Skip to main content
Log in

The role of PPARβ/δ in the regulation of glutamatergic signaling in the hamster suprachiasmatic nucleus

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor superfamily and function as transcription factors that regulate gene expression in numerous biological processes. Although the PPARβ/δ subtype is highly expressed in the brain, its physiological roles in neuronal function remain to be elucidated. In this study, we examined the presence of PPARβ/δ in the master circadian clock of the Syrian hamster and investigated its putative functional role in this structure. In mammals, the central circadian clock, located in the suprachiasmatic nucleus (SCN), is entrained by the light–dark (LD) cycle via photic6 signals conveyed by a direct pathway whose terminals release glutamate. Using immunocytochemical and qRT-PCR analysis, we demonstrated that the rhythmic expression of PPAR β/δ within the SCN of hamsters raised under an LD cycle was detectable only at the transcriptional level when the hamsters were maintained under constant darkness (DD). The increase in the number of immunoreactive PPARβ/δ cells observed under DD after light stimulation during the early subjective night (CT14), but not during the subjective day (CT06), demonstrated that the expression of PPARβ/δ can be up-regulated according to the photosensitive phase of the circadian clock. All of the PPARβ/δ-positive cells in the SCN also expressed the glutamate receptor NMDAR1. Moreover, we demonstrated that at the photosensitive point (CT14), the administration of L-16504, a specific agonist of PPARβ/δ, amplified the phase delay of the locomotor response induced by a light pulse. Taken together, these data suggest that PPARβ/δ activation modulates glutamate release that mediates entrainment of the circadian clock by light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Desvergne B, Wahli W (1999) Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev 20(5):649–688

    Article  PubMed  CAS  Google Scholar 

  2. Evans RM, Barish GD, Wang Y-X (2004) PPARs and the complex journey to obesity. Nat Med 10(4):355–361

    Article  PubMed  CAS  Google Scholar 

  3. Yang X, Downes M, Yu RT, Bookout AL, He W, Straume M, Mangelsdorf DJ, Evans RM (2006) Nuclear receptor expression links the circadian clock to metabolism. Cell 126(4):801–810

    Article  PubMed  CAS  Google Scholar 

  4. Lemberger T, Saladin R, Vazquez M, Assimacopoulos F, Staels B, Desvergne B, Wahli W, Auwerx J (1996) Expression of the peroxisome proliferator-activated receptor alpha gene is stimulated by stress and follows a diurnal rhythm. J Biol Chem 271(3):1764–1769

    Article  PubMed  CAS  Google Scholar 

  5. Patel DD, Knight BL, Wiggins D, Humphreys SM, Gibbons GF (2001) Disturbances in the normal regulation of SREBP-sensitive genes in PPARalpha-deficient mice. J Lipid Res 42(3):328–337

    PubMed  CAS  Google Scholar 

  6. Ximenes da Silva A, Lavialle F, Gendrot G, Guesnet P, Alessandri JM, Lavialle M (2002) Glucose transport and utilization are altered in the brain of rats deficient in n-3 polyunsaturated fatty acids. J Neurochem 81(6):1328–1337

    Article  PubMed  CAS  Google Scholar 

  7. Braissant O, Wahli W (1998) Differential expression of peroxisome proliferator-activated receptor-alpha, -beta, and -gamma during rat embryonic development. Endocrinology 139(6):2748–2754

    Article  PubMed  CAS  Google Scholar 

  8. Hall MG, Quignodon L, Desvergne B (2008) Peroxisome proliferator-activated receptor β/δ in the brain: facts and hypothesis. PPAR Res 2008:780452. doi:10.1155/2008/780452

    Article  PubMed  CAS  Google Scholar 

  9. Moreno S, Farioli-Vecchioli S, Cerù MP (2004) Immunolocalization of peroxisome proliferator-activated receptors and retinoid × receptors in the adult rat CNS. Neuroscience 123(1):131–145

    Article  PubMed  CAS  Google Scholar 

  10. Dickmeis T (2009) Glucocorticoids and the circadian clock. J Endocrinol 200(1):3–22

    Article  PubMed  CAS  Google Scholar 

  11. Pevet P, Challet E (2011) Melatonin: both master clock output and internal time-giver in the circadian clocks network. J Physiol Paris 105(4–6):170–182

    Article  PubMed  Google Scholar 

  12. Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals. Nature 418(6901):935–941

