Skip to main content

Dedicated Clock/Timing-Circuit Theories of Time Perception and Timed Performance

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 829))

Abstract

Scalar Timing Theory (an information-processing version of Scalar Expectancy Theory) and its evolution into the neurobiologically plausible Striatal Beat-Frequency (SBF) theory of interval timing are reviewed. These pacemaker/accumulator or oscillation/coincidence detection models are then integrated with the Adaptive Control of Thought-Rational (ACT-R) cognitive architecture as dedicated timing modules that are able to make use of the memory and decision-making mechanisms contained in ACT-R. The different predictions made by the incorporation of these timing modules into ACT-R are discussed as well as the potential limitations. Novel implementations of the original SBF model that allow it to be incorporated into ACT-R in a more fundamental fashion than the earlier simulations of Scalar Timing Theory are also considered in conjunction with the proposed properties and neural correlates of the “internal clock”.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Salvucci DD, Taatgen NA, Kushleyeva Y. Learning when to switch tasks in a dynamic multitasking environment. In: Proceedings of the seventh international conference on cognitive modeling. Trieste: Edizioni Goliardiche; 2006. p. 268–73.

    Google Scholar 

  2. Levelt WJM. Speaking: from intention to articulation. Cambridge: MIT Press; 1993.

    Google Scholar 

  3. Boisvert MJ, Veal AJ, Sherry DF. Floral reward production is timed by an insect pollinator. Proc Biol Sci. 2007;274(1620):1831–7.

    PubMed  PubMed Central  Google Scholar 

  4. Boisvert MJ, Sherry DF. Interval timing by an invertebrate, the bumble bee Bombus impatiens. Curr Biol. 2006;16(16):1636–40.

    PubMed  CAS  Google Scholar 

  5. Henderson J, Hurly TA, Bateson M, Healy SD. Timing in free-living rufous hummingbirds, Selasphorus rufus. Curr Biol. 2006;16(5):512–5.

    PubMed  CAS  Google Scholar 

  6. Matell MS, Meck WH. Neuropsychological mechanisms of interval timing behavior. Bioessays. 2000;22(1):94–103.

    PubMed  CAS  Google Scholar 

  7. Killeen PR, Fetterman JG. A behavioral theory of timing. Psychol Rev. 1988;95(2):274–95.

    PubMed  CAS  Google Scholar 

  8. Fetterman JG, Killeen PR. Categorical scaling of time: implications for clock-counter models. J Exp Psychol Anim Behav Process. 1995;21(1):43–63.

    PubMed  CAS  Google Scholar 

  9. Karmarkar UR, Buonomano DV. Timing in the absence of clocks: encoding time in neural network states. Neuron. 2007;53(3):427–38.

    PubMed  CAS  PubMed Central  Google Scholar 

  10. Grondin S. Timing and time perception: a review of recent behavioral and neuroscience findings and theoretical directions. Atten Percept Psychophys. 2010;72(3):561–82.

    PubMed  Google Scholar 

  11. Ivry RB, Schlerf JE. Dedicated and intrinsic models of time perception. Trends Cogn Sci. 2008;12(7):273–80.

    PubMed  Google Scholar 

  12. Buhusi CV, Meck WH. What makes us tick? Functional and neural mechanisms of interval timing. Nat Rev Neurosci. 2005;6(10):755–65.

    PubMed  CAS  Google Scholar 

  13. Creelman CD. Human discrimination of auditory duration. J Acoust Soc Am. 1962;34:582–93.

    Google Scholar 

  14. Treisman M. Temporal discrimination and the indifference interval. Implications for a model of the “internal clock”. Psychol Monogr. 1963;77(13):1–31.

    PubMed  CAS  Google Scholar 

  15. Allan LG, Kristofferson AB. Psychophysical theories of duration discrimination. Atten Percept Psychophys. 1974;16:26–34.

    Google Scholar 

  16. Gibbon J, Church RM. Sources of variance in an information processing theory of timing. In: Roitblat HL, Bever TG, Terrace HS, editors. Animal cognition. Hillsdale: Lawrence Erlbaum; 1984. p. 465–88.

