Skip to main content
Log in

MPTP and SNpc DA neuronal vulnerability: Role of dopamine, superoxide and nitric oxide in neurotoxicity. Minireview.

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Parkinson disease (PD) is a common neurodegenerative disease of unknown origin that is characterized, mainly, by a significant reduction in the number of dopamine neurons in the substantia nigra pars compacta (SNpc) of the brain and a dramatic reduction in dopamine levels in the corpus striatum. For reasons that we do not know, the dopamine neuron seems to be more vulnerable to damage than any other neuron in the brain. Although hypotheses of damage to the dopamine neuron include oxidative stress, growth factor decline, excitotoxicity, inflammation in the SNpc and protein aggregation, oxidative stress in the nigrostriatal dopaminergic system garners a significant amount of attention. In the oxidative stress hypothesis of PD, superoxide, nitric oxide and dopamine all conspire to create an environment that can be detrimental to the dopamine neuron. MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine), the tool of choice for investigations into the mechanisms involved in the death of dopamine neurons in PD, has been used extensively in attempts to sort out what happens in and around the dopamine neuron. Herein, we review the roles of dopamine, superoxide and nitric oxide in the demise of the dopamine neuron in the MPTP model of PD as it relates to the death of the dopamine neuron noted in PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abbott NJ (1988) Developmental neurobiology. The milieu is the message.Nature 332, 490–491.

    Article  PubMed  CAS  Google Scholar 

  • Ara J, S Przedborski, AB Naini, V Jackson-Lewis, RR Trifiletti, J Horwitz and H Ischiropoulos (1998) Inactivation of tyrosine hydroxylase by nitration following exposure to peroxynitrite and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP).Proc. Natl. Acad. Sci.USA 95, 7659–7663.

    Article  PubMed  CAS  Google Scholar 

  • Babior BM (1999) NADPH oxidase: an update.Blood 93, 1464–1476.

    PubMed  CAS  Google Scholar 

  • Banati RB, J Gehrmann, P Schubert and GW Kreutzberg (1993) Cytotoxicity of microglia.Glia 7, 111–118.

    Article  PubMed  CAS  Google Scholar 

  • Beal MF (2003) Mitochondria, oxidative damage, and inflammation in Parkinson’s disease.Ann. NY Acad. Sci. 991, 120–131.

    PubMed  CAS  Google Scholar 

  • Bezard E, CE Gross, MC Fournier, S Dovero, B Bloch and M Jaber (1999) Absence of MPTP-induced neuronal death in mice lacking the dopamine transporter.Exp. Neurol. 155, 268–273.

    Article  PubMed  CAS  Google Scholar 

  • Bohn MC (1999) A commentary on glial cell line-derived neu-rotrophic factor (GDNF). From a glial secreted molecule to gene therapy.Biochem. Pharmacol. 57, 135–142.

    Article  PubMed  CAS  Google Scholar 

  • Brooks WJ, MF Jarvis and GC Wagner (1989) Astrocytes as a primary locus for the conversion MPTP into MPP+.J. Neural Transm. 76, 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Burke WJ, HD Chung and SW Li (1999) Quantitation of 3,4-dihy-droxyphenylacetaldehyde and 3, 4-dihydroxyphenylglycolalde-hyde, the monoamine oxidase metabolites of dopamine and nora-drenaline, in human tissues by microcolumn high-performance liquid chromatography.Anal. Biochem. 273, 111–116.

    Article  PubMed  CAS  Google Scholar 

  • Burke WJ, SW Li, EA Williams, R Nonneman and DS Zahm (2003) 3,4-Dihydroxyphenylacetaldehyde is the toxic dopamine metabolitein vivo: implications for Parkinson’s disease patho-genesis.Brain Res. 989, 205–213.

