Skip to main content
Log in

Thirty years of synaptosome research

  • Published:
Journal of Neurocytology

Summary

Detached synapses (synaptosomes), first isolated by the author in 1958 and identified as such in 1960, are sealed presynaptic nerve terminals often with a portion of the target cell — sometimes amounting to a complete dendritic spine — adhering to their external surface. They can be prepared in high yield from brain tissue and also in decreasing yield from spinal cord, retina, sympathetic ganglia, myenteric plexus and electric organs. They are sealed structures which, under metabolizing conditions, respire, take up oxygen and glucose, extrude Na+, accumulate K+, maintain a normal membrane potential and, on depolarization, release transmitter in a Ca2+-dependent manner. They thus provide an excellent preparation with which to investigate synaptic function without the complications encountered with synapsesin situ. They also serve as the parent fraction for preparations of synaptic vesicles and other synaptic components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abdel-latif, A. A. (1966) A simple method for isolation of nerve ending particles from rat brain.Biochemica et Biophysica Acta 121, 403–6.

    Google Scholar 

  • Agoston, D. V., Borroni, E. &Richardson, P. J. (1988) Cholinergic surface antigen Chol-1 is present in a subclass of VIP-containing rat cortical synaptosomes.Journal of Neurochemistry 50, 1659–62.

    PubMed  Google Scholar 

  • Archibald, J. T. &White, T. D. (1974) Rapid reversal of internal Na+ and K+ contents of synaptosomes by ouabain.Nature 252, 595–6.

    PubMed  Google Scholar 

  • Atterwill, C. K. &Neal, M. J. (1976) The subcellular distribution of [14C]GABA and [3H]dopamine in the retina.Journal of Neurochemistry 27, 529–37.

    PubMed  Google Scholar 

  • Autilio, L. A., Appel, S. R., Pettis, P. &Gambetti, P. L. (1968) Biochemical studies of synapsesin vitro. I. Protein synthesis.Biochemistry 7, 2615–22.

    PubMed  Google Scholar 

  • Baldessian, J. P. &Vogt, M. (1971) Uptake and release of norepinephrine by rat brain tissue fractions prepared by ultrafiltration.Journal of Neurochemistry 18, 951–62.

    PubMed  Google Scholar 

  • Baliba, T., Atlan, H., Fromer, I., Schwalb, H., Uretzky, G. &Lichtstein, D. (1990) Volume regulation of nerve terminals.Journal of Neurochemistry 55, 2058–62.

    PubMed  Google Scholar 

  • Bindler, F., La Bella, F. S. &Sanwal, M. (1967) Isolated nerve endings (neurosecretosomes) from the posterior pituitary. Partial separation of vasopressin and oxytocin and the isolation of microvesicles.Journal of Cell Biology 34, 185–205.

    PubMed  Google Scholar 

  • Blaschko, H., Hagen, P. &Welch, A. D. (1955) Observations on the intracellular granules of the adrenal medulla.Journal of Physiology 129, 27–49.

    Google Scholar 

  • Blaustein, M. P. &Goldring, J. M. (1975) Membrane potentials in pinched-off presynaptic nerve terminals monitored with a fluorescent probe: evidence that synaptosomes have potassium diffusion potentials.Journal of Physiology 247, 589–615.

    PubMed  Google Scholar 

  • Booth, R. F. G. &Clark, J. B. (1978) A rapid method for the preparation of relatively pure metabolically competent synaptosomes from rat brain.Biochemical Journal 176, 365–70.

    PubMed  Google Scholar 

  • Bretz, V., Bagiolini, M., Hauser, R. &Hodel, C. (1974) Resolution of three distinct populations of nerve endings from rat brain homogenates by zonal isopycnic centrifugation.Journal of Cell Biology 61, 466–80.

    PubMed  Google Scholar 

  • Campbell, C. W. B. (1976) The Na+, K+, Cl contents and derived membrane potentials of presynaptic nerve endingsin vitro.Brain Research 101, 594–9.

    PubMed  Google Scholar 

  • Clementi, F., Whittaker, V. P. &Sheridan, M. N. (1966) The yield of synaptosomes from the cerebral cortex of guinea pigs estimated by a polystyrene bead “tagging” procedure.Zeitschrift für Zellforschung 72, 126–38.

