Skip to main content
Log in

Mechanisms regulating GABAergic neuron development

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Neurons using gamma-aminobutyric acid (GABA) as their neurotransmitter are the main inhibitory neurons in the mature central nervous system (CNS) and show great variation in their form and function. GABAergic neurons are produced in all of the main domains of the CNS, where they develop from discrete regions of the neuroepithelium. Here, we review the gene expression and regulatory mechanisms controlling the main steps of GABAergic neuron development: early patterning of the proliferative neuroepithelium, production of postmitotic neural precursors, establishment of their identity and migration. By comparing the molecular regulation of these events across CNS, we broadly identify three regions utilizing distinct molecular toolkits for GABAergic fate determination: telencephalon–anterior diencephalon (DLX2 type), posterior diencephalon–midbrain (GATA2 type) and hindbrain–spinal cord (PTF1A and TAL1 types). Similarities and differences in the molecular regulatory mechanisms reveal the core determinants of a GABAergic neuron as well as provide insights into generation of the vast diversity of these neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AP:

Anterior-posterior

bHLH:

Basic helix-loop-helix

cb:

Cerebellum

CGE:

Caudal ganglionic eminence

CNS:

Central nervous system

CoP:

Commissural pretectum (mixed GABAergic and glutamatergic)

dI4, dI6, dILa:

Subpopulations of GABAergic neurons in dorsal spinal cord

DV:

Dorso-ventral

GABA:

Gamma-aminobutyric acid

hb:

Hindbrain

HD:

Homeodomain

hyp:

Hypothalamus

JcP:

Juxtacommissural pretectum (GABAergic)

LGE:

Lateral ganglionic eminence

mb:

Midbrain

m1–m5:

Progenitor domains producing GABAergic neurons in midbrain

MGE:

Medial ganglionic eminence

MHB:

Midbrain–hindbrain boundary

MZ:

Mantle zone

OB:

Olfactory bulb

p1:

Prosomere 1, pretectum

p2:

Prosomere 2, thalamus

p3:

Prosomere 3, prethalamus

PcP:

Precommissural pretectum (glutamatergic)

POA:

Preoptic area

pTHr:

Rostral thalamus (GABAergic)

pTHc:

Caudal thalamus (glutamatergic)

sc:

Spinal cord

SNpr:

Substantia nigra pars reticulata

SVS:

Subcortical visual shell nuclei

SVZ:

Subventricular zone

tel:

Telencephalon

TF:

Transcription factor

V0–V2:

Subpopulations of GABAergic neurons in ventral spinal cord

VTA:

Ventral tegmental area

VZ:

Ventricular zone

ZF:

Zinc finger

ZLI:

Zona limitans intrathalamica

References

  1. Kiecker C, Lumsden A (2012) The role of organizers in patterning the nervous system. Annu Rev Neurosci 35:347–367

    CAS  PubMed  Google Scholar 

  2. Dessaud E, McMahon AP, Briscoe J (2008) Pattern formation in the vertebrate neural tube: a sonic hedgehog morphogen-regulated transcriptional network. Development 135(15):2489–2503

    CAS  PubMed  Google Scholar 

  3. Guillemot F (2007) Spatial and temporal specification of neural fates by transcription factor codes. Development 134(21):3771–3780

    CAS  PubMed  Google Scholar 

  4. Doe CQ (2008) Neural stem cells: balancing self-renewal with differentiation. Development 135(9):1575–1587

    CAS  PubMed  Google Scholar 

  5. Lee SK, Pfaff SL (2003) Synchronization of neurogenesis and motor neuron specification by direct coupling of bHLH and homeodomain transcription factors. Neuron 38(5):731–745

    CAS  PubMed  Google Scholar 

  6. Castro DS, Skowronska-Krawczyk D, Armant O, Donaldson IJ, Parras C, Hunt C, Critchley JA, Nguyen L, Gossler A, Gottgens B, Matter JM, Guillemot F (2006) Proneural bHLH and Brn proteins coregulate a neurogenic program through cooperative binding to a conserved DNA motif. Dev Cell 11(6):831–844

    CAS  PubMed  Google Scholar 

  7. Zhou JX, Huang S (2011) Understanding gene circuits at cell-fate branch points for rational cell reprogramming. Trends Genet TIG 27(2):55–62

    CAS  Google Scholar 

  8. Ronan JL, Wu W, Crabtree GR (2013) From neural development to cognition: unexpected roles for chromatin. Nat Rev Genet 14(5):347–359

    CAS  PubMed  Google Scholar 

  9. Rouaux C, Arlotta P (2010) Fezf2 directs the differentiation of corticofugal neurons from striatal progenitors in vivo. Nat Neurosci 13(11):1345–1347

    CAS  PubMed  Google Scholar 

  10. Molyneaux BJ, Arlotta P, Hirata T, Hibi M, Macklis JD (2005) Fezl is required for the birth and specification of corticospinal motor neurons. Neuron 47(6):817–831

    CAS  PubMed  Google Scholar 

  11. Jeong JY, Einhorn Z, Mathur P, Chen L, Lee S, Kawakami K, Guo S (2007) Patterning the zebrafish diencephalon by the conserved zinc-finger protein Fezl. Development 134(1):127–136

    CAS  PubMed  Google Scholar 

  12. Hobert O, Carrera I, Stefanakis N (2010) The molecular and gene regulatory signature of a neuron. Trends Neurosci 33(10):435–445

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Holmberg J, Hansson E, Malewicz M, Sandberg M, Perlmann T, Lendahl U, Muhr J (2008) SoxB1 transcription factors and Notch signaling use distinct mechanisms to regulate proneural gene function and neural progenitor differentiation. Development 135(10):1843–1851

    CAS  PubMed  Google Scholar 

  14. Kadkhodaei B, Ito T, Joodmardi E, Mattsson B, Rouillard C, Carta M, Muramatsu S, Sumi-Ichinose C, Nomura T, Metzger D, Chambon P, Lindqvist E, Larsson NG, Olson L, Bjorklund A, Ichinose H, Perlmann T (2009) Nurr1 is required for maintenance of maturing and adult midbrain dopamine neurons. J Neurosci Off J Soc Neurosci 29(50):15923–15932

    CAS  Google Scholar 

  15. Liu C, Maejima T, Wyler SC, Casadesus G, Herlitze S, Deneris ES (2010) Pet-1 is required across different stages of life to regulate serotonergic function. Nat Neurosci 13(10):1190–1198

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Flames N, Pla R, Gelman DM, Rubenstein JL, Puelles L, Marin O (2007) Delineation of multiple subpallial progenitor domains by the combinatorial expression of transcriptional codes. J Neurosci Off J Soc Neurosci 27(36):9682–9695

    CAS  Google Scholar 

  17. Yun K, Potter S, Rubenstein JL (2001) Gsh2 and Pax6 play complementary roles in dorsoventral patterning of the mammalian telencephalon. Development 128(2):193–205

    CAS  PubMed  Google Scholar 

  18. Scholpp S, Lumsden A (2010) Building a bridal chamber: development of the thalamus. Trends Neurosci 33(8):373–380

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Virolainen SM, Achim K, Peltopuro P, Salminen M, Partanen J (2012) Transcriptional regulatory mechanisms underlying the GABAergic neuron fate in different diencephalic prosomeres. Development 139(20):3795–3805

    CAS  PubMed  Google Scholar 

  20. Vue TY, Bluske K, Alishahi A, Yang LL, Koyano-Nakagawa N, Novitch B, Nakagawa Y (2009) Sonic hedgehog signaling controls thalamic progenitor identity and nuclei specification in mice. J Neurosci Off J Soc Neurosci 29(14):4484–4497