    Article  PubMed  CAS  Google Scholar 

  • Burke WJ, SW Li, HD Chung, DA Ruggiero, BS Kristal, EM Johnson, P Lampe, VB Kumar, M Franko, EA Williams and DS Zahm (2004) Neurotoxicity of MAO metabolites of cate-cholamine neurotransmitters: role in neurodegenerative diseases.Neurotoxicology 25, 101–115.

    Article  PubMed  CAS  Google Scholar 

  • Chauhan NB, GJ Siegel and JM Lee (2001) Depletion of glial cell line-derived neurotrophic factor in substantia nigra neurons of Parkinson’s disease brain.J. Chem. Neuroanat. 21, 277–288.

    Article  PubMed  CAS  Google Scholar 

  • Ciesielska A, I Joniec, A Przybylkowski, G Gromadzka, I Kurkowska-Jastrzebska, A Czlonkowska and A Czlonkowski (2003) Dynamics of expression of the mRNA for cytokines and inducible nitric synthase in a murine model of the Parkinson’s disease.Acta Neurobiol. Exp. (Wars.) 63, 117–126.

    Google Scholar 

  • Cohen G (1984) Oxy-radical toxicity in catecholamine neurons.Neurotoxicology 5, 77–82.

    PubMed  CAS  Google Scholar 

  • Dauer W and S Przedborski (2003) Parkinson’s disease: mechanisms and models.Neuron 39, 889–909.

    Article  PubMed  CAS  Google Scholar 

  • Dehmer T, J Lindenau, S Haid, J Dichgans and JB Schulz (2000) Deficiency of inducible nitric oxide synthase protects against MPTP toxicityin vivo.J. Neurochem. 74, 2213–2216.

    Article  PubMed  CAS  Google Scholar 

  • Drachman DB, K Frank, M Dykes-Hoberg, P Teismann, G Almer, S Przedborski and JD Rothstein (2002) Cyclooxygenase 2 inhibition protects motor neurons and prolongs survival in a trans-genic mouse model of ALS.Ann. Neurol. 52, 771–778.

    Article  PubMed  CAS  Google Scholar 

  • Fahn S (1997) Levodopa-induced neurotoxicity: does it represent a problem for the treatment of Parkinson’s Disease?CNS Drugs 8, 376–393.

    Article  CAS  Google Scholar 

  • Fahn S and G Cohen (1992) The oxidant stress hypothesis in Parkinson’s disease: evidence supporting it.Ann. Neurol. 32, 804–812.

    Article  PubMed  CAS  Google Scholar 

  • Fahn S and S Przedborski (2000) Parkinsonism, In:Merritt’s Neurology (Rowland LP. Ed.) (Lippincott Williams & Wilkins: New York, NY), pp 679–693.

    Google Scholar 

  • Fornai F, FS Giorgi, L Bassi, M Ferrucci, MG Alessandri and GU Corsini (2000) Modulation of dihydroxyphenylacetaldehyde extracellular levelsin vivo in the rat striatum after different kinds of pharmacological treatment.Brain Res. 861, 126–134.

    Article  PubMed  CAS  Google Scholar 

  • Fridovich I (1995) Superoxide radical and superoxide dismutases.Ann. Rev. Biochem. 64, 97–112.

    Article  PubMed  CAS  Google Scholar 

  • Gainetdinov RR, F Fumagalli, SR Jones and MG Caron (1997) Dopamine transporter is required forin vivo MPTP neurotoxici-ty: evidence from mice lacking the transporter.J.Neurochem. 69, 1322–1325.

    PubMed  CAS  Google Scholar 

  • Gao HM, B Liu, W Zhang and JS Hong (2003) Critical role of microglial NADPH oxidase-derived free radicals in the in vitro MPTP model of Parkinson’s disease.FASEB J. 17, 1954–1956.

    PubMed  CAS  Google Scholar 

  • Graham DG (1978) Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones.Mol. Pharmacol.14, 633–643.

    PubMed  CAS  Google Scholar 

  • Hafler DA (2004) Multiple sclerosis.J. Clin. Invest. 113, 788–794.