    Google Scholar 

  17. Gibbon J, Church RM, Meck WH. Scalar timing in memory. Ann N Y Acad Sci. 1984;423:52–77.

    PubMed  CAS  Google Scholar 

  18. Gibbon J. Scalar expectancy theory and Weber’s law in animal timing. Psychol Rev. 1977;84:279–325.

    Google Scholar 

  19. Gibbon J. Origins of scalar timing. Learn Motiv. 1991;22:3–38.

    Google Scholar 

  20. Church RM. Properties of the internal clock. Ann N Y Acad Sci. 1984;423:566–82.

    PubMed  CAS  Google Scholar 

  21. Allman MJ, Teki S, Griffiths TD, Meck WH. Properties of the internal clock: first- and second-order principles of subjective time. Annu Rev Psychol. 2014;65:743–71.

    PubMed  Google Scholar 

  22. Gibbon J, Church RM. Representation of time. Cognition. 1990;37(1–2):23–54.

    PubMed  CAS  Google Scholar 

  23. Gibbon J, Church RM. Comparison of variance and covariance patterns in parallel and serial theories of timing. J Exp Anal Behav. 1992;57(3):393–406.

    PubMed  CAS  PubMed Central  Google Scholar 

  24. Church RM. A concise introduction to scalar timing theory. In: Meck WH, editor. Functional and neural mechanisms of interval timing. Boca Raton: CRC; 2003. p. 3–22.

    Google Scholar 

  25. Wearden JH. Applying the scalar timing model to human time psychology: progress and challenges. In: Helfrich H, editor. Time and mind II: information processing perspectives. Göttingen: Hogrefe & Huber; 2003. p. 21–39.

    Google Scholar 

  26. Meck WH. Selective adjustment of the speed of internal clock and memory processes. J Exp Psychol Anim Behav Process. 1983;9(2):171–201.

    PubMed  CAS  Google Scholar 

  27. Meck WH, Church RM, Gibbon J. Temporal integration in duration and number discrimination. J Exp Psychol Anim Behav Process. 1985;11(4):591–7.

    PubMed  CAS  Google Scholar 

  28. Buhusi CV, Aziz D, Winslow D, Carter RE, Swearingen JE, Buhusi MC. Interval timing accuracy and scalar timing in C57BL/6 mice. Behav Neurosci. 2009;123(5):1102–13.

    PubMed  PubMed Central  Google Scholar 

  29. Cheng RK, Meck WH. Prenatal choline supplementation increases sensitivity to time by reducing non-scalar sources of variance in adult temporal processing. Brain Res. 2007;1186:242–54.

    PubMed  CAS  PubMed Central  Google Scholar 

  30. Melgire M, Ragot R, Samson S, Penney TB, Meck WH, Pouthas V. Auditory/visual duration bisection in patients with left or right medial-temporal lobe resection. Brain Cogn. 2005;58(1):119–24.

    PubMed  Google Scholar 

  31. Sun JZ, Wang GI, Goyal VK, Varshney LR. A framework for Bayesian optimality of psychophysical laws. J Math Psychol. 2012;56(6):495–501.

    Google Scholar 

  32. Dehaene S. The neural basis of the Weber–Fechner law: a logarithmic mental number line. Trends Cogn Sci. 2003;7(4):145–7.

    PubMed  Google Scholar 

  33. Gibbon J, Church RM. Time left: linear versus logarithmic subjective time. J Exp Psychol Anim Behav Process. 1981;7(2):87–107.

    PubMed  CAS  Google Scholar 

  34. Wearden JH. Traveling in time: a time-left analogue for humans. J Exp Psychol Anim Behav Process. 2002;28(2):200–8.

    PubMed  CAS  Google Scholar 

  35. Dehaene S. Subtracting pigeons: logarithmic or linear? Psychol Sci. 2001;12(3):244–6.

    PubMed  CAS  Google Scholar 

  36. Meijering B, Van Rijn H. Experimental and computational analyses of strategy usage in the time-left task. In: Taatgen NA, Van Rijn H, editors. Proceedings of the 31th Annual Meeting of the Cognitive Science Society 2009. p. 1615–20.

    Google Scholar 

  37. Cerutti DT, Staddon JE. Immediacy versus anticipated delay in the time-left experiment: a test of the cognitive hypothesis. J Exp Psychol Anim Behav Process. 2004;30(1):45–57.

    PubMed  CAS  PubMed Central  Google Scholar 

  38. Machado A, Vasconcelos M. Acquisition versus steady state in the time-left experiment. Behav Processes. 2006;71(2–3):172–87.