    Article  PubMed  CAS  Google Scholar 

  13. Ebling FJ (1996) The role of glutamate in the photic regulation of the suprachiasmatic nucleus. Progr Neurobiol 50(2–3):109–132

    Article  CAS  Google Scholar 

  14. Bright JJ, Kanakasabai S, Chearwae W, Chakraborty S (2008) PPAR regulation of inflammatory signaling in CNS diseases. PPAR Res 2008:658520. doi:10.1155/2008/658520

    Article  PubMed  Google Scholar 

  15. Inoue I, Shinoda Y, Ikeda M, Hayashi K, Kanazawa K, Nomura M, Matsunaga T, Xu H, Kawai S, Awata T, Komoda T, Katayama S (2005) CLOCK/BMAL1 is involved in lipid metabolism via transactivation of the peroxisome proliferator-activated receptor (PPAR) response element. J Atheroscler Thromb 12(3):169–174

    Article  PubMed  CAS  Google Scholar 

  16. Canaple L, Rambaud J, Dkhissi-Benyahya O, Ba Rayet, Tan NS, Michalik L, Delaunay F, Wahli W, Laudet V (2006) Reciprocal regulation of brain and muscle Arnt-like protein 1 and peroxisome proliferator-activated receptor alpha defines a novel positive feedback loop in the rodent liver circadian clock. Mol Endocrinol 20(8):1715–1727

    Article  PubMed  CAS  Google Scholar 

  17. Corton JC, Apte U, Anderson SP, Limaye P, Yoon L, Latendresse J, Dunn C, Everitt JI, Voss KA, Swanson C, Kimbrough C, Wong JS, Gill SS, Chandraratna RA, Kwak MK, Kensler TW, Stulnig TM, Steffensen KR, Gustafsson JA, Mehendale HM (2004) Mimetics of caloric restriction include agonists of lipid-activated nuclear receptors. J Biol Chem 279(44):46204–46212

    Article  PubMed  CAS  Google Scholar 

  18. Teboul M, Guillaumond F, Grechez-Cassiau A, Delaunay F (2008) Minireview: the nuclear hormone receptor family round the clock. Mol Endocrinol 22(12):2573–2582

    Article  PubMed  CAS  Google Scholar 

  19. Lavialle M, Begue A, Papillon C, Vilaplana J (2001) Modifications of retinal afferent activity induce changes in astroglial plasticity in the hamster circadian clock. Glia 34:88–100

    Article  PubMed  CAS  Google Scholar 

  20. Shibata S, Watanabe A, Hamada T, Ono M, Watanabe S (1994) N-methyl-d aspartate induces phase shifts in circadian rhythm of neuronal activity of rat SCN in vitro. Am J Physiol 267:R360–R364

    PubMed  CAS  Google Scholar 

  21. Mintz EM, Marvel CL, Gillespie CF, Price KM, Albers HE (1999) Activation of NMDA receptors in the suprachiasmatic nucleus produces light-like phase shifts of the circadian clock in vivo. J Neurosci 19(12):5124–5130

    PubMed  CAS  Google Scholar 

  22. Guan H-P, Ishizuka T, Chui PC, Lehrke M, Lazar MA (2005) Corepressors selectively control the transcriptional activity of PPARgamma in adipocytes. Genes Dev 19(4):453–461

    Article  PubMed  CAS  Google Scholar 

  23. Forman BM, Chen J, Evans RM (1997) Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors alpha and delta. Proc Natl Acad Sci USA 94(9):4312–4317

    Article  PubMed  CAS  Google Scholar 

  24. Krey G, Braissant O, L’Horset F, Kalkhoven E, Perroud M, Parker MG, Wahli W (1997) Fatty acids, eicosanoids, and hypolipidemic agents identified as ligands of peroxisome proliferator-activated receptors by coactivator-dependent receptor ligand assay. Mol Endocrinol 11(6):779–791

    Article  PubMed  CAS  Google Scholar 

  25. Xu HE, Lambert MH, Montana VG, Parks DJ, Blanchard SG, Brown PJ, Sternbach DD, Lehmann M Jr, Wisely GB, Willson TM, Kliewer SA, Milburn MV (1999) Molecular recognition of fatty acids by peroxisome proliferator-activated receptors. Mol Cell 3(3):397–403

