Skip to main content
Log in

Spatial cross-correlation

A proposed mechanism for acoustic pitch perception

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

We propose in this paper a new class of model processes for the extraction of spectral information from the neural representation of acoustic signals in mammals. We are concerned particularly with mechanisms for detecting the phase-locked activity of auditory neurons in response to frequencies and intensities of sound associated with speech perception. Recent psychophysical tests on deaf human subjects implanted with intracochlear stimulating electrodes as an auditory prosthesis have produced results which are in conflict with the predictions of the classical place-pitch and periodicity-pitch theories. In our model, the detection of synchronicity between two phase-locked signals derived from sources spaced a finite distance apart on the basilar membrane can be used to extract spectral information from the spatiotemporal pattern of basilar membrane motion. Computer simulations of this process suggest an optimal spacing of about 0.3–0.4 of the wavelength of the frequency to be detected. This interval is consistent with a number of psychophysical, neurophysiological, and anatomical observations, including the results of high resolution frequency-mapping of the anteroventral cochlear nucleus which are presented here. One particular version of this model, invoking the binaurally sensitive cells of the medial superior olive as the critical detecting elements, has properties which are useful in accounting for certain complex binaural psychophysical observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adams, J.C., Warr, W.B.: Origins of axons in the cat's acoustic striae determined by injection of horseradish peroxidase into severed tracts. J. Comp. Neurol. 170, 107–122 (1976)

    Google Scholar 

  • Allanson, J.T., Whitfield, I.C.: The cochlear nucleus and its relation to theories of hearing. In: Third London Symposium on Information Theory, Cherry, C. (ed.). London: Butterworth 1955, pp. 269–286

    Google Scholar 

  • Anderson, D.J., Rose, J.E., Hind, J.E., Brugge, J.F.: Temporal position of discharges in single auditory nerve fibers within the cycle of a sine-wave stimulus: frequency and intensity effects. J. Acoust. Soc. Am. 49, 1131–1139 (1971)

    Google Scholar 

  • Berman, A.L.: The brain stem of the cat. Madison: University of Wisconsin Press 1968

    Google Scholar 

  • Bekesy, G., von, Rosenblith, W.A.: The mechanical properties of the ear. In. Handbook of experimental psychology, Stevens, S.S. (ed.). New York: Wiley 1951, pp. 1075–1115

    Google Scholar 

  • Bilger, R.C.: Evaluation of subjects presently fitted with implanted auditory prostheses. Ann. Otol. Rhinol. Laryngol. 86, Suppl. 38, 1–176 (1977)

    Google Scholar 

  • Black, R.C., Clark, G.M., Patrick, J.F.: Current distribution measurements within the human cochlea. IEEE-BME 28, 721–725 (1981)

    Google Scholar 

  • de Boer, e.: On the “residue” in hearing. Doctoral dissertation, Univ. of Amsterdam (1956)

  • Boudreau, J.C.: Neural volleying: upper frequency limits detectable in the auditory system. Nature 208, 1237–1238 (1965)

    Google Scholar 

  • Brugge, J.F., Geisler, C.D.: Auditory mechanisms of the lower brainstem. Ann. Rev. Neurosci. 1, 363–394 (1978)

    Google Scholar 

  • Clark, G.M., Black, R., Dewhurst, D.J., Forster, I.C., Patrick, J.F., Tong, Y.C.: A multiple-electrode hearing prosthesis for cochlear implantation in deaf patients. Med. Progr. Technol. 5, 127 (1977)

    Google Scholar 

  • Clopton, E.M., Winfield, J.A., Flammino, F.J.: Tonotopic organization: review and analysis. Brain Res. 76, 1–20 (1974)

    Google Scholar 

  • Cramer, E.M., Huggins, W.H.: Creation of pitch through binaural interaction. J. Acoust. Soc. Am. 30, 413–417 (1958)

    Google Scholar 

  • Derbyshire, A.J., Davis, H.: The action potentials of the auditory nerve. Am. J. Physiol. 113, 476–484 (1935)

    Google Scholar 

  • Dye, R.H., Hafter, E.R.: Just-noticeable differences of frequency for masked tones. J. Acoust. Soc. Am. 67, 1746–1753 (1980)