    Google Scholar 

  • Cleugh, J., Gaddum, J. H., Mitchell, A. A., Smith, W. M. &Whittaker, V. P. (1964) Substance P in brain extracts.Journal of Physiology 170, 69–85.

    PubMed  Google Scholar 

  • Cotman, C. W. &Matthews, D. A. (1971) Synaptic plasma membranes from rat brain synaptosomes: isolation and partial characterization.Biochemica et Biophysica Acta 249, 380–94.

    Google Scholar 

  • DeBelleroche, J. C. &Bradford, H. F. (1972) Metabolism of beds of mammalian cortical synaptosomes: response to depolarizing influences.Journal of Neurochemistry 19, 585–602.

    PubMed  Google Scholar 

  • De Duve, C., Pressman, B. C., Gianetto, R., Wattiaux, R. &Appelmans, F. (1955) Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue.Biochemical Journal 60, 604–17.

    PubMed  Google Scholar 

  • Docherty, M., Bradford, H. F., Cash, C. D., Ehret, M., Maitre, M. &Joh, T. H. (1991) Isolation of monoaminergic synaptosomes from rat brain by immunomagnetophoresis.Journal of Neurochemistry 56, 1569–80.

    PubMed  Google Scholar 

  • Dowdall, M. J. &Whittaker, V. P. (1973) Comparative studies in synaptosome formation: the preparation of synaptosomes from the head ganglion of the squid,Loligo pealii.Journal of Neurochemistry 20, 921–35.

    PubMed  Google Scholar 

  • Dowdall, M. J. &Zimmermann, H. (1977) The isolation of pure cholinergic nerve terminal sacs (T-sacs) from the electric organ of juvenileTorpedo.Neuroscience 2, 405–21.

    PubMed  Google Scholar 

  • Enriquez, J. A., Sanchez-Prieto, J., Muino-Blanco, M. T., Hernandez-Yago, J. &Lopez-Perez, M. J. (1990) Rat brain synaptosomes prepared by phase partition.Journal of Neurochemistry 55, 1841–9.

    PubMed  Google Scholar 

  • Fried, R. C. &Blaustein, M. P. (1978) Retrieval and recycling of synaptic vesicle membrane in pinched-off nerve terminals (synaptosomes).Journal of Cell Biology 78, 685–700.

    PubMed  Google Scholar 

  • Giacobini, E., Hökfelt, T., Kerpel-Fronius, S., Koslow, S. H., Mitchard, M. &Noré, B. (1971) A micro-scale procedure for the preparation of subcellular fractions from individual autonomic gangia.Journal of Neurochemistry 18, 223–31.

    PubMed  Google Scholar 

  • Girod, R., Eder-Colli, L., Medilanski, J., Dunant, Y., Tabti, N. &Poo, M. -M. (1992) Pulsatile release of acetylcholine by nerve terminals (synaptosomes) isolated fromTorpedo electric organ.Journal of Physiology 450, 325–40.

    PubMed  Google Scholar 

  • Gordon-Weeks, P. R., Burgoyne, R. D. &Gray, E. G. (1982) Presynaptic microtubules: organisation and assembly/disassemblyNeuroscience 7, 739–49.

    PubMed  Google Scholar 

  • Gray, E. G. &Whittaker, V. P. (1960) The isolation of synaptic vesicles from the central nervous system.Journal of Physiology 153, 35–7.

    PubMed  Google Scholar 

  • Gray, E. G. &Whittaker, V. P. (1962) The isolation of nerve endings from brain: an electron microscopic study of cell fragments derived by homogenization and centrifugation.Journal of Anatomy 96, 79–88.

    PubMed  Google Scholar 

  • Hajós, F., Csillag, A. &Kálmán, M. (1979) The morphology of microtubules in incubated synaptosomes. Effect of low temperature and vinblastine.Experimental Brain Research 35, 387–93.

    Google Scholar 

  • Hannig, K. (1967)Electrophoresis (edited byBier, M.) pp. 423–71 New York: Academic Press.

