhoA translation and signaling by hnRNP-Q1 affects cellular morphogenesis. Mol Biol Cell 23:1500–1509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Govek EE, Newey SE, Van Aelst L (2005) The role of the Rho GTPases in neuronal development. Genes Dev 19:1–49

    Article  CAS  PubMed  Google Scholar 

  230. Kang MG, Guo Y, Huganir RL (2009) AMPA receptor and GEF-H1/Lfc complex regulates dendritic spine development through RhoA signaling cascade. Proc Natl Acad Sci USA 106:3549–3554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Tolias KF, Bikoff JB, Burette A, Paradis S, Harrar D, Tavazoie S, Weinberg RJ, Greenberg ME (2005) The Rac1-GEF Tiam1 couples the NMDA receptor to the activity-dependent development of dendritic arbors and spines. Neuron 45:525–538

    Article  CAS  PubMed  Google Scholar 

  232. Zhang H, Macara IG (2006) The polarity protein PAR-3 and TIAM1 cooperate in dendritic spine morphogenesis. Nat Cell Biol 8:227–237

    Article  CAS  PubMed  Google Scholar 

  233. Tolias KF, Bikoff JB, Kane CG, Tolias CS, Hu L, Greenberg ME (2007) The Rac1 guanine nucleotide exchange factor Tiam1 mediates EphB receptor-dependent dendritic spine development. Proc Natl Acad Sci USA 104:7265–7270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Fu WY, Chen Y, Sahin M, Zhao XS, Shi L, Bikoff JB, Lai KO, Yung WH, Fu AK, Greenberg ME et al (2007) Cdk5 regulates EphA4-mediated dendritic spine retraction through an ephexin1-dependent mechanism. Nat Neurosci 10:67–76

    Article  CAS  PubMed  Google Scholar 

  235. Hayashi K, Ohshima T, Hashimoto M, Mikoshiba K (2007) Pak1 regulates dendritic branching and spine formation. Dev Neurobiol 67:655–669

    Article  CAS  PubMed  Google Scholar 

  236. Swanger SA, Mattheyses AL, Gentry EG, Herskowitz JH (2015) ROCK1 and ROCK2 inhibition alters dendritic spine morphology in hippocampal neurons. Cell Logist 5:e1133266

    Article  PubMed  Google Scholar 

  237. Pollard TD, Cooper JA (2009) Actin, a central player in cell shape and movement. Science 326:1208–1212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Kim IH, Racz B, Wang H, Burianek L, Weinberg R, Yasuda R, Wetsel WC, Soderling SH (2013) Disruption of Arp2/3 results in asymmetric structural plasticity of dendritic spines and progressive synaptic and behavioral abnormalities. J Neurosci 33:6081–6092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Kim IH, Rossi MA, Aryal DK, Racz B, Kim N, Uezu A, Wang F, Wetsel WC, Weinberg RJ, Yin H et al (2015) Spine pruning drives antipsychotic-sensitive locomotion via circuit control of striatal dopamine. Nat Neurosci 18:883–891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Kim Y, Sung JY, Ceglia I, Lee KW, Ahn JH, Halford JM, Kim AM, Kwak SP, Park JB, Ho Ryu S et al (2006) Phosphorylation of WAVE1 regulates actin polymerization and dendritic spine morphology. Nature 442:814–817

    Article  CAS  PubMed  Google Scholar 

  241. Soderling SH, Guire ES, Kaech S, White J, Zhang F, Schutz K, Langeberg LK, Banker G, Raber J, Scott JD (2007) A WAVE-1 and WRP signaling complex regulates spine density, synaptic plasticity, and memory. J Neurosci 27:355–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Hotulainen P, Llano O, Smirnov S, Tanhuanpaa K, Faix J, Rivera C, Lappalainen P (2009) Defining mechanisms of actin polymerization and depolymerization during dendritic spine morphogenesis. J Cell Biol 185:323–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Law R, Dixon-Salazar T, Jerber J, Cai N, Abbasi AA, Zaki MS, Mittal K, Gabriel SB, Rafiq MA, Khan V et al (2014) Biallelic truncating mutations in FMN2, encoding the actin-regulatory protein Formin 2, cause nonsyndromic autosomal-recessive intellectual disability. Am J Hum Genet 95:721–728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Ackermann M, Matus A (2003) Activity-induced targeting of profilin and stabilization of dendritic spine morphology. Nat Neurosci 6:1194–1200