    CAS  Google Scholar 

  21. Kala K, Haugas M, Lillevali K, Guimera J, Wurst W, Salminen M, Partanen J (2009) Gata2 is a tissue-specific post-mitotic selector gene for midbrain GABAergic neurons. Development 136(2):253–262

    CAS  PubMed  Google Scholar 

  22. Nakatani T, Minaki Y, Kumai M, Ono Y (2007) Helt determines GABAergic over glutamatergic neuronal fate by repressing Ngn genes in the developing mesencephalon. Development 134(15):2783–2793

    CAS  PubMed  Google Scholar 

  23. Hashimoto M, Hibi M (2012) Development and evolution of cerebellar neural circuits. Dev Growth Differ 54(3):373–389

    CAS  PubMed  Google Scholar 

  24. Lahti L, Achim K, Partanen J (2013) Molecular regulation of GABAergic neuron differentiation and diversity in the developing midbrain. Acta Physiol (Oxf) 207(4):616–627

    CAS  Google Scholar 

  25. Zordan P, Croci L, Hawkes R, Consalez GG (2008) Comparative analysis of proneural gene expression in the embryonic cerebellum. Dev Dyn Off Publ Am Assoc Anat 237(6):1726–1735

    CAS  Google Scholar 

  26. Lebel M, Mo R, Shimamura K, Hui CC (2007) Gli2 and Gli3 play distinct roles in the dorsoventral patterning of the mouse hindbrain. Dev Biol 302(1):345–355

    CAS  PubMed  Google Scholar 

  27. Cordes SP (2001) Molecular genetics of cranial nerve development in mouse. Nat Rev Neurosci 2(9):611–623

    CAS  PubMed  Google Scholar 

  28. Briscoe J, Pierani A, Jessell TM, Ericson J (2000) A homeodomain protein code specifies progenitor cell identity and neuronal fate in the ventral neural tube. Cell 101(4):435–445

    CAS  PubMed  Google Scholar 

  29. Lewis KE (2006) How do genes regulate simple behaviours? Understanding how different neurons in the vertebrate spinal cord are genetically specified. Philos Trans R Soc Lond B Biol Sci 361(1465):45–66

    PubMed  PubMed Central  Google Scholar 

  30. Vieira C, Pombero A, Garcia-Lopez R, Gimeno L, Echevarria D, Martinez S (2010) Molecular mechanisms controlling brain development: an overview of neuroepithelial secondary organizers. Int J Dev Biol 54(1):7–20

    CAS  PubMed  Google Scholar 

  31. Beccari L, Marco-Ferreres R, Bovolenta P (2013) The logic of gene regulatory networks in early vertebrate forebrain patterning. Mech Dev 130(2–3):95–111

    CAS  PubMed  Google Scholar 

  32. Puelles L, Rubenstein JL (1993) Expression patterns of homeobox and other putative regulatory genes in the embryonic mouse forebrain suggest a neuromeric organization. Trends Neurosci 16(11):472–479

    CAS  PubMed  Google Scholar 

  33. Puelles L, Rubenstein JL (2003) Forebrain gene expression domains and the evolving prosomeric model. Trends Neurosci 26(9):469–476

    CAS  PubMed  Google Scholar 

  34. Shimamura K, Hartigan DJ, Martinez S, Puelles L, Rubenstein JL (1995) Longitudinal organization of the anterior neural plate and neural tube. Development 121(12):3923–3933

    CAS  PubMed  Google Scholar 

  35. Briscoe J, Novitch BG (2008) Regulatory pathways linking progenitor patterning, cell fates and neurogenesis in the ventral neural tube. Philos Trans R Soc Lond B Biol Sci 363(1489):57–70

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Briscoe J (2009) Making a grade: Sonic hedgehog signalling and the control of neural cell fate. EMBO J 28(5):457–465

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Guillemot F (2005) Cellular and molecular control of neurogenesis in the mammalian telencephalon. Curr Opin Cell Biol 17(6):639–647

    CAS  PubMed  Google Scholar 

  38. Gelman DM, Marín O, Rubenstein JLR (2012) The Generation of cortical interneurons. In: Noebels JL, Avoli M, Rogawski MA et al (eds) Jasper's basic mechanisms of the epilepsies [Internet], 4th edn. National Center for Biotechnology Information (USA), Bethesda, MD. http://www.ncbi.nlm.nih.gov/books/NBK98190/

  39. Xu Q, Cobos I, De La Cruz E, Rubenstein JL, Anderson SA (2004) Origins of cortical interneuron subtypes. J Neurosci Off J Soc Neurosci 24(11):2612–2622

    CAS  Google Scholar 

  40. Fogarty M, Grist M, Gelman D, Marin O, Pachnis V, Kessaris N (2007) Spatial genetic patterning of the embryonic neuroepithelium generates GABAergic interneuron diversity in the adult cortex. J Neurosci Off J Soc Neurosci 27(41):10935–10946

    CAS  Google Scholar 

  41. Miyoshi G, Fishell G (2011) GABAergic interneuron lineages selectively sort into specific cortical layers during early postnatal development. Cereb Cortex 21(4):845–852

    PubMed  PubMed Central  Google Scholar 

  42. Sussel L, Marin O, Kimura S, Rubenstein JL (1999) Loss of Nkx2.1 homeobox gene function results in a ventral to dorsal molecular respecification within the basal telencephalon: evidence for a transformation of the pallidum into the striatum. Development 126(15):3359–3370

    CAS  PubMed  Google Scholar 

  43. Pleasure SJ, Anderson S, Hevner R, Bagri A, Marin O, Lowenstein DH, Rubenstein JL (2000) Cell migration from the ganglionic eminences is required for the development of hippocampal GABAergic interneurons. Neuron 28(3):727–740

    CAS  PubMed  Google Scholar 

  44. Gelman D, Griveau A, Dehorter N, Teissier A, Varela C, Pla R, Pierani A, Marin O (2011) A wide diversity of cortical GABAergic interneurons derives from the embryonic preoptic area. J Neurosci Off J Soc Neurosci 31(46):16570–16580

    CAS  Google Scholar 

  45. Gelman DM, Martini FJ, Nobrega-Pereira S, Pierani A, Kessaris N, Marin O (2009) The embryonic preoptic area is a novel source of cortical GABAergic interneurons. J Neurosci Off J Soc Neurosci 29(29):9380–9389

    CAS  Google Scholar 

  46. Wang B, Long JE, Flandin P, Pla R, Waclaw RR, Campbell K, Rubenstein JL (2013) Loss of Gsx1 and Gsx2 function rescues distinct phenotypes in Dlx1/2 mutants. J Comp Neurol 521(7):1561–1584

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Shimogori T, Lee DA, Miranda-Angulo A, Yang Y, Wang H, Jiang L, Yoshida AC, Kataoka A, Mashiko H, Avetisyan M, Qi L, Qian J, Blackshaw S (2010) A genomic atlas of mouse hypothalamic development. Nat Neurosci 13(6):767–775

    CAS  PubMed  Google Scholar 

  48. Toresson H, Potter SS, Campbell K (2000) Genetic control of dorsal-ventral identity in the telencephalon: opposing roles for Pax6 and Gsh2. Development 127(20):4361–4371

    CAS  PubMed  Google Scholar 

  49. Carney RS, Cocas LA, Hirata T, Mansfield K, Corbin JG (2009) Differential regulation of telencephalic pallial–subpallial boundary patterning by Pax6 and Gsh2. Cereb Cortex 19(4):745–759

    PubMed  PubMed Central  Google Scholar 

  50. Corbin JG, Rutlin M, Gaiano N, Fishell G (2003) Combinatorial function of the homeodomain proteins Nkx2.1 and Gsh2 in ventral telencephalic patterning. Development 130(20):4895–4906

