Skip to main content
Log in

Visual-vestibular interaction in the flocculus of the alert monkey

I. Input activity

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

Neuronal activity in the flocculus of alert Rhesus monkeys was recorded during vestibular stimulation (rotation of the monkey about a vertical axis in complete darkness), optokinetic stimulation (rotation of the visual surround around the stationary monkey), combined visual-vestibular stimulation (rotation of the monkey inside the stationary surround in the light), and conflicting visual-vestibular stimulation (rotation of the monkey together with the visual surround in the same direction). The input to the flocculus was recorded as non-Purkinje cell (non-P-cell) activity. Ninety per cent of the non-P-cells which were modulated during our stimulation paradigms carry information similar to that in the neurons of vestibular nuclei. This suggests that the main mossy fiber input to the flocculus originates in the vestibular nuclei. A second input of unknown origin conveys visual information about retinal slip. Thus, part of the flocculus — as further discussed elsewhere (Waespe and Henn 1981) — may be specialized to subserve visual-vestibular interaction to improve the nystagmus response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alley K (1977) Anatomical basis for interaction between cerebellar flocculus and brainstem. In: Baker R, Berthoz A (eds) Control of gaze by brain stem neurons. Developments in neuroscience, vol 1. Elsevier, Amsterdam New York, pp 109–117

    Google Scholar 

  • Baker J, Gibson A, Glickstein M, Stein J (1976) Visual cells in the pontine nuclei of the cat. J Physiol (Lond) 255: 415–433

    Google Scholar 

  • Baker R, Berthoz A (1975) Is the prepositus hypoglossi. nucleus the source of another vestibulo-ocular pathway? Brain Res 86: 121–127

    Google Scholar 

  • Baloh RW, Jenkins HA, Honrubia V, Yee RD, Leu CGY (1979) Visual-vestibular interaction and cerebellar atrophy. Neurology (Minneap) 29: 116–119

    Google Scholar 

  • Bell CC, Grimm RJ (1969) Discharge properties of Purkinje cells recorded on single and double microelectrodes. J Neurophysiol 32: 1044–1055

    Google Scholar 

  • Brodal A (1972) Vestibulocerebellar input in the cat: Anatomy. Basic aspects of central vestibular mechanisms. Prog Brain Res 37: 315–327

    Google Scholar 

  • Brodal A, Høivik B (1964) Site and mode of termination of primary Vestibulocerebellar fibers in the cat. Arch Ital Biol 102: 1–21

    Google Scholar 

  • Buettner UW, Büttner U (1979) Vestibular nuclei activity in the alert monkey during suppression of vestibular and optokinetic nystagmus. Exp Brain Res 37: 581–593

    Google Scholar 

  • Büttner U, Waespe W (1981) Vestibular nerve activity in the alert monkey during vestibular and optokinetic nystagmus. Exp Brain Res 41: 310–315

    Google Scholar 

  • Carpenter MC, Stein BM, Peter P (1972) Primary vestibulocerebellar fibers in the monkey. Distribution of fibers arising from distinctive cell groups in the vestibular ganglia. Am J Anat 135: 221–250

    Google Scholar 

  • Cohen B, Matsuo V, Raphan Th (1977) Quantitative analysis of the velocity characteristics of optokinetic nystagmus and optokinetic afternystagmus. J Physiol (Lond) 270: 321–344

    Google Scholar 

  • Dichgans J, Jung R (1975) Oculomotor abnormalities due to cerebellar lesions. In: Lennerstrand G, Bach-y-Rita P (eds) Basic mechanisms of ocular motility and their clinical implications. Pergamon Press, Oxford New York, pp 281–298

    Google Scholar 

  • Duensing F, Schaefer KP (1958) Die Aktivität einzelner Neurone im Bereiche der Vestibulariskerne bei Horizontalbeschleunigungen unter besonderer Berücksichtigung des vestibulären Nystagmus. Arch Psychiatr Nervenkr 198: 224–252

    Google Scholar 

  • Eccles JC, Ito M, Szentágothai J (1967) The cerebellum as a neuronal machine. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Estanol B, Romero R, Corvera J (1979) Effects of cerebellectomy on eye movements in man. Arch Neurol 36: 281–284