    Google Scholar 

  • Eddington, D.K.: Speach discrimination in deaf subjects with cochlear implants. J. Acoust. Soc. Am. 68, 885–891 (1980)

    Google Scholar 

  • Eddington, D.K., Dobelle, W.H., Mladejosky, M.G., Brackmann, D.E., Parkin, J.L.: Auditory prostheses research with multiple channel intracochlear stimulation in man. Ann. Otol. Rhinol. Laryngol. 87, Suppl. 53, 5–38 (1978)

    Google Scholar 

  • Erlanger, J., Gasser, H.S.: Electrical signs of nervous activity. Philadelphia: University of Pennsylvania Press 1937

    Google Scholar 

  • Evans, E.F.: Place and time coding of frequency in the peripheral auditory system: some physiological pros and cons. Audiology 17, 369–420 (1978)

    Google Scholar 

  • Evans, E.F., Palmer, A.R.: Responses of units in the cochlear nerve and nucleus of the cat to signals in the presence of bandstop noise. J. Physiol. (London) 252, 60–62P (1975)

    Google Scholar 

  • Galambos, R., Schwartzkopff, J., Rupert, H.: Microelectrode study of superior olivary nuclei. Am. J. Physiol. 197, 527–536 (1959)

    Google Scholar 

  • Goldberg, J.M.: Physiological studies of auditory nuclei of the pons. In: Handbook of sensory physiology, Vol. 12., Keidel, W.D., Neff, W.D. (ed.). Berlin, Heidelberg, New York: Springer 1972, pp. 109–142

    Google Scholar 

  • Goldberg, J.M., Brown, P.B.: Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: some physiological mechanisms of sound localization. J. Neurophysiol. 32, 613–639 (1969)

    Google Scholar 

  • Goldstein, J.L.: An optimum processor theory for the central formation of the pitch of complex tones. J. Acoust. Soc. Am. 54, 1496–1516 (1973)

    Google Scholar 

  • Goldstein, J.L., Srulovicz, P.: Auditory-nerve spike intervals as an adequate basis for aural frequency measurement. In: Psychophysics and physiology of hearing, Evans, E.F., Wilson, J.P. (eds.). London: Academic Press 1977, pp. 337–346

    Google Scholar 

  • Greenwood, D.D.: Auditory masking and the critical band. J. Acoust. Soc. Am. 33, 484–502 (1961)

    Google Scholar 

  • Greenwood, D.D.: Travel time functions on the basilar membrane. J. Acoust. Soc. Am. 55, 432(A) (1973)

  • Greenwood, D.D.: Empirical travel time functions on the basilar membrane. In: Psychophysics and physiology of hearing, Evans, E.F., Wilson, J.P. (eds.). New York: Academic Press 1977, pp. 43–55

    Google Scholar 

  • Greenwood, D.D.: Empirical relationships among cochlear phase data. Laboratory Report (1980)

  • Guinan, J.J., Jr., Guinan, Norris, B.E.: Single auditory units in the superior olivary complex. I. Responses to sounds and classifications based on physiological properties. Int. J. Neurosci. 4, 101–120 (1972)

    Google Scholar 

  • Guinan, J.J., Jr., Norris, B.E., Guinan, S.S.: Single auditory units in the superior olivary complex. II. Locations of unit categories and tonotopic organization. Int. J. Neurosci. 4, 147–166 (1972)

    Google Scholar 

  • Hall, J.L.: Binaural interaction in the accessory superior olivary nucleus of the cat. J. Acoust. Soc. Am. 37, 814–823 (1965)

    Google Scholar 

  • Harris, G.G.: Periodicity perception by using gated noise. J. Acoust. Soc. Am. 35, 1229–1233 (1963)

    Google Scholar 

  • Hebb, D.O.: The organization of behavior. New York: Wiley 1949

    Google Scholar 

  • Helmholtz, H.: Die Lehre von den Tonempfindungen. Braunschweig: Vieweg 1863

    Google Scholar 

  • Houtsma, A.J.M., Goldstein, J.L.: The central origin of the pitch of complex tones: evidence from musical interval recognition. J. Acoust. Soc. Am. 51, 520–529 (1972)