    CAS  PubMed  Google Scholar 

  51. Pei Z, Wang B, Chen G, Nagao M, Nakafuku M, Campbell K (2011) Homeobox genes Gsx1 and Gsx2 differentially regulate telencephalic progenitor maturation. Proc Natl Acad Sci USA 108(4):1675–1680

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Waclaw RR, Wang B, Pei Z, Ehrman LA, Campbell K (2009) Distinct temporal requirements for the homeobox gene Gsx2 in specifying striatal and olfactory bulb neuronal fates. Neuron 63(4):451–465

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Letinic K, Zoncu R, Rakic P (2002) Origin of GABAergic neurons in the human neocortex. Nature 417(6889):645–649

    CAS  PubMed  Google Scholar 

  54. Petanjek Z, Kostovic I, Esclapez M (2009) Primate-specific origins and migration of cortical GABAergic neurons. Front Neuroanat 3:26

    PubMed  PubMed Central  Google Scholar 

  55. Cai Y, Zhang Y, Shen Q, Rubenstein JL, Yang Z (2013) A subpopulation of individual neural progenitors in the mammalian dorsal pallium generates both projection neurons and interneurons in vitro. Stem Cells 31(6):1193–1201

    CAS  PubMed  Google Scholar 

  56. Kohwi M, Petryniak MA, Long JE, Ekker M, Obata K, Yanagawa Y, Rubenstein JL, Alvarez-Buylla A (2007) A subpopulation of olfactory bulb GABAergic interneurons is derived from Emx1- and Dlx5/6-expressing progenitors. J Neurosci Off J Soc Neurosci 27(26):6878–6891

    CAS  Google Scholar 

  57. Nakagawa Y, Shimogori T (2012) Diversity of thalamic progenitor cells and postmitotic neurons. Eur J Neurosci 35(10):1554–1562

    PubMed  Google Scholar 

  58. Hirata T, Nakazawa M, Muraoka O, Nakayama R, Suda Y, Hibi M (2006) Zinc-finger genes Fez and Fez-like function in the establishment of diencephalon subdivisions. Development 133(20):3993–4004

    CAS  PubMed  Google Scholar 

  59. Jeong Y, Dolson DK, Waclaw RR, Matise MP, Sussel L, Campbell K, Kaestner KH, Epstein DJ (2011) Spatial and temporal requirements for sonic hedgehog in the regulation of thalamic interneuron identity. Development 138(3):531–541

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Achim K, Peltopuro P, Lahti L, Li J, Salminen M, Partanen J (2012) Distinct developmental origins and regulatory mechanisms for GABAergic neurons associated with dopaminergic nuclei in the ventral mesodiencephalic region. Development 139(13):2360–2370

    CAS  PubMed  Google Scholar 

  61. Arber S (2012) Motor circuits in action: specification, connectivity, and function. Neuron 74(6):975–989

    CAS  PubMed  Google Scholar 

  62. Karunaratne A, Hargrave M, Poh A, Yamada T (2002) GATA proteins identify a novel ventral interneuron subclass in the developing chick spinal cord. Dev Biol 249(1):30–43

    CAS  PubMed  Google Scholar 

  63. Smith E, Hargrave M, Yamada T, Begley CG, Little MH (2002) Coexpression of SCL and GATA3 in the V2 interneurons of the developing mouse spinal cord. Dev Dyn Off Publ Am Assoc Anat 224(2):231–237

    CAS  Google Scholar 

  64. Zhou Y, Yamamoto M, Engel JD (2000) GATA2 is required for the generation of V2 interneurons. Development 127(17):3829–3838

    CAS  PubMed  Google Scholar 

  65. Panayi H, Panayiotou E, Orford M, Genethliou N, Mean R, Lapathitis G, Li S, Xiang M, Kessaris N, Richardson WD, Malas S (2010) Sox1 is required for the specification of a novel p2-derived interneuron subtype in the mouse ventral spinal cord. J Neurosci Off J Soc Neurosci 30(37):12274–12280

    CAS  Google Scholar 

  66. Li S, Misra K, Matise MP, Xiang M (2005) Foxn4 acts synergistically with Mash1 to specify subtype identity of V2 interneurons in the spinal cord. Proc Natl Acad Sci USA 102(30):10688–10693

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Del Barrio MG, Taveira-Marques R, Muroyama Y, Yuk DI, Li S, Wines-Samuelson M, Shen J, Smith HK, Xiang M, Rowitch D, Richardson WD (2007) A regulatory network involving Foxn4, Mash1 and delta-like 4/Notch1 generates V2a and V2b spinal interneurons from a common progenitor pool. Development 134(19):3427–3436

    PubMed  Google Scholar 

  68. Pierani A, Brenner-Morton S, Chiang C, Jessell TM (1999) A sonic hedgehog-independent, retinoid-activated pathway of neurogenesis in the ventral spinal cord. Cell 97(7):903–915

    CAS  PubMed  Google Scholar 

  69. Vallstedt A, Muhr J, Pattyn A, Pierani A, Mendelsohn M, Sander M, Jessell TM, Ericson J (2001) Different levels of repressor activity assign redundant and specific roles to Nkx6 genes in motor neuron and interneuron specification. Neuron 31(5):743–755

    CAS  PubMed  Google Scholar 

  70. Alvarez FJ, Jonas PC, Sapir T, Hartley R, Berrocal MC, Geiman EJ, Todd AJ, Goulding M (2005) Postnatal phenotype and localization of spinal cord V1-derived interneurons. J Comp Neurol 493(2):177–192

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Sapir T, Geiman EJ, Wang Z, Velasquez T, Mitsui S, Yoshihara Y, Frank E, Alvarez FJ, Goulding M (2004) Pax6 and engrailed 1 regulate two distinct aspects of Renshaw cell development. J Neurosci Off J Soc Neurosci 24(5):1255–1264

    CAS  Google Scholar 

  72. Lanuza GM, Gosgnach S, Pierani A, Jessell TM, Goulding M (2004) Genetic identification of spinal interneurons that coordinate left–right locomotor activity necessary for walking movements. Neuron 42(3):375–386

    CAS  PubMed  Google Scholar 

  73. Pierani A, Moran-Rivard L, Sunshine MJ, Littman DR, Goulding M, Jessell TM (2001) Control of interneuron fate in the developing spinal cord by the progenitor homeodomain protein Dbx1. Neuron 29(2):367–384

    CAS  PubMed  Google Scholar 

  74. Gribble SL, Nikolaus OB, Dorsky RI (2007) Regulation and function of Dbx genes in the zebrafish spinal cord. Dev Dyn Off Publ Am Assoc Anat 236(12):3472–3483

    CAS  Google Scholar 

  75. Matise MP, Joyner AL (1997) Expression patterns of developmental control genes in normal and Engrailed-1 mutant mouse spinal cord reveal early diversity in developing interneurons. J Neurosci Off J Soc Neurosci 17(20):7805–7816

    CAS  Google Scholar 

  76. Gross MK, Dottori M, Goulding M (2002) Lbx1 specifies somatosensory association interneurons in the dorsal spinal cord. Neuron 34(4):535–549

    CAS  PubMed  Google Scholar 

  77. Kriks S, Lanuza GM, Mizuguchi R, Nakafuku M, Goulding M (2005) Gsh2 is required for the repression of Ngn1 and specification of dorsal interneuron fate in the spinal cord. Development 132(13):2991–3002