    Article  PubMed  CAS  Google Scholar 

  26. Irwin RP, Allen CN (2007) Calcium response to retinohypothalamic tract synaptic transmission in suprachiasmatic nucleus neurons. J Neurosci 27(43):11748–11757

    Article  PubMed  CAS  Google Scholar 

  27. Yoshihara Y, Watanabe Y (1990) Translocation of phospholipase A2 from cytosol to membranes in rat brain induced by calcium ions. Biochem Biophys Res Commun 170(2):484–490

    Article  PubMed  CAS  Google Scholar 

  28. Lazarewicz JW, Salinska E, Wroblewski JT (1992) NMDA receptor-mediated arachidonic acid release in neurons: role in signal transduction and pathological aspects. Adv Exp Med Biol 318:73–89

    Article  PubMed  CAS  Google Scholar 

  29. Strokin M, Sergeeva M, Reiser G (2003) Docosahexaenoic acid and arachidonic acid release in rat brain astrocytes is mediated by two separate isoforms of phospholipase A2 and is differently regulated by cyclic AMP and Ca2+. Br J Pharmacol 139(5):1014–1022

    Article  PubMed  CAS  Google Scholar 

  30. Basselin M, Chang L, Bell JM, Rapoport SI (2006) Chronic lithium chloride administration attenuates brain NMDA receptor-initiated signaling via arachidonic acid in unanesthetized rats. Neuropsychopharmacology 31(8):1659–1674

    Article  PubMed  CAS  Google Scholar 

  31. Kolko M, Rodriguez de Turco EB, Diemer NH, Bazan NG (2003) Neuronal damage by secretory phospholipase A2: modulation by cytosolic phospholipase A2, platelet-activating factor, and cyclooxygenase-2 in neuronal cells in culture. Neurosci Lett 338(2):164–168

    Article  PubMed  CAS  Google Scholar 

  32. Li SR, Wu KK, Anggard E, Ferns G (1993) Localization of prostaglandin G/H synthase gene expression in rat brain by in situ hybridization. Biol Signals 2(2):77–83

    Article  PubMed  CAS  Google Scholar 

  33. Xu L, Han C, Lim K, Wu T (2006) Cross-talk between peroxisome proliferator-activated receptor delta and cytosolic phospholipase A2alpha/cyclooxygenase-2/prostaglandin E2 signaling pathways in human hepatocellular carcinoma cells. Cancer Res 66(24):11859–11868

    Article  PubMed  CAS  Google Scholar 

  34. Bendová Z, Sumová A, Mikkelsen JD (2009) Circadian and developmental regulation of N-methyl-d-aspartate-receptor 1 mRNA splice variants and N-methyl-d-aspartate-receptor 3 subunit expression within the rat suprachiasmatic nucleus. Neuroscience 159(2):599–609

    Article  PubMed  Google Scholar 

  35. Colwell CS (2001) NMDA-evoked calcium transients and currents in the suprachiasmatic nucleus: gating by the circadian system. Eur J Neurosci 13:1420–1428

    Article  PubMed  CAS  Google Scholar 

  36. Colwell CS (2000) Circadian modulation of calcium levels in cells in the suprachiasmatic nucleus. Eur J Neurosci 12:571–576

    Article  PubMed  CAS  Google Scholar 

  37. Shibata S, Oomura Y, Kita H, Hattori K (1982) Circadian rhythmic changes of neuronal activity in the suprachiasmatic nucleus of the rat hypothalamic slice. Brain Res 247(1):154–158

    Article  PubMed  CAS  Google Scholar 

  38. Jiang ZG, Yang Y, Liu ZP, Allen CN (1997) Membrane properties and synaptic inputs of suprachiasmatic nucleus neurons in rat brain slices. J Physiol 499(Pt 1):141–159

    PubMed  CAS  Google Scholar 

  39. Meijer JH, Schaap J, Watanabe K, Albus H (1997) Multiunit activity recordings in the suprachiasmatic nuclei: in vivo versus in vitro models. Brain Res 753(2):322–327

    Article  PubMed  CAS  Google Scholar 

  40. Schaap J, Bos NPA, deJeu MTG, Geurtsen AMS, Meijer JH, Pennartz CMA (1999) Neurons of the rat suprachiasmatic nucleus show a circadian rhythm in membrane properties that is lost during prolonged whole-cell recording. Brain Res 815(1):154–166