    PubMed  CAS  Google Scholar 

  • Hastings TG (1995) Enzymatic oxidation of dopamine: the role of prostaglandin H synthase.J. Neurochem. 64, 919–924.

    PubMed  CAS  Google Scholar 

  • Hazell AS, Y Itzhak, H Liu and MD Norenberg (1997) 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) decreases glutamate uptake in cultured astrocytes.J. Neurochem. 68, 2216–2219.

    PubMed  CAS  Google Scholar 

  • Hebert G, J Arsaut, R Dantzer and J Demotes-Mainard (2003) Time-course of the expression of inflammatory cytokines and matrix metalloproteinases in the striatum and mesencephalon of mice injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyri-dine, a dopaminergic neurotoxin.Neurosci. Lett. 349, 191–195.

    Article  PubMed  CAS  Google Scholar 

  • Huang Y, L Cheung, D Rowe and G Halliday (2004) Genetic contributions to Parkinson’s disease.Brain Res. Brain Res. Rev. 46, 44–70.

    Article  PubMed  CAS  Google Scholar 

  • Hunot S and EC Hirsch (2003) Neuroinflammatory processes in Parkinson’s disease.Ann. Neurol. 53 Suppl. 3, S49-S58.

    Article  PubMed  CAS  Google Scholar 

  • Hunot S, F Boissiere, B Faucheux, B Brugg, A Mouatt-Prigent, Y Agid and EC Hirsch (1996) Nitric oxide synthase and neuronal vulnerability in Parkinson’s disease.Neuroscience 72, 355–363.

    Article  PubMed  CAS  Google Scholar 

  • Hunot S, N Dugas, B Faucheux, A Hartmann, M Tardieu, P Debre, Y Agid, B Dugas and EC Hirsch (1999) Fc?RII/CD23 is expressed in Parkinson’s disease and induces,in vitro, production of nitric oxide and tumor necrosis factor-alpha in glial cells.J. Neurosci. 19, 3440–3447.

    PubMed  CAS  Google Scholar 

  • Ii K, H Ito, K Tanaka and A Hirano (1997) Immunocytochemical co-localization of the proteasome in ubiquitinated structures in neurodegenerative diseases and the elderly.J. Neuropathol. Exp. Neurol. 56, 125–131.

    Article  PubMed  CAS  Google Scholar 

  • Ischiropoulos H and AB Al-Mehdi (1995) Peroxynitrite-mediated oxidative protein modifications.FEBS Lett. 364, 279–282.

    Article  PubMed  CAS  Google Scholar 

  • Jackson-Lewis V, M Jakowec, RE Burke and S Przedborski (1995) Time course and morphology of dopaminergic neuronal death caused by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahy-dropyridine.Neurodegeneration 4, 257–269.

    Article  PubMed  CAS  Google Scholar 

  • Jakowec MW, K Nixon, E Hogg, T McNeill and GM Petzinger (2004) Tyrosine hydroxylase and dopamine transporter expression following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurodegeneration of the mouse nigrostriatal pathway.J. Neurosci. Res. 76, 539–550.

    Article  PubMed  CAS  Google Scholar 

  • Javitch JA, RJ D’Amato, SM Strittmatter and SH Snyder (1985) Parkinsonism-inducing neurotoxin,N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine: uptake of the metaboliteN-methyl-4-phenylpyridine by dopamine neurons explains selective toxicity.Proc. Natl. Acad. Sci.USA 82, 2173–2177.

    Article  PubMed  CAS  Google Scholar 

  • Jeon BS, V Jackson-Lewis and RE Burke (1995) 6-Hydroxydopamine lesion of the rat substantia nigra: time course and morphology of cell death.Neurodegeneration 4, 131–137.

    Article  PubMed  CAS  Google Scholar 

  • Keller JN, MS Kindy, FW Holtsberg, DK St Clair, HC Yen, A Germeyer, SM Steiner, AJ Bruce-Keller, JB Hutchins and MP Mattson (1998) Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury: suppression of peroxynitrite production, lipid peroxidation, and mitochondrial dysfunction.J. Neurosci. 18, 687–697.