    Google Scholar 

  • Ghelarducci B, Ito M, Yagi N (1975) Impulse discharges from flocculus Purkinje cells of alert rabbits during visual stimulation combined with horizontal head rotation. Brain Res 87: 66–72

    Google Scholar 

  • Gresty M, Baker R (1976) Neurons with visual receptive field, eye movement and neck displacement sensitivity within and around the nucleus prepositus in the alert cat. Exp Brain Res 24: 429–433

    Google Scholar 

  • Hassul M, Daniels PD, Kimm J (1976) Effects of bilateral flocculectomy on the vestibulo-ocular reflex in the chinchilla. Brain Res 118: 339–343

    Google Scholar 

  • Ito M (1972) Neural design of the cerebellar motor control system. Brain Res 40: 81–84

    Google Scholar 

  • Ito M (1979) Adaptive modification of the vestibulo-ocular reflex in rabbits affected by visual input and its possible neuronal mechanisms. Reflex control of posture and movements. Prog Brain Res 50: 757–761

    Google Scholar 

  • Ito M, Shiida T, Yagi N, Yamamoto M (1974) Visual influence on rabbit horizontal vestibulo-ocular reflex presumably effected via the cerebellar flocculus. Brain Res 65: 170–174

    Google Scholar 

  • Kato I, Kawasaki T, Aoyagi M, Sato Y, Mizukoshi K (1979) Loss of visual suppression of caloric nystagmus in cats. Acta Otolaryngol (Stockh) 87: 489–505

    Google Scholar 

  • Kawasaki T, Kato I, Aoyagi M, Sato Y, Koike Y, Ino H (1978) On the role of the brain stem in the visual suppression of caloric nystagmus. In: Hood JD (ed) Vestibular mechanisms in health and disease. Academic Press, London New York, pp 247–253

    Google Scholar 

  • Keller EL (1976) Behavior of horizontal semicircular canal afferents in alert monkey during vestibular and optokinetic stimulation. Exp Brain Res 24: 459–471

    Google Scholar 

  • Keller EL, Precht W (1979) Visual-vestibular responses in vestibular nuclear neurons in the intact and cerebellectomized alert cat. Neuroscience 4: 1599–1613

    Google Scholar 

  • Kotchabhakdi N, Walberg F (1978) Cerebellar afferent projections from the vestibular nuclei in the cat. An experimental study with the method of retrograde axonal transport of horseradish peroxidase. Exp Brain Res 31: 591–604

    Google Scholar 

  • Kotchabhakdi N, Hoddevik GH, Walberg F (1978) Cerebellar afferent projections from the perihypoglossal nuclei. An experimental study with the method of retrograde axonal transport of horseradish peroxidase. Exp Brain Res 31: 13–29

    Google Scholar 

  • Kubo T, Matsunaga T, Hayashi Y (1978) Convergence of visual and vestibular inputs in pontine reticular formation of the rabbit. Brain Res 147: 177–182

    Google Scholar 

  • Lisberger SG, Fuchs AF (1978a) Role of primate flocculus during rapid behavioral modification of vestibuloocular reflex. I. Purkinje cell activity during visually guided horizontal smooth-pursuit eye movements and passive head rotation. J Neurophysiol 41: 733–763

    Google Scholar 

  • Lisberger SG, Fuchs AF (1978b) Role of primate flocculus during rapid behavioral modification of vestibuloocular reflex. II. Mossy fiber firing patterns during horizontal head rotation and eye movements. J Neurophysiol 41: 764–777

    Google Scholar 

  • Louie AW, Kimm J (1976) The response of 8th nerve fibers to horizontal sinusoidal oscillation in the alert monkey. Exp Brain Res 24: 447–457

    Google Scholar 

  • Maekawa K, Takeda T (1975) Mossy fiber responses evoked in the cerebellar flocculus of rabbits by stimulation of the optic pathway. Brain Res 98: 590–595

    Google Scholar 

  • Miles FA, Fuller JH (1975) Visual tracking and the primate flocculus. Science 189: 1000–1002

    Google Scholar 

  • Noda H, Suzuki DA (1979) Processing of the eye movement signals in the flocculus of the monkey. J Physiol (Lond) 294: 349–364