    Article  CAS  PubMed  Google Scholar 

  245. Caceres A, Mautino J, Kosik KS (1992) Suppression of MAP2 in cultured cerebellar macroneurons inhibits minor neurite formation. Neuron 9:607–618

    Article  CAS  PubMed  Google Scholar 

  246. Dinsmore JH, Solomon F (1991) Inhibition of MAP2 expression affects both morphological and cell division phenotypes of neuronal differentiation. Cell 64:817–826

    Article  CAS  PubMed  Google Scholar 

  247. Szebenyi G, Bollati F, Bisbal M, Sheridan S, Faas L, Wray R, Haferkamp S, Nguyen S, Caceres A, Brady ST (2005) Activity-driven dendritic remodeling requires microtubule-associated protein 1A. Curr Biol 15:1820–1826

    Article  CAS  PubMed  Google Scholar 

  248. Teng J, Takei Y, Harada A, Nakata T, Chen J, Hirokawa N (2001) Synergistic effects of MAP2 and MAP1B knockout in neuronal migration, dendritic outgrowth, and microtubule organization. J Cell Biol 155:65–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Vaillant AR, Zanassi P, Walsh GS, Aumont A, Alonso A, Miller FD (2002) Signaling mechanisms underlying reversible, activity-dependent dendrite formation. Neuron 34:985–998

    Article  CAS  PubMed  Google Scholar 

  250. Swiech L, Blazejczyk M, Urbanska M, Pietruszka P, Dortland BR, Malik AR, Wulf PS, Hoogenraad CC, Jaworski J (2011) CLIP-170 and IQGAP1 cooperatively regulate dendrite morphology. J Neurosci 31:4555–4568

    Article  CAS  PubMed  Google Scholar 

  251. Hu X, Viesselmann C, Nam S, Merriam E, Dent EW (2008) Activity-dependent dynamic microtubule invasion of dendritic spines. J Neurosci 28:13094–13105

    Article  CAS  PubMed  Google Scholar 

  252. Jaworski J, Kapitein LC, Gouveia SM, Dortland BR, Wulf PS, Grigoriev I, Camera P, Spangler SA, Di Stefano P, Demmers J et al (2009) Dynamic microtubules regulate dendritic spine morphology and synaptic plasticity. Neuron 61:85–100

    Article  CAS  PubMed  Google Scholar 

  253. Gu J, Firestein BL, Zheng JQ (2008) Microtubules in dendritic spine development. J Neurosci 28:12120–12124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Jausoro I, Mestres I, Quassollo G, Masseroni L, Heredia F, Caceres A (2013) Regulation of spine density and morphology by IQGAP1 protein domains. PLoS One 8:e56574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Kapitein LC, Yau KW, Gouveia SM, van der Zwan WA, Wulf PS, Keijzer N, Demmers J, Jaworski J, Akhmanova A, Hoogenraad CC (2011) NMDA receptor activation suppresses microtubule growth and spine entry. J Neurosci 31:8194–8209

    Article  CAS  PubMed  Google Scholar 

  256. Twelvetrees AE, Yuen EY, Arancibia-Carcamo IL, MacAskill AF, Rostaing P, Lumb MJ, Humbert S, Triller A, Saudou F, Yan Z et al (2010) Delivery of GABAARs to synapses is mediated by HAP1-KIF5 and disrupted by mutant huntingtin. Neuron 65:53–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Kanai Y, Dohmae N, Hirokawa N (2004) Kinesin transports RNA: isolation and characterization of an RNA-transporting granule. Neuron 43:513–525

    Article  CAS  PubMed  Google Scholar 

  258. Dictenberg JB, Swanger SA, Antar LN, Singer RH, Bassell GJ (2008) A direct role for FMRP in activity-dependent dendritic mRNA transport links filopodial-spine morphogenesis to fragile X syndrome. Dev Cell 14:926–939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Nakagawa T, Tanaka Y, Matsuoka E, Kondo S, Okada Y, Noda Y, Kanai Y, Hirokawa N (1997) Identification and classification of 16 new kinesin superfamily (KIF) proteins in mouse genome. Proc Natl Acad Sci USA 94:9654–9659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Setou M, Nakagawa T, Seog DH, Hirokawa N (2000) Kinesin superfamily motor protein KIF17 and mLin-10 in NMDA receptor-containing vesicle transport. Science 288:1796–1802