    PubMed  CAS  Google Scholar 

  • Klivenyi P, D St Clair, M Wermer, HC Yen, T Oberley, L Yang and MF Beal (1998) Manganese superoxide dismutase overexpres-sion attenuates MPTP toxicity.Neurobiol. Dis. 5, 253–258.

    Article  PubMed  CAS  Google Scholar 

  • Kopin IJ (1992) Features of the dopaminergic neurotoxin MPTP.Ann. NY Acad. Sci. 648, 96–104.

    Article  PubMed  CAS  Google Scholar 

  • Kostic V, DM Donovan and R Yokoyama (1996) Transgenic mice with increased number of dopamine transporters (DAT) show greater sensitivity to MPTP.Soc. Neurosci. Abstr. 22, 722.

    Google Scholar 

  • Kuhn DM, RE Arthur Jr, DM Thomas and LA Elferink (1999) Tyrosine hydroxylase is inactivated by catechol-quinones and converted to a redox-cycling quinoprotein: possible relevance to Parkinson’s disease.J. Neurochem. 73, 1309–1317.

    Article  PubMed  CAS  Google Scholar 

  • Lancaster JR Jr (1996) Diffusion of free nitric oxide, In:Nitric Oxide. Source and Detection of NO; NO Synthase (Packer L, Ed.) (Academic Press: New York, NY), pp 31–50.

    Chapter  Google Scholar 

  • Langston JW, LS Forno, J Tetrud, AG Reeves, JA Kaplan and D Karluk (1999) Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure.Ann. Neurol. 46, 598–605.

    Article  PubMed  CAS  Google Scholar 

  • Lau YS, YK Fung, KL Trobough, JR Cashman and JA Wilson (1991) Depletion of striatal dopamine by theN-oxide of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP).Neurotoxicology 12, 189–199.

    PubMed  CAS  Google Scholar 

  • Liberatore GT, V Jackson-Lewis, S Vukosavic, AS Mandir, M Vila, WG McAuliffe, VL Dawson, TM Dawson and S Przedborski (1999) Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease.Nat. Med. 5, 1403–1409.

    Article  PubMed  CAS  Google Scholar 

  • Marini AM, RH Lipsky, JP Schwartz and IJ Kopin (1992) Accumulation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in cultured cerebellar astrocytes.J. Neurochem. 58, 1250–1258.

    Article  PubMed  CAS  Google Scholar 

  • Mizuno Y, N Sone, K Suzuki and T Saitoh (1988) Studies on the toxicity of 1-methyl-4-phenylpyridinium ion (MPP+) against mitochondria of mouse brain.J. Neurol. Sci. 86, 97–110.

    Article  PubMed  CAS  Google Scholar 

  • Mizuno Y, S Ohta, M Tanaka, S Takamiya, K Suzuki, T Sato, H Oya, T Ozawa and Y Kagawa (1989) Deficiencies in complex I subunits of the respiratory chain in Parkinson’s disease.Biochem. Biophys. Res. Commun. 163, 1450–1455.

    Article  PubMed  CAS  Google Scholar 

  • Mogi M, A Togari, T Kondo, Y Mizuno, O Komure, S Kuno, H Ichinose and T Nagatsu (1999) Brain-derived growth factor and nerve growth factor concentrations are decreased in the substan-tia nigra in Parkinson’s disease.Neurosci. Lett. 270, 45–48.

    Article  PubMed  CAS  Google Scholar 

  • Muller HW, U Junghans and J Kappler (1995) Astroglial neu-rotrophic and neurite-promoting factors.Pharmacol. Ther. 65, 1–18.

    Article  PubMed  CAS  Google Scholar 

  • Nagatsu T, M Mogi, H Ichinose and A Togari (2000) Changes in cytokines and neurotrophins in Parkinson’s disease.J. Neural Transm. Suppl. 277–290.