    Google Scholar 

  • Noda H, Asoh R, Shibagaki M (1977) Floccular unit activity associated with eye movements and fixation. In: Baker R, Berthoz A (eds) Control of gaze by brain stem neurons, Developments in neuroscience, vol 1. Elsevier, Amsterdam New York, pp 371–380

    Google Scholar 

  • Precht W (1978) Neuronal operations in the vestibular system. Studies of brain function, vol 2. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Precht W, Llinás R (1969) Functional organization of the vestibular afferents to the cerebellar cortex of the frog and cat. Exp Brain Res 9: 30–52

    Google Scholar 

  • Reutern von GM, Dichgans J (1977) Augenbewegungsstörungen als cerebelläre Symptome bei Kleinhirnbrückenwinkeltumoren. Arch Psychiatr Nervenkr 223: 117–130

    Google Scholar 

  • Shinoda Y, Yoshida K (1975) Neural pathways from the vestibular labyrinths to the flocculus in the cat. Exp Brain Res 22: 97–111

    Google Scholar 

  • Simpson JI, Soodak RE, Hess R (1979) The accessory optic system and its relation to the vestibulocerebellum. Reflex control of posture and movement. Prog Brain Res 50: 715–724

    Google Scholar 

  • Takemori S, Cohen B (1974) Loss of visual suppression of vestibular nystagmus after flocculus lesions. Brain Res 72: 213–224

    Google Scholar 

  • Thach WT (1968) Discharge of Purkinje and cerebellar nuclear neurons during rapidly alternating arm movements in the monkey. J Neurophysiol 31: 785–797

    Google Scholar 

  • Waespe W, Kenn V (1977a) Neuronal activity in the vestibular nuclei of the alert monkey during vestibular and optokinetic stimulation. Exp Brain Res 27: 523–538

    Google Scholar 

  • Waespe W, Henn V (1977b) Vestibular nuclei activity during optokinetic after-nystagmus (OKAN) in the alert monkey. Exp Brain Res 30: 323–330

    Google Scholar 

  • Waespe W, Henn V (1978) Conflicting visual-vestibular stimulation and vestibular nucleus activity in alert monkeys. Exp Brain Res 33: 203–211

    Google Scholar 

  • Waespe W, Henn V (1979a) The velocity response of vestibular nucleus neurons during vestibular, visual and combined angular acceleration. Exp Brain Res 37: 337–347

    Google Scholar 

  • Waespe W, Henn V (1979b) Motion information in the vestibular nucleus of alert monkeys. Visual and vestibular input vs. optomotor output. Reflex control of posture and movement. Prog Brain Res 50: 683–693

    Google Scholar 

  • Waespe W, Henn V (1981) Visual-vestibular interaction in the flocculus of the alert monkey. II. Purkinje cell activity. Exp Brain Res 43: 349–360

    Google Scholar 

  • Waespe W, Büttner U, Henn V (1981) Input-output activity of the primate flocculus during visual-vestibular interaction. Annals New York Academy of Sciences (in press)

  • Westheimer G, Blair SM (1974) Unit activity in accessory optic system in alert monkeys. Invest Ophthalmol Vis Sci 13: 533–534

    Google Scholar 

  • Winfield JA, Hendrickson A, Kimm J (1978) Anatomical evidence that the medial terminal nucleus of the accessory optic tract in mammals provides a visual mossy fiber input to the flocculus. Brain Res 151: 175–182

    Google Scholar 

  • Wurtz RH (1969) Visual receptive fields of striate cortex neurons in awake monkeys. J Neurophysiol 32: 27–742

    Google Scholar 

  • Zee DS, Yee RD, Cogan DG, Robinson DA (1976) Ocular motor abnormalities in hereditary cerebellar ataxia. Brain 99: 207–234

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by a grant from the Swiss National Foundation for Scientific Research 3.343-2.78

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waespe, W., Büttner, U. & Henn, V. Visual-vestibular interaction in the flocculus of the alert monkey. Exp Brain Res 43, 337–348 (1981). https://doi.org/10.1007/BF00238376

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00238376

Key words

Navigation