    Article  CAS  PubMed  Google Scholar 

  261. Jo K, Derin R, Li M, Bredt DS (1999) Characterization of MALS/Velis-1, -2, and -3: a family of mammalian LIN-7 homologs enriched at brain synapses in association with the postsynaptic density-95/NMDA receptor postsynaptic complex. J Neurosci 19:4189–4199

    CAS  PubMed  Google Scholar 

  262. Chu PJ, Rivera JF, Arnold DB (2006) A role for Kif17 in transport of Kv4.2. J Biol Chem 281:365–373

    Article  CAS  PubMed  Google Scholar 

  263. Kayadjanian N, Lee HS, Pina-Crespo J, Heinemann SF (2007) Localization of glutamate receptors to distal dendrites depends on subunit composition and the kinesin motor protein KIF17. Mol Cell Neurosci 34:219–230

    Article  CAS  PubMed  Google Scholar 

  264. Wong RW, Setou M, Teng J, Takei Y, Hirokawa N (2002) Overexpression of motor protein KIF17 enhances spatial and working memory in transgenic mice. Proc Natl Acad Sci USA 99:14500–14505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Saito N, Okada Y, Noda Y, Kinoshita Y, Kondo S, Hirokawa N (1997) KIFC2 is a novel neuron-specific C-terminal type kinesin superfamily motor for dendritic transport of multivesicular body-like organelles. Neuron 18:425–438

    Article  CAS  PubMed  Google Scholar 

  266. di Penta A, Mercaldo V, Florenzano F, Munck S, Ciotti MT, Zalfa F, Mercanti D, Molinari M, Bagni C, Achsel T (2009) Dendritic LSm1/CBP80-mRNPs mark the early steps of transport commitment and translational control. J Cell Biol 184:423–435

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  267. Johansson M, Rocha N, Zwart W, Jordens I, Janssen L, Kuijl C, Olkkonen VM, Neefjes J (2007) Activation of endosomal dynein motors by stepwise assembly of Rab7-RILP-p150Glued, ORP1L, and the receptor betalll spectrin. J Cell Biol 176:459–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Maas C, Tagnaouti N, Loebrich S, Behrend B, Lappe-Siefke C, Kneussel M (2006) Neuronal cotransport of glycine receptor and the scaffold protein gephyrin. J Cell Biol 172:441–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. van Spronsen M, Mikhaylova M, Lipka J, Schlager MA, van den Heuvel DJ, Kuijpers M, Wulf PS, Keijzer N, Demmers J, Kapitein LC et al (2013) TRAK/Milton motor-adaptor proteins steer mitochondrial trafficking to axons and dendrites. Neuron 77:485–502

    Article  PubMed  CAS  Google Scholar 

  270. Ryu J, Liu L, Wong TP, Wu DC, Burette A, Weinberg R, Wang YT, Sheng M (2006) A critical role for myosin IIb in dendritic spine morphology and synaptic function. Neuron 49:175–182

    Article  CAS  PubMed  Google Scholar 

  271. Rex CS, Gavin CF, Rubio MD, Kramar EA, Chen LY, Jia Y, Huganir RL, Muzyczka N, Gall CM, Miller CA et al (2010) Myosin IIb regulates actin dynamics during synaptic plasticity and memory formation. Neuron 67:603–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Ohashi S, Koike K, Omori A, Ichinose S, Ohara S, Kobayashi S, Sato TA, Anzai K (2002) Identification of mRNA/protein (mRNP) complexes containing Puralpha, mStaufen, fragile X protein, and myosin Va and their association with rough endoplasmic reticulum equipped with a kinesin motor. J Biol Chem 277:37804–37810

    Article  CAS  PubMed  Google Scholar 

  273. Balasanyan V, Arnold DB (2014) Actin and myosin-dependent localization of mRNA to dendrites. PLoS One 9:e92349

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  274. Yoshimura A, Fujii R, Watanabe Y, Okabe S, Fukui K, Takumi T (2006) Myosin-Va facilitates the accumulation of mRNA/protein complex in dendritic spines. Curr Biol 16:2345–2351

    Article  CAS  PubMed  Google Scholar 

  275. Sui WH, Huang SH, Wang J, Chen Q, Liu T, Chen ZY (2015) Myosin Va mediates BDNF-induced postendocytic recycling of full-length TrkB and its translocation into dendritic spines. J Cell Sci 128:1108–1122