    CAS  PubMed  Google Scholar 

  78. Helms AW, Johnson JE (2003) Specification of dorsal spinal cord interneurons. Curr Opin Neurobiol 13(1):42–49

    CAS  PubMed  Google Scholar 

  79. Fujiyama T, Yamada M, Terao M, Terashima T, Hioki H, Inoue YU, Inoue T, Masuyama N, Obata K, Yanagawa Y, Kawaguchi Y, Nabeshima Y, Hoshino M (2009) Inhibitory and excitatory subtypes of cochlear nucleus neurons are defined by distinct bHLH transcription factors, Ptf1a and Atoh1. Development 136(12):2049–2058

    CAS  PubMed  Google Scholar 

  80. Farkas LM, Huttner WB (2008) The cell biology of neural stem and progenitor cells and its significance for their proliferation versus differentiation during mammalian brain development. Curr Opin Cell Biol 20(6):707–715

    CAS  PubMed  Google Scholar 

  81. Castro DS, Martynoga B, Parras C, Ramesh V, Pacary E, Johnston C, Drechsel D, Lebel-Potter M, Garcia LG, Hunt C, Dolle D, Bithell A, Ettwiller L, Buckley N, Guillemot F (2011) A novel function of the proneural factor Ascl1 in progenitor proliferation identified by genome-wide characterization of its targets. Genes Dev 25(9):930–945

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Kageyama R, Ohtsuka T, Kobayashi T (2008) Roles of Hes genes in neural development. Dev Growth Differ 50(Suppl 1):S97–S103

    CAS  PubMed  Google Scholar 

  83. Bylund M, Andersson E, Novitch BG, Muhr J (2003) Vertebrate neurogenesis is counteracted by So1–3 activity. Nat Neurosci 6(11):1162–1168

    CAS  PubMed  Google Scholar 

  84. Graham V, Khudyakov J, Ellis P, Pevny L (2003) SOX2 functions to maintain neural progenitor identity. Neuron 39(5):749–765

    CAS  PubMed  Google Scholar 

  85. Casarosa S, Fode C, Guillemot F (1999) Mash1 regulates neurogenesis in the ventral telencephalon. Development 126(3):525–534

    CAS  PubMed  Google Scholar 

  86. Parras CM, Schuurmans C, Scardigli R, Kim J, Anderson DJ, Guillemot F (2002) Divergent functions of the proneural genes Mash1 and Ngn2 in the specification of neuronal subtype identity. Genes Dev 16(3):324–338

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Fode C, Ma Q, Casarosa S, Ang SL, Anderson DJ, Guillemot F (2000) A role for neural determination genes in specifying the dorsoventral identity of telencephalic neurons. Genes Dev 14(1):67–80

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Peltopuro P, Kala K, Partanen J (2010) Distinct requirements for Ascl1 in subpopulations of midbrain GABAergic neurons. Dev Biol 343(1–2):63–70

    CAS  PubMed  Google Scholar 

  89. Kataoka A, Shimogori T (2008) Fgf8 controls regional identity in the developing thalamus. Development 135(17):2873–2881

    CAS  PubMed  Google Scholar 

  90. Guimera J, Weisenhorn DV, Wurst W (2006) Megane/Heslike is required for normal GABAergic differentiation in the mouse superior colliculus. Development 133(19):3847–3857

    CAS  PubMed  Google Scholar 

  91. Miyoshi G, Bessho Y, Yamada S, Kageyama R (2004) Identification of a novel basic helix-loop-helix gene, Heslike, and its role in GABAergic neurogenesis. J Neurosci Off J Soc Neurosci 24(14):3672–3682

    CAS  Google Scholar 

  92. Guimera J, Vogt Weisenhorn D, Echevarria D, Martinez S, Wurst W (2006) Molecular characterization, structure and developmental expression of Megane bHLH factor. Gene 377:65–76

    CAS  PubMed  Google Scholar 

  93. Delogu A, Sellers K, Zagoraiou L, Bocianowska-Zbrog A, Mandal S, Guimera J, Rubenstein JL, Sugden D, Jessell T, Lumsden A (2012) Subcortical visual shell nuclei targeted by ipRGCs develop from a Sox14+-GABAergic progenitor and require Sox14 to regulate daily activity rhythms. Neuron 75(4):648–662

    CAS  PubMed  Google Scholar 

  94. Mizuguchi R, Kriks S, Cordes R, Gossler A, Ma Q, Goulding M (2006) Ascl1 and Gsh1/2 control inhibitory and excitatory cell fate in spinal sensory interneurons. Nat Neurosci 9(6):770–778

    CAS  PubMed  Google Scholar 

  95. Sudarov A, Turnbull RK, Kim EJ, Lebel-Potter M, Guillemot F, Joyner AL (2011) Ascl1 genetics reveals insights into cerebellum local circuit assembly. J Neurosci Off J Soc Neurosci 31(30):11055–11069

    CAS  Google Scholar 

  96. Wildner H, Muller T, Cho SH, Brohl D, Cepko CL, Guillemot F, Birchmeier C (2006) dILA neurons in the dorsal spinal cord are the product of terminal and non-terminal asymmetric progenitor cell divisions, and require Mash1 for their development. Development 133(11):2105–2113

    CAS  PubMed  Google Scholar 

  97. Grimaldi P, Parras C, Guillemot F, Rossi F, Wassef M (2009) Origins and control of the differentiation of inhibitory interneurons and glia in the cerebellum. Dev Biol 328(2):422–433

    CAS  PubMed  Google Scholar 

  98. Lundell TG, Zhou Q, Doughty ML (2009) Neurogenin1 expression in cell lineages of the cerebellar cortex in embryonic and postnatal mice. Dev Dyn Off Publ Am Assoc Anat 238(12):3310–3325

    CAS  Google Scholar 

  99. Florio M, Leto K, Muzio L, Tinterri A, Badaloni A, Croci L, Zordan P, Barili V, Albieri I, Guillemot F, Rossi F, Consalez GG (2012) Neurogenin 2 regulates progenitor cell-cycle progression and Purkinje cell dendritogenesis in cerebellar development. Development 139(13):2308–2320

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Henke RM, Savage TK, Meredith DM, Glasgow SM, Hori K, Dumas J, MacDonald RJ, Johnson JE (2009) Neurog2 is a direct downstream target of the Ptf1a–Rbpj transcription complex in dorsal spinal cord. Development 136(17):2945–2954

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Peng CY, Yajima H, Burns CE, Zon LI, Sisodia SS, Pfaff SL, Sharma K (2007) Notch and MAML signaling drives Scl-dependent interneuron diversity in the spinal cord. Neuron 53(6):813–827

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Glasgow SM, Henke RM, Macdonald RJ, Wright CV, Johnson JE (2005) Ptf1a determines GABAergic over glutamatergic neuronal cell fate in the spinal cord dorsal horn. Development 132(24):5461–5469

    CAS  PubMed  Google Scholar 

  103. Muroyama Y, Fujiwara Y, Orkin SH, Rowitch DH (2005) Specification of astrocytes by bHLH protein SCL in a restricted region of the neural tube. Nature 438(7066):360–363

    CAS  PubMed  Google Scholar 

  104. Cheng L, Samad OA, Xu Y, Mizuguchi R, Luo P, Shirasawa S, Goulding M, Ma Q (2005) Lbx1 and Tlx3 are opposing switches in determining GABAergic versus glutamatergic transmitter phenotypes. Nat Neurosci 8(11):1510–1515

    CAS  PubMed  Google Scholar 

  105. Eisenstat DD, Liu JK, Mione M, Zhong W, Yu G, Anderson SA, Ghattas I, Puelles L, Rubenstein JL (1999) DLX-1, DLX-2, and DLX-5 expression define distinct stages of basal forebrain differentiation. J Comp Neurol 414(2):217–237