    Google Scholar 

  • Hargittai, P., Ágoston, D. &Nagy, Á. (1982) Comparative biochemical and biophysical studies on rat brain synaptosomes.FEBS Letters 137, 67–70.

    PubMed  Google Scholar 

  • Hebb, C. O. &Smallman, B. N. (1956) Intracellular distribution of choline acetylase.Journal of Physiology 134, 385–92.

    PubMed  Google Scholar 

  • Hebb, C. O. &Whittaker, V. P. (1958) Intracellular distributions of acetylcholine and choline acetylase.Journal of Physiology 142, 187–96.

    PubMed  Google Scholar 

  • Hillarp, N. Å., Högberg, B. &Nilson, B. (1955) Adenosine triphosphate in the adrenal medulla of the cow.Nature 176, 1032–3.

    PubMed  Google Scholar 

  • Hirabayashi, Y., Nakao, T., Irie, F., Whittaker, V. P., Kon, K. &Ando, S. (1992) Structural characterization of a novel cholinergic neuron-specific ganglioside in bovine brain.Journal of Biological Chemistry 267, 12973–8.

    PubMed  Google Scholar 

  • Horne, R. W. &Whittaker, V. P. (1962) The use of the negative staining method for the electron microscopic study of subcellular particles from animal tissues.Zeitschrift für Zellforschung 58, 1–16.

    Google Scholar 

  • Israël, M. &Whittaker, V. P. (1965) The isolation of mossy fibre endings from the granular layer of the cerebellar cortex.Experientia 21, 325.

    PubMed  Google Scholar 

  • Jahn, R. &De Camilli, P. (1991) Membrane proteins of synaptic vesicles: markers for neurons and endocrine cells; tools for the study of neurosecretion. InMarkers for Neural and Endocrine Cells, Molecular and Cell Biology, Diagnostic Applications (edited byGratzl, M. &Langley, K.) pp. 25–92. VCH Verlag, Weinheim.

    Google Scholar 

  • Jonakait, G. M., Gintzler, A. R. &Gershon, M. D. (1979) Isolation of axonal varicosities (autonomic synaptosomes) from the enteric nervous system.Journal of Neurochemistry 32, 1387–400.

    PubMed  Google Scholar 

  • Joó, F. &Karnushina, I. (1975) Morphometric assessment of the composition of the synaptosomal fractions obtained by the use of Ficoll gradients.Journal of Neurochemistry 24, 839–40.

    PubMed  Google Scholar 

  • Kornguth, S. E., Anderson, J. W. &Scott, G. (1969) Isolation of synaptic complexes in a caesium chloride density gradient: electron microscopic and immunohisto chemical studies.Journal of Neurochemistry 16, 1017–24.

    PubMed  Google Scholar 

  • Lagercrantz, H. &Pertoft, H. (1972) Separation of catecholamine storing synaptosomes in colloidal silica density gradients.Journal of Neurochemistry 19, 811–23.

    PubMed  Google Scholar 

  • Maycox, P. R., Hell, J. W. &Jahn, R. (1990) Amino acid neurotransmission: spotlight on synaptic vesicles.Trends in Neurosciences 13, 83–7.

    PubMed  Google Scholar 

  • Mcmahon, H. T. &Nicholls, D. G. (1991) The bioenergetics of neurotransmitter release.Biochimica et Biophysica Acta 1059, 243–64.

    PubMed  Google Scholar 

  • Meunier, F. -M. (1984) Relationship between presynaptic membrane potential and acetylcholine release in synaptosomes fromTorpedo electric organ.Journal of Physiology 354, 121–37.

    PubMed  Google Scholar 

  • Michaelson, D. M. &Sokolovsky, M. (1978) Induced acetylcholine release from active purely cholinergicTorpedo synaptosomes.Journal of Neurochemistry 30, 217–30.

    PubMed  Google Scholar 

  • Morel, N., Israël, M., Manaranche, R. &Mastour-Frachon, P. (1977) Isolation of pure cholinergic nerve endings fromTorpedo electric organ. Evaluation of their metabolic properties.Journal of Cell Biology 75, 43–55.