    Google Scholar 

  • Irving, R., Harrison, J.M.: The superior olivary complex and audition: comparative study. J. Comp. Neurol. 130, 77–86 (1967)

    Google Scholar 

  • Jeffress, L.A.: A place theory of sound localization. J. Comp. Physiol. Psychol. 41, 35–39 (1948)

    Google Scholar 

  • Kiang, N.Y., Eddington, D., Delgutte, B.: Fundamental considerations in designing auditory implants. Acta Otolaryngol. 87, 204–218 (1979)

    Google Scholar 

  • Langner, G.: Neuronal mechanisms for pitch analysis in the time domain. Exp. Brain Res. 44, 450–454 (1981)

    Google Scholar 

  • Licklider, J.C.R.: A duplex theory of pitch perception. Experientia 7, 128–130 (1951)

    Google Scholar 

  • Loeb, G.E., Merzenich, M.M., White, M.W.: Brainstem processing of auditory information to generate a central representation of pitch. Soc. Neurosci. Abst. 6, 552 (1980)

    Google Scholar 

  • Loeb, G.E., White, M.W., Merzenich, M.M.: Mechanisms of auditory information processing for pitch perception. Soc. Neurosci. Abst. 7, 56 (1981)

    Google Scholar 

  • Marks, W.B.: Polarization changes of simulated cortical neurons caused by electrical stimulation at the cortical surface. In: Functional electrical stimulation, Hambrecht, F.T., Reswick, J.B. (eds.). New York: Dekker 1977, pp. 413–430

    Google Scholar 

  • Masterton, R., Thompson, B.C., Bechtold, J.K., Robards, M.R.: Neuroanatomical basis of binaural phase-difference analysis for sound localization: a comparative study. J. Comp. Physiol. Psychol. 89, 379–386 (1975)

    Google Scholar 

  • Merzenich, M.M.: Neural encoding of sound sensation evoked by electrical stimulation of the acoustic nerve. Ann. Otol. 82, 486–504 (1973)

    Google Scholar 

  • Merzenich, M.M., Loeb, G.E., White, M.W.: Extraction of spectral information in auditory brainstem nuclei; hypothesis and experimental observations. J. Acoust. Soc. Am. 68, Suppl. 1, M2 (1980)

  • Merzenich, M.M., White, M., Vivion, M.C., Leake-Jones, P.A., Walsh, S.: Some considerations of multichannel electrical stimulation of the auditory nerve in the profoundly deaf; interfacing electrode arrays with the auditory nerve array. Acta Otolaryngol. 87, 196–203 (1979)

    Google Scholar 

  • Michelson, R.P.: Electrical stimulation of the human cochlea: a preliminary report. Arch. Otolaryngol. 93, 317–323 (1971)

    Google Scholar 

  • Michelson, R.P., Schindler, R.A.: Multichannel cochlear implant. Preliminary results in man. Laryngoscope 91, 38–42 (1981)

    Google Scholar 

  • Mills, A.W.: The minimum audible angle. J. Acoust. Soc. Am. 30, 237–246 (1958)

    Google Scholar 

  • Moiseff, A., Konishi, M.: Neuronal and behavioral sensitivity to binaural time differences in the owl. J. Neurosci. 1, 40–48 (1981)

    Google Scholar 

  • Moore, B.C.J.: Frequency difference limens for short-duration tones. J. Acoust. Soc. Am. 54, 610–619 (1973)

    Google Scholar 

  • Mountcastle, V.B., Talbot, W.H., Darian-Smith, I., Kornhuber, H.H.: A neural basis for the sense of flutter-vibration. Science 155, 597 (1967)

    Google Scholar 

  • Moushegian, G., Rupert, A.L., Langford, T.L.: Stimulus coding by medial superior olivary neurons. J. Neurophysiol. 30, 1239–1261 (1967)

    Google Scholar 

  • Nieder, P.: Addressed exponential delay line theory of cochlear organization. Nature 230, 255–257 (1971a)