    PubMed  Google Scholar 

  39. Church RM, Miller KD, Meck WH, Gibbon J. Symmetrical and asymmetrical sources of variance in temporal generalization. Anim Learn Behav. 1991;19(3):207–14.

    Google Scholar 

  40. Rakitin BC, Gibbon J, Penney TB, Malapani C, Hinton SC, Meck WH. Scalar expectancy theory and peak-interval timing in humans. J Exp Psychol Anim Behav Process. 1998;24(1):15–33.

    PubMed  CAS  Google Scholar 

  41. Meck WH. Choline uptake in the frontal cortex is proportional to the absolute error of a temporal memory translation constant in mature and aged rats. Learn Motiv. 2002;33:88–104.

    Google Scholar 

  42. Meck WH, Angell KE. Repeated administration of pyrithiamine leads to a proportional increase in the remembered durations of events. Psychobiology. 1992;20(1):39–46.

    CAS  Google Scholar 

  43. Meck WH, Church RM, Wenk GL, Olton DS. Nucleus basalis magnocellularis and medial septal area lesions differentially impair temporal memory. J Neurosci. 1987;7(11):3505–11.

    PubMed  CAS  Google Scholar 

  44. Allman MJ, Meck WH. Pathophysiological distortions in time perception and timed performance. Brain. 2012;135:656–77.

    PubMed  PubMed Central  Google Scholar 

  45. Meck WH. Neuropsychology of timing and time perception. Brain Cogn. 2005;58(1):1–8.

    PubMed  Google Scholar 

  46. Meck WH, Benson AM. Dissecting the brain’s internal clock: how frontal-striatal circuitry keeps time and shifts attention. Brain Cogn. 2002;48(1):195–211.

    PubMed  Google Scholar 

  47. Balci F, Meck WH, Moore H, Brunner D. Timing deficits in aging and neuropathology. In: Bizon JL, Woods A, editors. Animal models of human cognitive aging. Totowa: Humana Press; 2009. p. 161–201.

    Google Scholar 

  48. Lustig C, Meck WH. Paying attention to time as one gets older. Psychol Sci. 2001;12(6):478–84.

    PubMed  CAS  Google Scholar 

  49. Lustig C, Meck WH. Modality differences in timing and temporal memory throughout the lifespan. Brain Cogn. 2011;77(2):298–303.

    PubMed  Google Scholar 

  50. Penney TB, Gibbon J, Meck WH. Differential effects of auditory and visual signals on clock speed and temporal memory. J Exp Psychol Hum Percept Perform. 2000;26(6):1770–87.

    PubMed  CAS  Google Scholar 

  51. Wearden JH, Lejeune H. Scalar properties in human timing: conformity and violations. Q J Exp Psychol (Hove). 2008;61(4):569–87.

    CAS  Google Scholar 

  52. Buhusi CV, Meck WH. Differential effects of methamphetamine and haloperidol on the control of an internal clock. Behav Neurosci. 2002;116(2):291–7.

    PubMed  CAS  Google Scholar 

  53. Cheng RK, Ali YM, Meck WH. Ketamine “unlocks” the reduced clock-speed effects of cocaine following extended training: evidence for dopamine–glutamate interactions in timing and time perception. Neurobiol Learn Mem. 2007;88(2):149–59.

    PubMed  CAS  Google Scholar 

  54. Coull JT, Cheng RK, Meck WH. Neuroanatomical and neurochemical substrates of timing. Neuropsychopharmacology. 2011;36(1):3–25.

    PubMed  PubMed Central  Google Scholar 

  55. Meck WH. Neuropharmacology of timing and time perception. Cogn Brain Res. 1996;3(3–4):227–42.

    CAS  Google Scholar 

  56. Williamson LL, Cheng RK, Etchegaray M, Meck WH. “Speed” warps time: methamphetamine’s interactive roles in drug abuse, habit formation, and the biological clocks of circadian and interval timing. Curr Drug Abuse Rev. 2008;1(2):203–12.

    PubMed  Google Scholar 

  57. Droit-Volet S, Meck WH. How emotions colour our perception of time. Trends Cogn Sci. 2007;11(12):504–13.

    PubMed  Google Scholar 

  58. Lui MA, Penney TB, Schirmer A. Emotion effects on timing: attention versus pacemaker accounts. PLoS One. 2011;6(7):e21829.

    PubMed  CAS  PubMed Central  Google Scholar 

  59. Coull JT. fMRI studies of temporal attention: allocating attention within, or towards, time. Cogn Brain Res. 2004;21(2):216–26.