    PubMed  Google Scholar 

  • Nachsen, D. A. (1991) The regulation of cytosolic calcium in presynaptic nerve endings. InPresynaptic Regulation of Neurotransmitter Release: a Handbook, Vol. 1 (edited byFeigenbaum, J. &Hanani, M.) pp. 121–51. Tel Aviv: Freund Publishing House.

    Google Scholar 

  • Nagy, A. &Delgado-Escueta, A. V. (1984) Rapid preparation of synaptosomes from mammalian brain using nontoxic isoosmotic gradient material (Percoll).Journal of Neurochemistry 43, 1114–23.

    PubMed  Google Scholar 

  • Nicholls, D. G. (1978) Calcium transport and proton electrochemical potential gradient in mitochondria from guinea-pig cerebral cortex and rat heart.Biochemical Journal 170, 511–22.

    PubMed  Google Scholar 

  • Nicholls, D. G. (1989) Release of glutamate, aspartate, and γ-aminobutyric acid from isolated nerve terminals.Journal of Neurochemistry 52, 331–41.

    PubMed  Google Scholar 

  • Osborne, R. H., Bradford, H. F. &Jones, D. G. (1973) Patterns of amino acid release from nerve-endings isolated from spinal cord and medulla.Journal of Neurochemistry 21, 407–19.

    PubMed  Google Scholar 

  • Richardson, P. J. (1986) Choline uptake and metabolism in affinity-purified cholinergic nerve terminals from rat brain.Journal of Neurochemistry 46, 1251–5.

    PubMed  Google Scholar 

  • Ross, L. L., Andreoli, V. M. &Marchbanks, R. M. (1971) A morphological and biochemical study of subcellular fractions of the guinea pig spinal cord.Brain Research 25, 103–19.

    PubMed  Google Scholar 

  • Ryan, K. J., Kalant, H. &Thomas, E. L. (1971) Free-flow electrophoretic separation and electrical surface properties of subcellular particles from guinea pig brain.Journal of Cell Biology 49, 235–46.

    Google Scholar 

  • Santiapillai, N. F., Gray, S. R., Phillips, R. E. &Richardson, P. J. (1989) Isolation of nerve terminals from crustacean muscle.Journal of Neurochemistry 53, 1527–35.

    PubMed  Google Scholar 

  • Schwartz, R. D. P., Skolnick, E. B., Hollingsworth, E. B. &Paul, S. M. (1984) Barbiturate- and picrotoxin-sensitive chloride efflux in rat cerebral cortical synaptoneurosomes.FEBS Letters 175, 193–6.

    PubMed  Google Scholar 

  • Scott., I. D. &Nicholls, D. G. (1980) Energy transduction in intact synaptosomes. Influence of plasma-membrane depolarization on the respiration and membrane potential of internal mitochondria determinedin situ.Biochemical Journal 186, 21–33.

    PubMed  Google Scholar 

  • Simpson, J. A. &Weiner, E. S. C. (editors) (1989)The Oxford English Dictionary. 2nd edition, Oxford: Clarendon Press, (see Vol. 17, p. 469).

    Google Scholar 

  • Thomas, T. N. &Redburn, D. A. (1978) Uptake of [14C]aspartic acid and [14C]glutamic acid by retinal synaptosome fractions.Journal of Neurochemistry 31, 63–8.

    PubMed  Google Scholar 

  • Tibbs, G. R., Barrie, A. P., Van Mieghem, F., Mcmahon, H. T. &Nicholls, D. G. (1989a) Repetitive action potentials in isolated nerve terminals in the presence of 4-aminopyridine: effects on cytosolic free Ca2+ and glutamate release.Journal of Neurochemistry 53, 1693–9.

    PubMed  Google Scholar 

  • Tibbs, G. R., Dolly, J. O. &Nicholls, D. G. (1989b) Dendrotoxin, 4-aminopyridine, and β-bungarotoxin act at common loci but by two distinct mechanisms to induce Ca2+-dependent release of glutamate from guinea-pig cerebrocortical synaptosomes.Journal of Neurochemistry 52, 201–6.

    PubMed  Google Scholar 

  • Umbach, J. A., Gundersen, C. B. &Baker, P. F. (1984) Giant synaptosomes.Nature 311, 474–7.