    Article  CAS  PubMed  Google Scholar 

  276. Avraham KB, Hasson T, Steel KP, Kingsley DM, Russell LB, Mooseker MS, Copeland NG, Jenkins NA (1995) The mouse Snell’s waltzer deafness gene encodes an unconventional myosin required for structural integrity of inner ear hair cells. Nat Genet 11:369–375

    Article  CAS  PubMed  Google Scholar 

  277. Osterweil E, Wells DG, Mooseker MS (2005) A role for myosin VI in postsynaptic structure and glutamate receptor endocytosis. J Cell Biol 168:329–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Yano H, Ninan I, Zhang H, Milner TA, Arancio O, Chao MV (2006) BDNF-mediated neurotransmission relies upon a myosin VI motor complex. Nat Neurosci 9:1009–1018

    Article  CAS  PubMed  Google Scholar 

  279. Hirokawa N, Tanaka Y (2015) Kinesin superfamily proteins (KIFs): various functions and their relevance for important phenomena in life and diseases. Exp Cell Res 334:16–25

    Article  CAS  PubMed  Google Scholar 

  280. Copf T (2016) Impairments in dendrite morphogenesis as etiology for neurodevelopmental disorders and implications for therapeutic treatments. Neurosci Biobehav Rev 68:946–978

    Article  PubMed  Google Scholar 

  281. Broadwell RD, Cataldo AM, Salcman M (1983) Cytochemical localization of glucose-6-phosphatase activity in cerebral endothelial cells. J Histochem Cytochem 31:818–822

    Article  CAS  PubMed  Google Scholar 

  282. Spacek J, Harris KM (1997) Three-dimensional organization of smooth endoplasmic reticulum in hippocampal CA1 dendrites and dendritic spines of the immature and mature rat. J Neurosci 17:190–203

    CAS  PubMed  Google Scholar 

  283. Horton AC, Ehlers MD (2003) Dual modes of endoplasmic reticulum-to-Golgi transport in dendrites revealed by live-cell imaging. J Neurosci 23:6188–6199

    CAS  PubMed  Google Scholar 

  284. Horton AC, Ehlers MD (2004) Secretory trafficking in neuronal dendrites. Nat Cell Biol 6:585–591

    Article  CAS  PubMed  Google Scholar 

  285. Ye B, Zhang Y, Song W, Younger SH, Jan LY, Jan YN (2007) Growing dendrites and axons differ in their reliance on the secretory pathway. Cell 130:717–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Horton AC, Ehlers MD (2003) Neuronal polarity and trafficking. Neuron 40:277–295

    Article  CAS  PubMed  Google Scholar 

  287. Cui-Wang T, Hanus C, Cui T, Helton T, Bourne J, Watson D, Harris KM, Ehlers MD (2012) Local zones of endoplasmic reticulum complexity confine cargo in neuronal dendrites. Cell 148:309–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Valenzuela JI, Jaureguiberry-Bravo M, Salas DA, Ramirez OA, Cornejo VH, Lu HE, Blanpied TA, Couve A (2014) Transport along the dendritic endoplasmic reticulum mediates the trafficking of GABAB receptors. J Cell Sci 127:3382–3395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Tye KM, Deisseroth K (2012) Optogenetic investigation of neural circuits underlying brain disease in animal models. Nat Rev Neurosci 13:251–266

    Article  CAS  PubMed  Google Scholar 

  290. Kulkarni VA, Firestein BL (2012) The dendritic tree and brain disorders. Mol Cell Neurosci 50:10–20

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Carly McCarthy for comments on the manuscript. Work in the author’s laboratory is funded by Grants from the Argentine Agency for Promotion of Science and Technology (ANPCyT) PICT2013-0914, PICT2014-2155 and UBACyT 2013-2016GC (20020120100026BA), and UBACyT 2014-2017GC (20020130100779BA). FL and GP are supported by an independent research career position from the Argentine Medical Research Council (CONICET), Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Paratcha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ledda, F., Paratcha, G. Mechanisms regulating dendritic arbor patterning. Cell. Mol. Life Sci. 74, 4511–4537 (2017). https://doi.org/10.1007/s00018-017-2588-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-017-2588-8

Keywords

Navigation