    CAS  PubMed  Google Scholar 

  106. Stuhmer T, Puelles L, Ekker M, Rubenstein JL (2002) Expression from a Dlx gene enhancer marks adult mouse cortical GABAergic neurons. Cereb Cortex 12(1):75–85

    PubMed  Google Scholar 

  107. Long JE, Garel S, Alvarez-Dolado M, Yoshikawa K, Osumi N, Alvarez-Buylla A, Rubenstein JL (2007) Dlx-dependent and -independent regulation of olfactory bulb interneuron differentiation. J Neurosci Off J Soc Neurosci 27(12):3230–3243

    CAS  Google Scholar 

  108. Long JE, Swan C, Liang WS, Cobos I, Potter GB, Rubenstein JL (2009) Dlx1&2 and Mash1 transcription factors control striatal patterning and differentiation through parallel and overlapping pathways. J Comp Neurol 512(4):556–572

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Zerucha T, Stuhmer T, Hatch G, Park BK, Long Q, Yu G, Gambarotta A, Schultz JR, Rubenstein JL, Ekker M (2000) A highly conserved enhancer in the Dlx5/Dlx6 intergenic region is the site of cross-regulatory interactions between Dlx genes in the embryonic forebrain. J Neurosci Off J Soc Neurosci 20(2):709–721

    CAS  Google Scholar 

  110. Poitras L, Ghanem N, Hatch G, Ekker M (2007) The proneural determinant MASH1 regulates forebrain Dlx1/2 expression through the I12b intergenic enhancer. Development 134(9):1755–1765

    CAS  PubMed  Google Scholar 

  111. Potter GB, Petryniak MA, Shevchenko E, McKinsey GL, Ekker M, Rubenstein JL (2009) Generation of Cre-transgenic mice using Dlx1/Dlx2 enhancers and their characterization in GABAergic interneurons. Mol Cell Neurosci 40(2):167–186

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Panganiban G, Rubenstein JL (2002) Developmental functions of the distal-less/Dlx homeobox genes. Development 129(19):4371–4386

    CAS  PubMed  Google Scholar 

  113. Anderson SA, Qiu M, Bulfone A, Eisenstat DD, Meneses J, Pedersen R, Rubenstein JL (1997) Mutations of the homeobox genes Dlx-1 and Dlx-2 disrupt the striatal subventricular zone and differentiation of late born striatal neurons. Neuron 19(1):27–37

    CAS  PubMed  Google Scholar 

  114. Anderson SA, Eisenstat DD, Shi L, Rubenstein JL (1997) Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes. Science 278(5337):474–476

    CAS  PubMed  Google Scholar 

  115. Colasante G, Collombat P, Raimondi V, Bonanomi D, Ferrai C, Maira M, Yoshikawa K, Mansouri A, Valtorta F, Rubenstein JL, Broccoli V (2008) Arx is a direct target of Dlx2 and thereby contributes to the tangential migration of GABAergic interneurons. J Neurosci Off J Soc Neurosci 28(42):10674–10686

    CAS  Google Scholar 

  116. Ghanem N, Yu M, Long J, Hatch G, Rubenstein JL, Ekker M (2007) Distinct cis-regulatory elements from the Dlx1/Dlx2 locus mark different progenitor cell populations in the ganglionic eminences and different subtypes of adult cortical interneurons. J Neurosci Off J Soc Neurosci 27(19):5012–5022

    CAS  Google Scholar 

  117. Cobos I, Calcagnotto ME, Vilaythong AJ, Thwin MT, Noebels JL, Baraban SC, Rubenstein JL (2005) Mice lacking Dlx1 show subtype-specific loss of interneurons, reduced inhibition and epilepsy. Nat Neurosci 8(8):1059–1068

    CAS  PubMed  Google Scholar 

  118. McKinsey GL, Lindtner S, Trzcinski B, Visel A, Pennacchio LA, Huylebroeck D, Higashi Y, Rubenstein JL (2013) Dlx1&2-dependent expression of Zfhx1b (Sip1, Zeb2) regulates the fate switch between cortical and striatal interneurons. Neuron 77(1):83–98

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Fulp CT, Cho G, Marsh ED, Nasrallah IM, Labosky PA, Golden JA (2008) Identification of Arx transcriptional targets in the developing basal forebrain. Hum Mol Genet 17(23):3740–3760

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Herberth B, Minko K, Csillag A, Jaffredo T, Madarasz E (2005) SCL, GATA-2 and Lmo2 expression in neurogenesis. Int J Dev Neurosci Off J Int Soc Dev Neurosci 23(5):449–463

    CAS  Google Scholar 

  121. Achim K, Peltopuro P, Lahti L, Tsai H, Zachariah A, Åstrand M, Salminen M, Rowitch D, Partanen J (2013) The role of Tal2 and Tal1 in the differentiation of midbrain GABAergic neuron precursors. Biol Open. doi:10.1242/bio.20135041

    PubMed  PubMed Central  Google Scholar 

  122. Ogilvy S, Ferreira R, Piltz SG, Bowen JM, Gottgens B, Green AR (2007) The SCL +40 enhancer targets the midbrain together with primitive and definitive hematopoiesis and is regulated by SCL and GATA proteins. Mol Cell Biol 27(20):7206–7219

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Joshi K, Lee S, Lee B, Lee JW, Lee SK (2009) LMO4 controls the balance between excitatory and inhibitory spinal V2 interneurons. Neuron 61(6):839–851

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Minaki Y, Nakatani T, Mizuhara E, Inoue T, Ono Y (2008) Identification of a novel transcriptional corepressor, Corl2, as a cerebellar Purkinje cell-selective marker. Gene Expr Patterns GEP 8(6):418–423

    CAS  Google Scholar 

  125. Hoshino M, Nakamura S, Mori K, Kawauchi T, Terao M, Nishimura YV, Fukuda A, Fuse T, Matsuo N, Sone M, Watanabe M, Bito H, Terashima T, Wright CV, Kawaguchi Y, Nakao K, Nabeshima Y (2005) Ptf1a, a bHLH transcriptional gene, defines GABAergic neuronal fates in cerebellum. Neuron 47(2):201–213

    CAS  PubMed  Google Scholar 

  126. Pascual M, Abasolo I, Mingorance-Le Meur A, Martinez A, Del Rio JA, Wright CV, Real FX, Soriano E (2007) Cerebellar GABAergic progenitors adopt an external granule cell-like phenotype in the absence of Ptf1a transcription factor expression. Proc Natl Acad Sci USA 104(12):5193–5198

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Yamada M, Terao M, Terashima T, Fujiyama T, Kawaguchi Y, Nabeshima Y, Hoshino M (2007) Origin of climbing fiber neurons and their developmental dependence on Ptf1a. J Neurosci Off J Soc Neurosci 27(41):10924–10934

    CAS  Google Scholar 

  128. Cheng L, Arata A, Mizuguchi R, Qian Y, Karunaratne A, Gray PA, Arata S, Shirasawa S, Bouchard M, Luo P, Chen CL, Busslinger M, Goulding M, Onimaru H, Ma Q (2004) Tlx3 and Tlx1 are post-mitotic selector genes determining glutamatergic over GABAergic cell fates. Nat Neurosci 7(5):510–517

    CAS  PubMed  Google Scholar 

  129. Huang M, Huang T, Xiang Y, Xie Z, Chen Y, Yan R, Xu J, Cheng L (2008) Ptf1a, Lbx1 and Pax2 coordinate glycinergic and peptidergic transmitter phenotypes in dorsal spinal inhibitory neurons. Dev Biol 322(2):394–405