    PubMed  Google Scholar 

  • Ushkaryov, Y. A., Petrenko, A. G., Geppert, M. &Südhof, T. C. (1992) Neurexins: synaptic cell surface proteins related to the α-latrotoxin receptor and laminin.Science 257, 50–6.

    PubMed  Google Scholar 

  • Whittaker, V. P. (1959) The isolation and characterization of acetylcholine-containing particles from brain.Biochemical Journal 72, 694–706.

    PubMed  Google Scholar 

  • Whittaker, V. P. (1962) Pharmcological studies with isolated cell components.Biochemical Pharmacology 9, 61–9.

    PubMed  Google Scholar 

  • Whittaker, V. P. (1963) The separation of subcellular structures from brain tissue.Biochemical Society Symposium 23, 109–26.

    Google Scholar 

  • Whittaker, V. P. (1965) The application of subcellular fractionation techniques to the study of brain function.Progress in Biophysics and Molecular Biology 15, 38–96.

    Google Scholar 

  • Whittaker, V. P. (1968) The morphology of fractions of rat forebrain synaptosomes separated on continuous density gradients.Biochemical Journal 106, 412–17.

    PubMed  Google Scholar 

  • Whittaker, V. P. (1972) The use of synaptosomes in the study of synaptic and neural membrane function. InStructure and Function of Synapses (edited byPappas, G. D. &Purpura, D. P.) pp. 87–100. New York: Raven Press.

    Google Scholar 

  • Whittaker, V. P. (1976) Tissue fractionation methods in brain research.Progress in Brain Research 45, 45–65.

    PubMed  Google Scholar 

  • Whittaker, V. P. (1984) The synaptosome. InHandbook of Neurochemistry, 2nd ed., Vol. 7 (edited byLajtha, A.) pp. 1–40. New York: Plenum.

    Google Scholar 

  • Whittaker, V. P. (1987) Synaptosome. InEncyclopedia of Neuroscience (edited byAdelman, G.) pp. 1179–81. Boston: Birkhäuser.

    Google Scholar 

  • Whittaker, V. P. (1988) The cellular basis of synaptic transmission: an overview. InCellular and Molecular Basis of Synaptic Transmission (edited byZimmermann, H.) pp. 1–23. Berlin: Springer Verlag.

    Google Scholar 

  • Whittaker, V. P. (1991) The vesicular basis of quantized transmitter release: a critical evaluation. InPresynaptic Regulation of Neurotransmitter Release: a Handbook, Vol. 1 (edited byFeigenbaum, J. &Hanani, M.) pp. 39–79. Tel Aviv: Freund Publishing House.

    Google Scholar 

  • Whittaker, V. P. (1992)The Cholinergic Neuron and its Target. Boston: Birkhäuser.

    Google Scholar 

  • Whittaker, V. P. &Dowe, G. H. C. (1965) The effect of homogenization conditions on sub-cellular distribution in brain.Biochemical Pharmacology 14, 194–6.

    PubMed  Google Scholar 

  • Whittaker, V. P. &Sheridan, M. N. (1965) The morphology and acetylcholine content of isolated cerebral cortical synaptic vesicles.Journal of Neurochemistry 12, 363–72.

    PubMed  Google Scholar 

  • Whittaker, V. P., Michaelson, I. A. &Kirkland, R. J. A. (1964) The separation of synaptic vesicles from nerve-ending particles (‘synaptosomes’).Biochemical Journal 90, 293–305.

    PubMed  Google Scholar 

  • Wilson, W. S. &Cooper, J. R. (1972) The preparation of cholinergic synaptosomes from bovine superior cervical ganglia.Journal of Neurochemistry 19, 2779–90.

    PubMed  Google Scholar 

  • Wolf, M. E. &Kapatos, G. (1989) Flow cytometric analysis and isolation of permeabilized dopamine nerve terminals from rat striatum.Journal of Neuroscience 9, 106–14.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whittaker, V.P. Thirty years of synaptosome research. J Neurocytol 22, 735–742 (1993). https://doi.org/10.1007/BF01181319

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01181319

Keywords

Navigation