    Google Scholar 

  60. Henry MJ, Herrmann B. Low-frequency neural oscillations support dynamic attending in temporal context. Timing Time Percept. 2014;2(1):62–86.

    Google Scholar 

  61. Nobre K, Coull J. Attention and time. New York: Oxford University Press; 2010.

    Google Scholar 

  62. Buhusi CV, Meck WH. Relative time sharing: new findings and an extension of the resource allocation model of temporal processing. Philos Trans R Soc Lond B Biol Sci. 2009;364(1525):1875–85.

    PubMed  PubMed Central  Google Scholar 

  63. Wearden JH. “Beyond the fields we know…”: exploring and developing scalar timing theory. Behav Processes. 1999;45(1–3):3–21.

    PubMed  CAS  Google Scholar 

  64. Meck WH. Attentional bias between modalities: effect on the internal clock, memory, and decision stages used in animal time discrimination. Ann N Y Acad Sci. 1984;423:528–41.

    PubMed  CAS  Google Scholar 

  65. Penney TB, Allan LG, Meck WH, Gibbon J. Memory mixing in duration bisection. In: Rosenbaum DA, editor. Timing of behavior: neural, psychological, and computational perspectives. Cambridge: MIT Press; 1998. p. 165–93.

    Google Scholar 

  66. Allan LG, Gibbon J. Human bisection at the geometric mean. Learn Motiv. 1991;22:39–58.

    Google Scholar 

  67. Penney TB, Gibbon J, Meck WH. Categorical scaling of duration bisection in pigeons (Columba livia), mice (Mus musculus), and humans (Homo sapiens). Psychol Sci. 2008;19(11):1103–9.

    PubMed  Google Scholar 

  68. Allan LG, Gerhardt K. Temporal bisection with trial referents. Percept Psychophys. 2001;63(3):524–40.

    PubMed  CAS  Google Scholar 

  69. Ng KK, Tobin S, Penney TB. Temporal accumulation and decision processes in the duration bisection task revealed by contingent negative variation. Front Integr Neurosci. 2011;5:77.

    PubMed  PubMed Central  Google Scholar 

  70. Macar F, Vidal F. The CNV peak: an index of decision making and temporal memory. Psychophysiology. 2003;40(6):950–4.

    PubMed  Google Scholar 

  71. Meck WH, Penney TB, Pouthas V. Cortico-striatal representation of time in animals and humans. Curr Opin Neurobiol. 2008;18(2):145–52.

    PubMed  CAS  Google Scholar 

  72. Roberts S, Pashler H. How persuasive is a good fit? A comment on theory testing. Psychol Rev. 2000;107(2):358–67.

    PubMed  CAS  Google Scholar 

  73. Kononowicz TW, Van Rijn H. Slow potentials in time estimation: the role of temporal accumulation and habituation. Front Integr Neurosci. 2011;5:48.

    PubMed  PubMed Central  Google Scholar 

  74. Van Rijn H, Kononowicz TW, Meck WH, Ng KK, Penney TB. Contingent negative variation and its relation to time estimation: a theoretical evaluation. Front Integr Neurosci. 2011;5:91.

    PubMed  PubMed Central  Google Scholar 

  75. Taatgen NA, Van Rijn H, Anderson J. An integrated theory of prospective time interval estimation: the role of cognition, attention, and learning. Psychol Rev. 2007;114(3):577–98.

    PubMed  Google Scholar 

  76. Matell MS, Meck WH. Cortico-striatal circuits and interval timing: coincidence detection of oscillatory processes. Cogn Brain Res. 2004;21(2):139–70.

    Google Scholar 

  77. Van Rijn H, Anderson JR. Modeling lexical decision as ordinary retrieval. In: Detje F, Doerner D, Schaub H, editors. Proceedings of the 5th international conference on cognitive modeling. Bamberg: Universitaetsverlag Bamberg; 2003. p. 55.

    Google Scholar 

  78. Anderson JR. How can the human mind occur in the physical universe? New York: Oxford University Press; 2007.

    Google Scholar 

  79. Anderson JR, Bothell D, Byrne MD, Douglass S, Lebiere C, Qin Y. An integrated theory of the mind. Psychol Rev. 2004;111(4):1036–60.