    CAS  PubMed  Google Scholar 

  130. Meredith DM, Borromeo MD, Deering TG, Casey B, Savage TK, Mayer PR, Hoang C, Tung KC, Kumar M, Shen C, Swift GH, Macdonald RJ, Johnson JE (2013) Program specificity for Ptf1a in pancreas versus neural tube development correlates with distinct collaborating cofactors and chromatin accessibility. Mol Cell Biol 33(16):3166–3179

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Hori K, Cholewa-Waclaw J, Nakada Y, Glasgow SM, Masui T, Henke RM, Wildner H, Martarelli B, Beres TM, Epstein JA, Magnuson MA, Macdonald RJ, Birchmeier C, Johnson JE (2008) A nonclassical bHLH Rbpj transcription factor complex is required for specification of GABAergic neurons independent of Notch signaling. Genes Dev 22(2):166–178

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Graw J (2010) Eye development. Curr Top Dev Biol 90:343–386

    PubMed  Google Scholar 

  133. Fujitani Y, Fujitani S, Luo H, Qiu F, Burlison J, Long Q, Kawaguchi Y, Edlund H, MacDonald RJ, Furukawa T, Fujikado T, Magnuson MA, Xiang M, Wright CV (2006) Ptf1a determines horizontal and amacrine cell fates during mouse retinal development. Development 133(22):4439–4450

    CAS  PubMed  Google Scholar 

  134. Jusuf PR, Almeida AD, Randlett O, Joubin K, Poggi L, Harris WA (2011) Origin and determination of inhibitory cell lineages in the vertebrate retina. J Neurosci Off J Soc Neurosci 31(7):2549–2562

    CAS  Google Scholar 

  135. Nakhai H, Sel S, Favor J, Mendoza-Torres L, Paulsen F, Duncker GI, Schmid RM (2007) Ptf1a is essential for the differentiation of GABAergic and glycinergic amacrine cells and horizontal cells in the mouse retina. Development 134(6):1151–1160

    CAS  PubMed  Google Scholar 

  136. Dullin JP, Locker M, Robach M, Henningfeld KA, Parain K, Afelik S, Pieler T, Perron M (2007) Ptf1a triggers GABAergic neuronal cell fates in the retina. BMC Dev Biol 7:110

    PubMed  PubMed Central  Google Scholar 

  137. Lamb TD, Collin SP, Pugh EN Jr (2007) Evolution of the vertebrate eye: opsins, photoreceptors, retina and eye cup. Nat Rev Neurosci 8(12):960–976

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Livesey FJ, Cepko CL (2001) Vertebrate neural cell-fate determination: lessons from the retina. Nat Rev Neurosci 2(2):109–118

    CAS  PubMed  Google Scholar 

  139. Winden KD, Oldham MC, Mirnics K, Ebert PJ, Swan CH, Levitt P, Rubenstein JL, Horvath S, Geschwind DH (2009) The organization of the transcriptional network in specific neuronal classes. Mol Syst Biol 5:291

    PubMed  PubMed Central  Google Scholar 

  140. Holmberg J, Perlmann T (2012) Maintaining differentiated cellular identity. Nat Rev Genet 13(6):429–439

    CAS  PubMed  Google Scholar 

  141. Zhou QP, Le TN, Qiu X, Spencer V, de Melo J, Du G, Plews M, Fonseca M, Sun JM, Davie JR, Eisenstat DD (2004) Identification of a direct Dlx homeodomain target in the developing mouse forebrain and retina by optimization of chromatin immunoprecipitation. Nucleic Acids Res 32(3):884–892

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Hobert O, Westphal H (2000) Functions of LIM-homeobox genes. Trends Genet TIG 16(2):75–83

    CAS  Google Scholar 

  143. Pillai A, Mansouri A, Behringer R, Westphal H, Goulding M (2007) Lhx1 and Lhx5 maintain the inhibitory-neurotransmitter status of interneurons in the dorsal spinal cord. Development 134(2):357–366

    CAS  PubMed  Google Scholar 

  144. Zhao Y, Kwan KM, Mailloux CM, Lee WK, Grinberg A, Wurst W, Behringer RR, Westphal H (2007) LIM-homeodomain proteins Lhx1 and Lhx5, and their cofactor Ldb1, control Purkinje cell differentiation in the developing cerebellum. Proc Natl Acad Sci USA 104(32):13182–13186

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Moreno N, Bachy I, Retaux S, Gonzalez A (2004) LIM-homeodomain genes as developmental and adult genetic markers of Xenopus forebrain functional subdivisions. J Comp Neurol 472(1):52–72

    CAS  PubMed  Google Scholar 

  146. Shibata M, Nakao H, Kiyonari H, Abe T, Aizawa S (2011) MicroRNA-9 regulates neurogenesis in mouse telencephalon by targeting multiple transcription factors. J Neurosci Off J Soc Neurosci 31(9):3407–3422

    CAS  Google Scholar 

  147. Schaefer A, O’Carroll D, Tan CL, Hillman D, Sugimori M, Llinas R, Greengard P (2007) Cerebellar neurodegeneration in the absence of microRNAs. J Exp Med 204(7):1553–1558

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Sun AX, Crabtree GR, Yoo AS (2013) MicroRNAs: regulators of neuronal fate. Curr Opin Cell Biol 25(2):215–221

    CAS  PubMed  Google Scholar 

  149. He M, Liu Y, Wang X, Zhang MQ, Hannon GJ, Huang ZJ (2012) Cell-type-based analysis of microRNA profiles in the mouse brain. Neuron 73(1):35–48

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Hatten ME (1999) Central nervous system neuronal migration. Annu Rev Neurosci 22:511–539

    CAS  PubMed  Google Scholar 

  151. Marin O, Rubenstein JL (2003) Cell migration in the forebrain. Annu Rev Neurosci 26:441–483

    CAS  PubMed  Google Scholar 

  152. de Castro F, Bribian A (2005) The molecular orchestra of the migration of oligodendrocyte precursors during development. Brain Res Brain Res Rev 49(2):227–241

    PubMed  Google Scholar 

  153. Ghashghaei HT, Lai C, Anton ES (2007) Neuronal migration in the adult brain: are we there yet? Nat Rev Neurosci 8(2):141–151

    CAS  PubMed  Google Scholar 

  154. Chedotal A, Rijli FM (2009) Transcriptional regulation of tangential neuronal migration in the developing forebrain. Curr Opin Neurobiol 19(2):139–145

    CAS  PubMed  Google Scholar 

  155. Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu C (2004) Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 5(10):793–807

    CAS  PubMed  Google Scholar 

  156. Klausberger T, Somogyi P (2008) Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science 321(5885):53–57

    CAS  PubMed  Google Scholar 

  157. Baudoin JP, Viou L, Launay PS, Luccardini C, Espeso Gil S, Kiyasova V, Irinopoulou T, Alvarez C, Rio JP, Boudier T, Lechaire JP, Kessaris N, Spassky N, Metin C (2012) Tangentially migrating neurons assemble a primary cilium that promotes their reorientation to the cortical plate. Neuron 76(6):1108–1122

    CAS  PubMed  Google Scholar 

  158. Marin O, Yaron A, Bagri A, Tessier-Lavigne M, Rubenstein JL (2001) Sorting of striatal and cortical interneurons regulated by semaphorin-neuropilin interactions. Science 293(5531):872–875

    CAS  PubMed  Google Scholar 

  159. Flames N, Long JE, Garratt AN, Fischer TM, Gassmann M, Birchmeier C, Lai C, Rubenstein JL, Marin O (2004) Short- and long-range attraction of cortical GABAergic interneurons by neuregulin-1. Neuron 44(2):251–261