  • Nicklas WJ, I Vyas and RE Heikkila (1985) Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-phenyl-pyridine, a metabolite of the neurotoxin, 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine.Life Sci. 36, 2503–2508.

    Article  PubMed  CAS  Google Scholar 

  • Nicklas WJ, SK Youngster, MV Kindt and RE Heikkila (1987) MPTP, MPP+ and mitochondrial function.Life Sci. 40, 721–729.

    Article  PubMed  CAS  Google Scholar 

  • O’Banion MK (1999) Cyclooxygenase-2: molecular biology, pharmacology, and neurobiology.Crit. Rev. Neurobiol. 13, 45–82.

    PubMed  CAS  Google Scholar 

  • Olanow CW and WG Tatton (1999) Etiology and pathogenesis of Parkinson’s disease.Annu. Rev. Neurosci. 22, 123–144.

    Article  PubMed  CAS  Google Scholar 

  • Przedborski S and V Jackson-Lewis (2000) ROS and Parkinson’s disease: a view to a kill, In:Free Radicals in Brain Pathophysiology (Poli G, E Cadenas and L Packer, Eds.) (Marcel Dekker: New York, NY), pp 273–290.

    Google Scholar 

  • Przedborski S and M Vila (2003) The 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model: a tool to explore the pathogen-esis of Parkinson’s disease.Ann. NY Acad. Sci. 991, 189–198.

    Article  PubMed  CAS  Google Scholar 

  • Przedborski S, V Kostic, V Jackson-Lewis, AB Naini, S Simonetti, S Fahn, E Carlson, CJ Epstein and JL Cadet (1992) Transgenic mice with increased Cu/Zn-superoxide dismutase activity are resistant toN-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity.J. Neurosci. 12, 1658–1667.

    PubMed  CAS  Google Scholar 

  • Przedborski S, M Levivier, H Jiang, M Ferreira, V Jackson-Lewis, D Donaldson and DM Togasaki (1995) Dose-dependent lesions of the dopaminergic nigrostriatal pathway induced by intrastri-atal injection of 6-hydroxydopamine.Neuroscience 67, 631–647.

    Article  PubMed  CAS  Google Scholar 

  • Przedborski S, V Jackson-Lewis, R Yokoyama, T Shibata, VL Dawson and TM Dawson (1996) Role of neuronal nitric oxide in MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-induced dopaminergic neurotoxicity.Proc. Natl. Acad. Sci. USA 93, 4565–4571.

    Article  PubMed  CAS  Google Scholar 

  • Przedborski S, V Jackson-Lewis, R Djaldetti, G Liberatore, M Vila, S Vukosavic and G Almer (2000) The parkinsonian toxin MPTP: action and mechanism.Restor. Neurol. Neurosci. 16, 135–142.

    PubMed  CAS  Google Scholar 

  • Radi R, A Cassina, R Hodara, C Quijano and L Castro (2002) Peroxynitrite reactions and formation in mitochondria.Free Radic. Biol. Med. 33, 1451–1464.

    Article  PubMed  CAS  Google Scholar 

  • Rajput AH (2001a) Levodopa prolongs life expectancy and is non-toxic to substantia nigra.Parkinsonism. Relat. Disord. 8, 95–100.

    Article  PubMed  CAS  Google Scholar 

  • Rajput AH (2001b) The protective role of levodopa in the human substantia nigra.Adv. Neurol. 86, 327–336.

    PubMed  CAS  Google Scholar 

  • Ransom BR, DM Kunis, I Irwin and JW Langston (1987) Astrocytes convert the parkinsonism inducing neurotoxin, MPTP, to its active metabolite, MPP+.Neurosci. Lett. 75, 323–328.

    Article  PubMed  CAS  Google Scholar 

  • Rego AC and CR Oliveira (2003) Mitochondrial dysfunction and reactive oxygen species in excitotoxicity and apoptosis: implications for the pathogenesis of neurodegenerative diseases.Neurochem. Res. 28, 1563–1574.