    Google Scholar 

  • Nieder, P.C.: Suggested principle of cochlear organization: the addressed exponential delay line. J. Theor. Biol. 31, 371–374 (1971b)

    Google Scholar 

  • Noort, J. van: The structure and connections of the inferior coliculus. Assen: van Gorcum 1969

    Google Scholar 

  • Nordmark, J.O.: Mechanisms of frequency discrimination. J. Acoust. Soc. Am. 44, 1533–1540 (1968)

    Google Scholar 

  • Palmer, A.R., Evans, E.F.: On the peripheral coding of the level of individual frequency components of complex sounds at high sound levels. Exp. Brain Res. Suppl. 2, 19–26 (1979)

    Google Scholar 

  • Pfeiffer, R.R.: Classification of response patterns of spike discharges for units in the cochlear nucleus: tone-burst stimulation. Exp. Brain Res. 1, 220–235 (1966)

    Google Scholar 

  • Pfeiffer, R.R., Kim, D.O.: Cochlear nerve fiber responses: distribution along the cochlear partition. J. Acoust. Soc. Am. 58, 867–869 (1975)

    Google Scholar 

  • Pickles, J.O.: Neural correlates of the masked threshold. In: Psychophysics and physiology of hearing, Evans, E.F., Wilson, J.P. (ed.). New York: Academic Press, pp. 209–219

  • Pollen, D.A., Andrews, B.W., Levy, J.C.: Electrical stimulation of the visual cortex in man and cat. In: Functional electrical stimulation, Hambrecht, F.T., Reswick, J.B. (eds.). New York: Dekker 1977, p. 277

    Google Scholar 

  • Raatgever, J., Bilsen, F.A.: Lateralization and dichotic pitch as a result of spectral pattern recognition. In: Psychophysics and physiology of hearing, Evans, E.F., Wilson, J.P. (eds.). New York: Academic Press 1977, pp.43–55

    Google Scholar 

  • Ranck, J.: Which elements are excited in electrical stimulation of mammalian central nervous system. A review. Brain Res. 98, 417–440 (1975)

    Google Scholar 

  • Rhode, W.S.: The Measurement of the Amplitude and Phase of Vibration of the Basilar Membrane Using the Mossbauer Effect. Ph. D. Thesis, Univ. of Wisconsin, Univ. Microfilms No. 70-11853. Michigan: Ann Arbor (1970)

  • Rhode, W.S.: Observations of the vibration of the basilar membrane in squirrel monkeys using the Mossbauer technique. J. Acoust. Soc. Am. 49, 1218 (1971)

    Google Scholar 

  • Rhode, W.S.: Some observations on cochlear mechanics. J. Acoust. Soc. Am. 64, 158 (1978)

    Google Scholar 

  • Rose, J.E.: Organization of frequency sensitive neurons in the cochlear nuclear complex of the cat. In: Neural mechanisms of the auditory and vestibular systems, Rasmussen, G.L., Windle, W.F. (eds.). Springfield, IL: Thomas 1960, pp. 211–251

    Google Scholar 

  • Rose, J.E.: Discharges of single fibers in the mammalian auditory nerve. In: Frequency analysis and periodicity detection in hearing, Plomp, R., Smoorenburg, G.F. (eds.). Leiden: Sijthoff 1970, pp. 176–188

    Google Scholar 

  • Rose, J.E., Kitzes, L.M., Gibson, M.M., Hind, J.E.: Observations on phase-sensitive neurons of anteroventral cochlear nucleus of the cat: nonlinearity of cochlear output. J. Neurophysiol. 37, 218–253 (1974)

    Google Scholar 

  • Sachs, M.B., Young, E.D.: Effects of non-linearities on speech encoding in the auditory nerve. J. Acoust. Soc. Am. 68, 858–875 (1980)

    Google Scholar 

  • Scharf, B.: Critical bands. In: Foundations of modern auditory theory, Tobias, J.V. (ed.). New York: Academic Press 1970, pp. 159–202

    Google Scholar 

  • Scheibel, M.E., Scheibel, A.B.: Neuropil organization in the superior olive of the cat. Exp. Neurol. 43, 339–348 (1974)