    PubMed  Google Scholar 

  80. Jones L, Wearden JH. Double standards: memory loading in temporal reference memory. Q J Exp Psychol B. 2004;57(1):55–77.

    PubMed  Google Scholar 

  81. Jones LA, Wearden JH. More is not necessarily better: examining the nature of the temporal reference memory component in timing. Q J Exp Psychol B. 2003;56(4):321–43.

    PubMed  Google Scholar 

  82. Gibbon J, Malapani C, Dale CL, Gallistel C. Toward a neurobiology of temporal cognition: advances and challenges. Curr Opin Neurobiol. 1997;7(2):170–84.

    PubMed  CAS  Google Scholar 

  83. Van Rijn H, Taatgen NA. Timing of multiple overlapping intervals: how many clocks do we have? Acta Psychol (Amst). 2008;129(3):365–75.

    Google Scholar 

  84. Buhusi CV, Oprisan SA. Time-scale invariance as an emergent property in a perceptron with realistic, noisy neurons. Behav Processes. 2013;95:60–70.

    PubMed  PubMed Central  Google Scholar 

  85. Oprisan SA, Buhusi CV. Modeling pharmacological clock and memory patterns of interval timing in a striatal beat-frequency model with realistic, noisy neurons. Front Integr Neurosci. 2011;5:52.

    PubMed  PubMed Central  Google Scholar 

  86. Oprisan SA, Buhusi CV. What is all the noise about in interval timing? Philos Trans R Soc Lond B Biol Sci. 2014;369:20120459.

    Google Scholar 

  87. Anderson JR, Bothell D, Lebiere C, Matessa M. An integrated theory of list memory. J Mem Lang. 1998;38(4):341–80.

    Google Scholar 

  88. Van Maanen L, Van Rijn H, Taatgen N. RACE/A: an architectural account of the interactions between learning, task control, and retrieval dynamics. Cogn Sci. 2012;36(1):62–101.

    PubMed  Google Scholar 

  89. Gonzalez C, Lerch JF, Lebiere C. Instance-based learning in dynamic decision making. Cogn Sci. 2003;27:591–635.

    Google Scholar 

  90. Van Maanen L, Van Rijn H. The locus of the Gratton effect in picture–word interference. Top Cogn Sci. 2010;2(1):168–80.

    PubMed  Google Scholar 

  91. Meck WH, Church RM, Olton DS. Hippocampus, time, and memory. Behav Neurosci. 1984;98(1):3–22.

    PubMed  CAS  Google Scholar 

  92. Olton DS, Wenk GL, Church RM, Meck WH. Attention and the frontal cortex as examined by simultaneous temporal processing. Neuropsychologia. 1988;26(2):307–18.

    PubMed  CAS  Google Scholar 

  93. Meck WH, Church RM, Matell MS. Hippocampus, time, and memory – A retrospective analysis. Behav Neurosci. 2013;127(5):642–54.

    PubMed  Google Scholar 

  94. Borst JP, Taatgen NA, Stocco A, van Rijn H. The neural correlates of problem states: testing FMRI predictions of a computational model of multitasking. PLoS One. 2010;5(9):e12966.

    PubMed  PubMed Central  Google Scholar 

  95. Borst JP, Taatgen NA, van Rijn H. The problem state: a cognitive bottleneck in multitasking. J Exp Psychol Learn Mem Cogn. 2010;36(2):363–82.

    PubMed  Google Scholar 

  96. Bobko DJ, Schiffman HR, Castino RJ, Chiappetta W. Contextual effects in duration experience. Am J Psychol. 1977;90(4):577–86.

    PubMed  CAS  Google Scholar 

  97. Gu BM, Jurkowski AJ, Lake JI, Malapani C, Meck WH. Bayesian models of interval timing and distortions in temporal memory as a function of Parkinson’s disease and dopamine-related error pro cessing. In: Vatakis A, Allman MJ, editors. Time distortions in mind: temporal processing in clinical populations. Boston: Brill Academic Publishers; 2014.

    Google Scholar 

  98. Gu BM, Meck WH. New perspectives on Vierordt’s law: memory-mixing in ordinal temporal comparison tasks. Lect Notes Comput Sci. 2011;6789 LNAI:67–78.

    Google Scholar 

  99. Lustig C, Meck WH. Chronic treatment with haloperidol induces deficits in working memory and feedback effects of interval timing. Brain Cogn. 2005;58(1):9–16.