    Article  PubMed  CAS  Google Scholar 

  • Schapira AH, JM Cooper, D Dexter, JB Clark, P Jenner and CD Marsden (1990) Mitochondrial complex I deficiency in Parkinson’s disease.J. Neurochem. 54, 823–827.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt CJ, LA Matsuda and JW Gibb (1984)In vitro release of tri-tiated monoamines from rat CNS tissue by the neurotoxic compound 1-methyl-phenyl-tetrahydropyridine.Eur. J. Pharmacol. 103, 255–260.

    Article  PubMed  CAS  Google Scholar 

  • Snyder H, K Mensah, C Theisler, J Lee, A Matouschek and B Wolozin (2003) Aggregated and monomeric alpha-synuclein bind to the S6’ proteasomal protein and inhibit proteasomal function.J. Biol. Chem. 278, 11753–11759.

    Article  PubMed  CAS  Google Scholar 

  • Teismann P, K Tieu, DK Choi, DC Wu, A Naini, S Hunot, M Vila, V Jackson-Lewis and S Przedborski (2003a) Cyclooxygenase-2 is instrumental in Parkinson’s disease neurodegeneration.Proc. Natl. Acad. Sci. USA 100, 5473–5478.

    Article  PubMed  CAS  Google Scholar 

  • Teismann P, K Tieu, O Cohen, DK Choi, DC Wu, D Marks, M Vila, V Jackson-Lewis and S Przedborski (2003b) Pathogenic role of glial cells in Parkinson’s disease.Mov. Disord. 18, 121–129.

    Article  PubMed  Google Scholar 

  • Trojanowski JQ, M Goedert, T Iwatsubo and VM Lee (1998) Fatal attractions: abnormal protein aggregation and neuron death in Parkinson’s disease and Lewy body dementia.Cell Death Differ. 5, 832–837.

    Article  PubMed  CAS  Google Scholar 

  • Vigouroux S, M Briand and Y Briand (2004) Linkage between the proteasome pathway and neurodegenerative diseases and aging.Mol. Neurobiol. 30, 201–221.

    Article  PubMed  CAS  Google Scholar 

  • Vila M and S Przedborski (2004) Genetic clues to the pathogenesis of Parkinson’s disease.Nat. Med. 10 Suppl., S58-S62.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe H, Y Muramatsu, R Kurosaki, M Michimata, M Matsubara, Y Imai and T Araki (2004) Protective effects of neu-ronal nitric oxide synthase inhibitor in mouse brain against MPTP neurotoxicity: an immunohistological study.Eur. Neuropsychopharmacol. 14, 93–104.

    Article  PubMed  CAS  Google Scholar 

  • Weiner WJ (2000) Is levodopa toxic?Arch. Neurol. 57, 408–410.

    Article  PubMed  CAS  Google Scholar 

  • Wu DC, P Teismann, K Tieu, M Vila, V Jackson-Lewis, H Ischiropoulos and S Przedborski (2003) NADPH oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1,2,3,6-tetrahy-dropyridine model of Parkinson’s disease.Proc. Natl. Acad. Sci. USA 100, 6145–6150.

    Article  PubMed  CAS  Google Scholar 

  • Youdim MB, E Grunblatt, Y Levites, G Maor and S Mandel (2002) Early and late molecular events in neurodegeneration and neuro-protection in Parkinson’s disease MPTP model as assessed by cDNA microarray; the role of iron.Neurotoxicity Res. 4, 679–689.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vernice Jackson-Lewis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jackson-Lewis, V., Smeyne, R.J. MPTP and SNpc DA neuronal vulnerability: Role of dopamine, superoxide and nitric oxide in neurotoxicity. Minireview.. neurotox res 7, 193–201 (2005). https://doi.org/10.1007/BF03036449

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03036449

Keywords

Navigation