    CAS  PubMed  Google Scholar 

  160. Stumm RK, Zhou C, Ara T, Lazarini F, Dubois-Dalcq M, Nagasawa T, Hollt V, Schulz S (2003) CXCR4 regulates interneuron migration in the developing neocortex. J Neurosci Off J Soc Neurosci 23(12):5123–5130

    CAS  Google Scholar 

  161. Yozu M, Tabata H, Nakajima K (2005) The caudal migratory stream: a novel migratory stream of interneurons derived from the caudal ganglionic eminence in the developing mouse forebrain. J Neurosci Off J Soc Neurosci 25(31):7268–7277

    CAS  Google Scholar 

  162. Zimmer G, Rudolph J, Landmann J, Gerstmann K, Steinecke A, Gampe C, Bolz J (2011) Bidirectional ephrinB3/EphA4 signaling mediates the segregation of medial ganglionic eminence- and preoptic area-derived interneurons in the deep and superficial migratory stream. J Neurosci Off J Soc Neurosci 31(50):18364–18380

    CAS  Google Scholar 

  163. Marin O (2013) Cellular and molecular mechanisms controlling the migration of neocortical interneurons. Eur J Neurosci 38(1):2019–2029

    PubMed  Google Scholar 

  164. Marin O, Rubenstein JL (2001) A long, remarkable journey: tangential migration in the telencephalon. Nat Rev Neurosci 2(11):780–790

    CAS  PubMed  Google Scholar 

  165. Lavdas AA, Grigoriou M, Pachnis V, Parnavelas JG (1999) The medial ganglionic eminence gives rise to a population of early neurons in the developing cerebral cortex. J Neurosci Off J Soc Neurosci 19(18):7881–7888

    CAS  Google Scholar 

  166. Wichterle H, Garcia-Verdugo JM, Herrera DG, Alvarez-Buylla A (1999) Young neurons from medial ganglionic eminence disperse in adult and embryonic brain. Nat Neurosci 2(5):461–466

    CAS  PubMed  Google Scholar 

  167. Li G, Adesnik H, Li J, Long J, Nicoll RA, Rubenstein JL, Pleasure SJ (2008) Regional distribution of cortical interneurons and development of inhibitory tone are regulated by Cxcl12/Cxcr4 signaling. J Neurosci Off J Soc Neurosci 28(5):1085–1098

    CAS  Google Scholar 

  168. Lopez-Bendito G, Sanchez-Alcaniz JA, Pla R, Borrell V, Pico E, Valdeolmillos M, Marin O (2008) Chemokine signaling controls intracortical migration and final distribution of GABAergic interneurons. J Neurosci Off J Soc Neurosci 28(7):1613–1624

    CAS  Google Scholar 

  169. Tiveron MC, Rossel M, Moepps B, Zhang YL, Seidenfaden R, Favor J, Konig N, Cremer H (2006) Molecular interaction between projection neuron precursors and invading interneurons via stromal-derived factor 1 (CXCL12)/CXCR4 signaling in the cortical subventricular zone/intermediate zone. J Neurosci Off J Soc Neurosci 26(51):13273–13278

    CAS  Google Scholar 

  170. Sessa A, Mao CA, Colasante G, Nini A, Klein WH, Broccoli V (2010) Tbr2-positive intermediate (basal) neuronal progenitors safeguard cerebral cortex expansion by controlling amplification of pallial glutamatergic neurons and attraction of subpallial GABAergic interneurons. Genes Dev 24(16):1816–1826

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Zarbalis K, Choe Y, Siegenthaler JA, Orosco LA, Pleasure SJ (2012) Meningeal defects alter the tangential migration of cortical interneurons in Foxc1hith/hith mice. Neural Dev 7:2

    PubMed  PubMed Central  Google Scholar 

  172. Pla R, Borrell V, Flames N, Marin O (2006) Layer acquisition by cortical GABAergic interneurons is independent of Reelin signaling. J Neurosci Off J Soc Neurosci 26(26):6924–6934

    CAS  Google Scholar 

  173. Fairen A, Cobas A, Fonseca M (1986) Times of generation of glutamic acid decarboxylase immunoreactive neurons in mouse somatosensory cortex. J Comp Neurol 251(1):67–83

    CAS  PubMed  Google Scholar 

  174. Valcanis H, Tan SS (2003) Layer specification of transplanted interneurons in developing mouse neocortex. J Neurosci Off J Soc Neurosci 23(12):5113–5122

    CAS  Google Scholar 

  175. Hevner RF, Daza RA, Englund C, Kohtz J, Fink A (2004) Postnatal shifts of interneuron position in the neocortex of normal and reeler mice: evidence for inward radial migration. Neuroscience 124(3):605–618

    CAS  PubMed  Google Scholar 

  176. Lodato S, Rouaux C, Quast KB, Jantrachotechatchawan C, Studer M, Hensch TK, Arlotta P (2011) Excitatory projection neuron subtypes control the distribution of local inhibitory interneurons in the cerebral cortex. Neuron 69(4):763–779

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Wang Y, Li G, Stanco A, Long JE, Crawford D, Potter GB, Pleasure SJ, Behrens T, Rubenstein JL (2011) CXCR4 and CXCR7 have distinct functions in regulating interneuron migration. Neuron 69(1):61–76

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Cobos I, Broccoli V, Rubenstein JL (2005) The vertebrate ortholog of Aristaless is regulated by Dlx genes in the developing forebrain. J Comp Neurol 483(3):292–303

    CAS  PubMed  Google Scholar 

  179. Colombo E, Collombat P, Colasante G, Bianchi M, Long J, Mansouri A, Rubenstein JL, Broccoli V (2007) Inactivation of Arx, the murine ortholog of the X-linked lissencephaly with ambiguous genitalia gene, leads to severe disorganization of the ventral telencephalon with impaired neuronal migration and differentiation. J Neurosci Off J Soc Neurosci 27(17):4786–4798

    CAS  Google Scholar 

  180. Kitamura K, Yanazawa M, Sugiyama N, Miura H, Iizuka-Kogo A, Kusaka M, Omichi K, Suzuki R, Kato-Fukui Y, Kamiirisa K, Matsuo M, Kamijo S, Kasahara M, Yoshioka H, Ogata T, Fukuda T, Kondo I, Kato M, Dobyns WB, Yokoyama M, Morohashi K (2002) Mutation of ARX causes abnormal development of forebrain and testes in mice and X-linked lissencephaly with abnormal genitalia in humans. Nat Genet 32(3):359–369

    CAS  PubMed  Google Scholar 

  181. Friocourt G, Parnavelas JG (2011) Identification of Arx targets unveils new candidates for controlling cortical interneuron migration and differentiation. Front Cell Neurosci. doi:10.3389/fncel.2011.00028

  182. Kanatani S, Yozu M, Tabata H, Nakajima K (2008) COUP-TFII is preferentially expressed in the caudal ganglionic eminence and is involved in the caudal migratory stream. J Neurosci Off J Soc Neurosci 28(50):13582–13591

    CAS  Google Scholar 

  183. Nobrega-Pereira S, Kessaris N, Du T, Kimura S, Anderson SA, Marin O (2008) Postmitotic Nkx2-1 controls the migration of telencephalic interneurons by direct repression of guidance receptors. Neuron 59(5):733–745

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Le TN, Du G, Fonseca M, Zhou QP, Wigle JT, Eisenstat DD (2007) Dlx homeobox genes promote cortical interneuron migration from the basal forebrain by direct repression of the semaphorin receptor neuropilin-2. J Biol Chem 282(26):19071–19081

    CAS  PubMed  Google Scholar 

  185. Liodis P, Denaxa M, Grigoriou M, Akufo-Addo C, Yanagawa Y, Pachnis V (2007) Lhx6 activity is required for the normal migration and specification of cortical interneuron subtypes. J Neurosci Off J Soc Neurosci 27(12):3078–3089