    PubMed  Google Scholar 

  100. Taatgen N, van Rijn H. Traces of times past: representations of temporal intervals in memory. Mem Cognit. 2011;39(8):1546–60.

    PubMed  PubMed Central  Google Scholar 

  101. Buhusi CV, Meck WH. Relativity theory and time perception: single or multiple clocks? PLoS One. 2009;4(7):e6268.

    PubMed  PubMed Central  Google Scholar 

  102. Meck WH, MacDonald CJ. Amygdala inactivation reverses fear’s ability to impair divided attention and make time stand still. Behav Neurosci. 2007;121(4):707–20.

    PubMed  Google Scholar 

  103. de Montalembert M, Mamassian P. Processing temporal events simultaneously in healthy human adults and in hemi-neglect patients. Neuropsychologia. 2012;50(5):791–9.

    PubMed  Google Scholar 

  104. Macar F, Vidal F. Timing processes: an outline of behavioural and neural indices not systematically considered in timing models. Can J Exp Psychol. 2009;63(3):227–39.

    PubMed  Google Scholar 

  105. Macar F, Vidal F, Casini L. The supplementary motor area in motor and sensory timing: evidence from slow brain potential changes. Exp Brain Res. 1999;125(3):271–80.

    PubMed  CAS  Google Scholar 

  106. Pouthas V. Electrophysiological evidence for specific processing of temporal information in humans. In: Meck WH, editor. Functional and neural mechanisms of interval timing. Boca Raton: CRC; 2003. p. 439–56.

    Google Scholar 

  107. Wiener M, Kliot D, Turkeltaub PE, Hamilton RH, Wolk DA, Coslett HB. Parietal influence on temporal encoding indexed by simultaneous transcranial magnetic stimulation and electroencephalography. J Neurosci. 2012;32(35):12258–67.

    PubMed  CAS  PubMed Central  Google Scholar 

  108. Gontier E, Paul I, Le Dantec C, Pouthas V, Jean-Marie G, Bernard C, et al. ERPs in anterior and posterior regions associated with duration and size discriminations. Neuropsychology. 2009;23(5):668–78.

    PubMed  Google Scholar 

  109. Tecce JJ. Contingent negative variation (CNV) and psychological processes in man. Psychol Bull. 1972;77(2):73–108.

    PubMed  CAS  Google Scholar 

  110. Walter WG, Cooper R, Aldridge VJ, McCallum WC, Winter AL. Contingent negative variation: an electric sign of sensorimotor association and expectancy in the human brain. Nature. 1964;203:380–4.

    PubMed  CAS  Google Scholar 

  111. Leuthold H, Sommer W, Ulrich R. Preparing for action: Inferences from CNV and LRP. J Psychophysiol. 2004;18:77–88.

    Google Scholar 

  112. Van Boxtel GJM, Bocker KBE. Cortical measures of anticipation. J Psychophysiol. 2004;18(2–3):61–76.

    Google Scholar 

  113. Nagai Y, Critchley HD, Featherstone E, Fenwick PB, Trimble MR, Dolan RJ. Brain activity relating to the contingent negative variation: an fMRI investigation. NeuroImage. 2004;21(4):1232–41.

    PubMed  CAS  Google Scholar 

  114. Meck WH. Frontal cortex lesions eliminate the clock speed effect of dopaminergic drugs on interval timing. Brain Res. 2006;1108(1):157–67.

    PubMed  CAS  Google Scholar 

  115. Meck WH. Neuroanatomical localization of an internal clock: a functional link between mesolimbic, nigrostriatal, and mesocortical dopaminergic systems. Brain Res. 2006;1109(1):93–107.

    PubMed  CAS  Google Scholar 

  116. Kononowicz TW, Van Rijn H. Decoupling interval timing and climbing neural activity: a dissociation between CNV and N1P2 amplitudes. J Neurosci. 2014;34(8):2931–9.

    PubMed  CAS  Google Scholar 

  117. Miall C. The storage of time intervals using oscillating neurons. Neural Comput. 1989;1.

    Google Scholar 

  118. Dibner C, Schibler U, Albrecht U. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol. 2010;72:517–49.

    PubMed  CAS  Google Scholar 

  119. Kalsbeek A, Merrow M, Roenneberg T, Foster RG. Neurobiology of circadian timing. Preface. Prog Brain Res. 2012;199:xi–xii.