    Google Scholar 

  • Schouten, J.F.: The perception of pitch. Philips Tech. Rev. 5, 286–294 (1940)

    Google Scholar 

  • Schwartz, I.R.: Dendritic arrangements in the cat medial superior olive. Neuroscience 2, 81–101 (1977)

    Google Scholar 

  • Siebert, W.M.: Frequency discrimination in the auditory system: place or periodicity mechanisms. Proc. IEEE 58, 723–730 (1970)

    Google Scholar 

  • Simmons, F.B.: Electrical stimulation of the auditory nerve in man. Arch. Otolaryngol. 84, 1–54 (1966)

    Google Scholar 

  • Stevens, S.S., Newman, E.B.: The localization of actual sources of sound. Am. J. Psychol. 48, 297–306 (1936)

    Google Scholar 

  • Thurlow, W.R., Small, A.M.: Pitch perception for certain periodic auditory stimuli. J. Acoust. Soc. Am. 27, 132–137 (1955)

    Google Scholar 

  • Tong, Y.C., Black, R., Clark, G.M., Forster, I., Millar, J., O'Loughlin, B., Patrick, J.: A preliminary report on a multiple-channel cochlear implant operation. J. Laryngol. Otol. 93, 679–695 (1979)

    Google Scholar 

  • Tonndorf, J.: Cochlear prostheses — a state-of-the-art review. Ann. Otol. Rhinol. Laryngol. 86, Suppl. 44, 1–20 (1977)

    Google Scholar 

  • Watanabe, T., Liao, T., Katsuki, Y.: Neuronal response patterns in the superior olivary complex of the cat to sound stimulation. Jpn. J. Physiol. 18, 267–287 (1968)

    Google Scholar 

  • Wever, E.G.: Theory of hearing. New York: Wiley 1949, p. 336

    Google Scholar 

  • White, M.W.: Design considerations of a prosthesis for the profoundly deaf. Ph. D. Thesis, Dept. Elect. Eng., U.C. Berkeley, Berkeley, CA (1978)

  • White, M.W.: Formant frequency discrimination in a subject implanted with an intracochlear stimulating electrode. J. Acoust. Soc. Am. 68, Suppl. 1, 544 (1980)

    Google Scholar 

  • White, M.W., Loeb, G.E., Merzenich, M.M.: On the role of auditory nerve inter-fiber discharge timing in the perception of pitch. Soc. Neurosci. Abst. 6, 552 (1980)

    Google Scholar 

  • White, M.W., Merzenich, M.M., Loeb, G.E.: Electrical stimulation of the eighth-nerve in cat: temporal properties of unit responses in the large spherical cell region of the AVCN. J. Acoust. Soc. Am. 69, Suppl. 1, RR1 (1981)

  • Whitfield, I.C.: Central nervous processing in relation to temporal discrimination of auditory patterns. In: Frequency analysis and periodicity detection in hearing, Plomp, R., Smoorenburg, G.F., (eds.), Leiden: Sijthoff 1970, pp. 136–137

    Google Scholar 

  • Whitfield, I.C.: Periodicity, pulse interval and pitch. Audiology 18, 507–512 (1979)

    Google Scholar 

  • Wier, C.C., Jesteadt, W., Green, D.M.: Frequency discrimination as a function of frequency and sensation level. J. Acoust. Soc. Am. 61, 178–184 (1977)

    Google Scholar 

  • Wightman, F.L.: The pattern-transformation model of pitch. J. Acoust. Soc. Am. 54, 407–416 (1973)

    Google Scholar 

  • Williams, K.N.: Discrimination in auditory space: static and dynamic functions. Ph. D. thesis dissertation, Florida State Univ., Tallahassee (1978)

  • Wilson, J.P., Johnstone, J.R.: Capacitative probe measures of basilar membrane vibration. In: Symposium on hearing theory. Eindhoven, Holland: IPO 1972, pp. 172–181

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loeb, G.E., White, M.W. & Merzenich, M.M. Spatial cross-correlation. Biol. Cybern. 47, 149–163 (1983). https://doi.org/10.1007/BF00337005

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00337005

Keywords

Navigation