    CAS  Google Scholar 

  186. Du T, Xu Q, Ocbina PJ, Anderson SA (2008) NKX2.1 specifies cortical interneuron fate by activating Lhx6. Development 135(8):1559–1567

    CAS  PubMed  Google Scholar 

  187. Zhao Y, Flandin P, Long JE, Cuesta MD, Westphal H, Rubenstein JL (2008) Distinct molecular pathways for development of telencephalic interneuron subtypes revealed through analysis of Lhx6 mutants. J Comp Neurol 510(1):79–99

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Luskin MB (1993) Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 11(1):173–189

    CAS  PubMed  Google Scholar 

  189. Luskin MB, Boone MS (1994) Rate and pattern of migration of lineally-related olfactory bulb interneurons generated postnatally in the subventricular zone of the rat. Chem Senses 19(6):695–714

    CAS  PubMed  Google Scholar 

  190. Lois C, Alvarez-Buylla A (1994) Long-distance neuronal migration in the adult mammalian brain. Science 264(5162):1145–1148

    CAS  PubMed  Google Scholar 

  191. Hakanen J, Duprat S, Salminen M (2011) Netrin1 is required for neural and glial precursor migrations into the olfactory bulb. Dev Biol 355(1):101–114

    CAS  PubMed  Google Scholar 

  192. Cobos I, Borello U, Rubenstein JL (2007) Dlx transcription factors promote migration through repression of axon and dendrite growth. Neuron 54(6):873–888

    CAS  PubMed  Google Scholar 

  193. Alberti S, Krause SM, Kretz O, Philippar U, Lemberger T, Casanova E, Wiebel FF, Schwarz H, Frotscher M, Schutz G, Nordheim A (2005) Neuronal migration in the murine rostral migratory stream requires serum response factor. Proc Natl Acad Sci USA 102(17):6148–6153

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Vasudevan A, Won C, Li S, Erdelyi F, Szabo G, Kim KS (2012) Dopaminergic neurons modulate GABA neuron migration in the embryonic midbrain. Development 139(17):3136–3141

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Crandall JE, McCarthy DM, Araki KY, Sims JR, Ren JQ, Bhide PG (2007) Dopamine receptor activation modulates GABA neuron migration from the basal forebrain to the cerebral cortex. J Neurosci Off J Soc Neurosci 27(14):3813–3822

    CAS  Google Scholar 

  196. Horton S, Meredith A, Richardson JA, Johnson JE (1999) Correct coordination of neuronal differentiation events in ventral forebrain requires the bHLH factor MASH1. Mol Cell Neurosci 14(4–5):355–369

    CAS  PubMed  Google Scholar 

  197. Chen L, Guo Q, Li JY (2009) Transcription factor Gbx2 acts cell-nonautonomously to regulate the formation of lineage-restriction boundaries of the thalamus. Development 136(8):1317–1326

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Mastick GS, Andrews GL (2001) Pax6 regulates the identity of embryonic diencephalic neurons. Mol Cell Neurosci 17(1):190–207

    CAS  PubMed  Google Scholar 

  199. Zhao GY, Li ZY, Zou HL, Hu ZL, Song NN, Zheng MH, Su CJ, Ding YQ (2008) Expression of the transcription factor GATA3 in the postnatal mouse central nervous system. Neurosci Res 61(4):420–428

    CAS  PubMed  Google Scholar 

  200. Agarwala S, Sanders TA, Ragsdale CW (2001) Sonic hedgehog control of size and shape in midbrain pattern formation. Science 291(5511):2147–2150

    CAS  PubMed  Google Scholar 

  201. Blaess S, Corrales JD, Joyner AL (2006) Sonic hedgehog regulates Gli activator and repressor functions with spatial and temporal precision in the mid/hindbrain region. Development 133(9):1799–1809

    CAS  PubMed  Google Scholar 

  202. Puelles E, Annino A, Tuorto F, Usiello A, Acampora D, Czerny T, Brodski C, Ang SL, Wurst W, Simeone A (2004) Otx2 regulates the extent, identity and fate of neuronal progenitor domains in the ventral midbrain. Development 131(9):2037–2048

    CAS  PubMed  Google Scholar 

  203. Waite MR, Skidmore JM, Billi AC, Martin JF, Martin DM (2011) GABAergic and glutamatergic identities of developing midbrain Pitx2 neurons. Dev Dyn Off Publ Am Assoc Anat 240(2):333–346

    CAS  Google Scholar 

  204. Lorente-Canovas B, Marin F, Corral-San-Miguel R, Hidalgo-Sanchez M, Ferran JL, Puelles L, Aroca P (2012) Multiple origins, migratory paths and molecular profiles of cells populating the avian interpeduncular nucleus. Dev Biol 361(1):12–26

    CAS  PubMed  Google Scholar 

  205. Waite MR, Skaggs K, Kaviany P, Skidmore JM, Causeret F, Martin JF, Martin DM (2012) Distinct populations of GABAergic neurons in mouse rhombomere 1 express but do not require the homeodomain transcription factor PITX2. Mol Cell Neurosci 49(1):32–43

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Sgaier SK, Lao Z, Villanueva MP, Berenshteyn F, Stephen D, Turnbull RK, Joyner AL (2007) Genetic subdivision of the tectum and cerebellum into functionally related regions based on differential sensitivity to engrailed proteins. Development 134(12):2325–2335

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Sillitoe RV, Stephen D, Lao Z, Joyner AL (2008) Engrailed homeobox genes determine the organization of Purkinje cell sagittal stripe gene expression in the adult cerebellum. J Neurosci Off J Soc Neurosci 28(47):12150–12162

    CAS  Google Scholar 

  208. Wilson SL, Kalinovsky A, Orvis GD, Joyner AL (2011) Spatially restricted and developmentally dynamic expression of engrailed genes in multiple cerebellar cell types. Cerebellum 10(3):356–372

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Chizhikov VV, Lindgren AG, Currle DS, Rose MF, Monuki ES, Millen KJ (2006) The roof plate regulates cerebellar cell-type specification and proliferation. Development 133(15):2793–2804

    CAS  PubMed  Google Scholar 

  210. Kim EJ, Battiste J, Nakagawa Y, Johnson JE (2008) Ascl1 (Mash1) lineage cells contribute to discrete cell populations in CNS architecture. Mol Cell Neurosci 38(4):595–606

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Maricich SM, Herrup K (1999) Pax-2 expression defines a subset of GABAergic interneurons and their precursors in the developing murine cerebellum. J Neurobiol 41(2):281–294

    CAS  PubMed  Google Scholar 

  212. Helms AW, Battiste J, Henke RM, Nakada Y, Simplicio N, Guillemot F, Johnson JE (2005) Sequential roles for Mash1 and Ngn2 in the generation of dorsal spinal cord interneurons. Development 132(12):2709–2719

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Moran-Rivard L, Kagawa T, Saueressig H, Gross MK, Burrill J, Goulding M (2001) Evx1 is a postmitotic determinant of v0 interneuron identity in the spinal cord. Neuron 29(2):385–399

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Laura Lahti and Maarja Haugas for comments on this manuscript. Our work was supported by the Academy of Finland, Sigrid Juselius Foundation, Finnish Parkinson’s Foundation and the University of Helsinki.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kaia Achim or Juha Partanen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Achim, K., Salminen, M. & Partanen, J. Mechanisms regulating GABAergic neuron development. Cell. Mol. Life Sci. 71, 1395–1415 (2014). https://doi.org/10.1007/s00018-013-1501-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-013-1501-3

Keywords

Navigation