    Google Scholar 

  120. Agostino PV, Golombek DA, Meck WH. Unwinding the molecular basis of interval and circadian timing. Front Integr Neurosci. 2011;5:64.

    PubMed  PubMed Central  Google Scholar 

  121. Amitai Y. Membrane potential oscillations underlying firing patterns in neocortical neurons. Neuroscience. 1994;63(1):151–61.

    PubMed  CAS  Google Scholar 

  122. Kasanetz F, Riquelme LA, Della-Maggiore V, O’Donnell P, Murer MG. Functional integration across a gradient of corticostriatal channels controls UP state transitions in the dorsal striatum. Proc Natl Acad Sci U S A. 2008;105(23):8124–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  123. Kasanetz F, Riquelme LA, Murer MG. Disruption of the two-state membrane potential of striatal neurones during cortical desynchronisation in anaesthetised rats. J Physiol. 2002;543(Pt 2):577–89.

    PubMed  CAS  PubMed Central  Google Scholar 

  124. Kasanetz F, Riquelme LA, O’Donnell P, Murer MG. Turning off cortical ensembles stops striatal Up states and elicits phase perturbations in cortical and striatal slow oscillations in rat in vivo. J Physiol. 2006;577(Pt 1):97–113.

    PubMed  CAS  PubMed Central  Google Scholar 

  125. Morris C, Lecar H. Voltage oscillations in the barnacle giant muscle fiber. Biophys J. 1981;35(1):193–213.

    PubMed  CAS  PubMed Central  Google Scholar 

  126. Rinzel J, Ermentrout GB. Analysis of neural excitability and oscillations. In: Koch C, Segev I, editors. Methods in neuronal modeling. Cambridge: MIT Press; 1989. p. 135–69.

    Google Scholar 

  127. Cheng RK, MacDonald CJ, Meck WH. Differential effects of cocaine and ketamine on time estimation: implications for neurobiological models of interval timing. Pharmacol Biochem Behav. 2006;85(1):114–22.

    PubMed  CAS  Google Scholar 

  128. Lake JI, Meck WH. Differential effects of amphetamine and haloperidol on temporal reproduction: dopaminergic regulation of attention and clock speed. Neuropsychologia. 2013;51(2):284–92.

    PubMed  Google Scholar 

  129. Matell MS, Bateson M, Meck WH. Single-trials analyses demonstrate that increases in clock speed contribute to the methamphetamine-induced horizontal shifts in peak-interval timing functions. Psychopharmacology (Berl). 2006;188(2):201–12.

    CAS  Google Scholar 

  130. Meck WH, Cheng RK, MacDonald CJ, Gainetdinov RR, Caron MG, Cevik MO. Gene-dose dependent effects of methamphetamine on interval timing in dopamine-transporter knockout mice. Neuropharmacology. 2012;62(3):1221–9.

    PubMed  CAS  Google Scholar 

  131. Matell MS, Meck WH, Nicolelis MA. Interval timing and the encoding of signal duration by ensembles of cortical and striatal neurons. Behav Neurosci. 2003;117(4):760–73.

    PubMed  Google Scholar 

  132. Merchant H, Harrington DL, Meck WH. Neural basis of the perception and estimation of time. Annu Rev Neurosci. 2013;36:313–36.

    PubMed  CAS  Google Scholar 

  133. Merchant H, Perez O, Zarco W, Gamez J. Interval tuning in the primate medial premotor cortex as a general timing mechanism. J Neurosci. 2013;33(21):9082–96.

    PubMed  CAS  Google Scholar 

  134. Buonomano DV. The biology of time across different scales. Nat Chem Biol. 2007;3(10):594–7.

    PubMed  CAS  Google Scholar 

  135. Gu BM, Cheng RK, Yin B, Meck WH. Quinpirole-induced sensitization to noisy/sparse periodic input: temporal synchronization as a component of obsessive-compulsive disorder. Neuroscience. 2011;179:143–50.

    PubMed  CAS  Google Scholar 

  136. MacDonald CJ, Meck WH. Systems-level integration of interval timing and reaction time. Neurosci Biobehav Rev. 2004;28(7):747–69.

    PubMed  Google Scholar 

  137. Oswald AM, Chacron MJ, Doiron B, Bastian J, Maler L. Parallel processing of sensory input by bursts and isolated spikes. J Neurosci. 2004;24(18):4351–62.