    Article  PubMed  CAS  Google Scholar 

  41. Jin H, Ham SA, Kim MY, Woo IS, Kang ES, Hwang JS, Lee KW, Kim HJ, Roh GS, Lim DS, Kang D, Seo HG (2012) Activation of peroxisome proliferator-activated receptor-delta attenuates glutamate-induced neurotoxicity in HT22 mouse hippocampal cells. J Neurosci Res 90(8):1646–1653

    Article  PubMed  CAS  Google Scholar 

  42. Nelson DE, Takahashi JS (1991) Sensitivity and integration in a visual pathway for circadian entrainment in the Hamster (Mesocricetus-Auratus). J Physiol 439:115–145

    PubMed  CAS  Google Scholar 

  43. Muscat L, Morin LP (2005) Binocular contributions to the responsiveness and integrative capacity of the circadian rhythm system to light. J Biol Rhythms 20(6):513–525

    Article  PubMed  Google Scholar 

  44. Kallingal GJ, Mintz EM (2006) Glutamatergic activity modulates the phase-shifting effects of gastrin-releasing peptide and light. Eur J Neurosci 24(10):2853–2858

    Article  PubMed  Google Scholar 

  45. Glinghammar B, Skogsberg J, Hamsten A, Ehrenborg E (2003) PPARdelta activation induces COX-2 gene expression and cell proliferation in human hepatocellular carcinoma cells. Biochem Biophys Res Commun 308(2):361–368

    Article  PubMed  CAS  Google Scholar 

  46. Xu L, Han C, Wu T (2006) A novel positive feedback loop between peroxisome proliferator-activated receptor-delta and prostaglandin E2 signaling pathways for human cholangiocarcinoma cell growth. J Biol Chem 281(45):33982–33996

    Article  PubMed  CAS  Google Scholar 

  47. Yang H, Chen C (2008) Cyclooxygenase-2 in synaptic signaling. Curr Pharm Des 14(14):1443–1451

    Article  PubMed  CAS  Google Scholar 

  48. Chen C, Bazan NG (2005) Lipid signaling: sleep, synaptic plasticity, and neuroprotection. Prostaglandins Other Lipid Mediat 77(1–4):65–76

    Article  PubMed  CAS  Google Scholar 

  49. Sang N, Zhang J, Marcheselli V, Bazan NG, Chen C (2005) Postsynaptically synthesized prostaglandin E2 (PGE2) modulates hippocampal synaptic transmission via a presynaptic PGE2 EP2 receptor. J Neurosci 25(43):9858–9870

    Article  PubMed  CAS  Google Scholar 

  50. Bazan NG (2003) Synaptic lipid signaling: significance of polyunsaturated fatty acids and platelet-activating factor. J Lipid Res 44(12):2221–2233

    Article  PubMed  CAS  Google Scholar 

  51. Sanzgiri RP, Araque A, Haydon PG (1999) Prostaglandin E2 stimulates glutamate receptor-dependent astrocyte neuromodulation in cultured hippocampal cells. J Neurobiol 41(2):221–229

    Article  PubMed  CAS  Google Scholar 

  52. Bezzi P, Carmignoto G, Pasti L, Vesce S, Rossi D, Rizzini BL, Pozzan T, Volterra A (1998) Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature 391(6664):281–285

    Article  PubMed  CAS  Google Scholar 

  53. Dave KA, Platel J-C, Huang F, Tian D, Stamboulian-Platel S, Bordey A (2011) Prostaglandin E2 induces glutamate release from subventricular zone astrocytes. Neuron Glia Biol 7:1–7

    Article  Google Scholar 

  54. Wagner K-D, Wagner N (2010) Peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) acts as regulator of metabolism linked to multiple cellular functions. Pharmacol Ther 125(3):423–435

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Paul Pévet for helpful comments on the manuscript, Claire Maudet for animal care, Stéphanie Dumont for preparing drug solutions, Gaëlle Champeil-Potokar for confocal images. This work was supported by the Institut National de la Recherche Agronomique (INRA), Centre National de la Recherche Scientifique (CNRS) and University of Strasbourg. All authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monique Lavialle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Challet, E., Denis, I., Rochet, V. et al. The role of PPARβ/δ in the regulation of glutamatergic signaling in the hamster suprachiasmatic nucleus. Cell. Mol. Life Sci. 70, 2003–2014 (2013). https://doi.org/10.1007/s00018-012-1241-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-1241-9

Keywords

Navigation