    PubMed  CAS  Google Scholar 

  138. Wang DL. On connectedness: a solution based on oscillatory correlation. Neural Comput. 2000;12(1):131–9.

    PubMed  CAS  Google Scholar 

  139. Gu BM, Meck WH. Oscillatory multiplexing of population codes for interval timing and working memory. Neurosci Biobehav Rev, in press.

    Google Scholar 

  140. Lustig C, Matell MS, Meck WH. Not “just” a coincidence: frontal-striatal interactions in working memory and interval timing. Memory. 2005;13(3–4):441–8.

    PubMed  Google Scholar 

  141. Broadway JM, Engle RW. Individual differences in working memory capacity and temporal discrimination. PLoS One. 2011;6(10):e25422.

    PubMed  CAS  PubMed Central  Google Scholar 

  142. Brown GD, Preece T, Hulme C. Oscillator-based memory for serial order. Psychol Rev. 2000;107(1):127–81.

    PubMed  CAS  Google Scholar 

  143. Brown GDA, Chater N. The chronological organization of memory: common psychological foundations for remembering and timing. In: Hoerl C, McCormack T, editors. Time and memory: issues in philosophy and psychology. New York: Oxford University Press; 2001. p. 77–110.

    Google Scholar 

  144. Yin B, Meck WH. Comparison of interval timing behaviour in mice following dorsal or ventral hippocampal lesions with mice having δ opioid receptor gene deletion. Philos Trans R Soc Lond B Biol Sci. 2014;369:20120466.

    PubMed  Google Scholar 

  145. Lisman J. Working memory: the importance of theta and gamma oscillations. Curr Biol. 2010;20(11):R490–2.

    PubMed  CAS  Google Scholar 

  146. Schack B, Vath N, Petsche H, Geissler HG, Moller E. Phase-coupling of theta-gamma EEG rhythms during short-term memory processing. Int J Psychophysiol. 2002;44(2):143–63.

    PubMed  CAS  Google Scholar 

  147. Van der Meij R, Kahana M, Maris E. Phase-amplitude coupling in human electrocorticography is spatially distributed and phase diverse. J Neurosci. 2012;32(1):111–23.

    PubMed  Google Scholar 

  148. Penttonen M, Buzsaki G. Natural logarithmic relationship between brain oscillators. Thalamus Relat Syst. 2003;2:145–52.

    Google Scholar 

  149. Lakatos P, Shah AS, Knuth KH, Ulbert I, Karmos G, Schroeder CE. An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex. J Neurophysiol. 2005;94(3):1904–11.

    PubMed  Google Scholar 

  150. Fortin C, Breton R. Temporal interval production and processing in working memory. Percept Psychophys. 1995;57(2):203–15.

    PubMed  CAS  Google Scholar 

  151. Fortin C, Champagne J, Poirier M. Temporal order in memory and interval timing: an interference analysis. Acta Psychol (Amst). 2007;126(1):18–33.

    Google Scholar 

  152. Fortin C, Couture E. Short-term memory and time estimation: beyond the 2-second “critical” value. Can J Exp Psychol. 2002;56(2):120–7.

    PubMed  Google Scholar 

  153. Fortin C, Masse N. Order information in short-term memory and time estimation. Mem Cognit. 1999;27(1):54–62.

    PubMed  CAS  Google Scholar 

  154. Fortin C, Rousseau R, Bourque P, Kirouac E. Time estimation and concurrent nontemporal processing: specific interference from short-term-memory demands. Percept Psychophys. 1993;53(5):536–48.

    PubMed  CAS  Google Scholar 

  155. Burke JF, Zaghloul KA, Jacobs J, Williams RB, Sperling MR, Sharan AD, et al. Synchronous and asynchronous theta and gamma activity during episodic memory formation. J Neurosci. 2013;33(1):292–304.

    PubMed  CAS  PubMed Central  Google Scholar 

  156. Borst JP, Anderson JR. Using model-based functional MRI to locate working memory updates and declarative memory retrievals in the fronto-parietal network. Proc Natl Acad Sci U S A. 2013;110(5):1628–33.

    PubMed  CAS  PubMed Central  Google Scholar 

  157. Borst JP, Taatgen NA, van Rijn H. Using a symbolic process model as input for model-based fMRI analysis: locating the neural correlates of problem state replacements. NeuroImage. 2011;58(1):137–47.

    PubMed  Google Scholar 

  158. Shi Z, Church RM, Meck WH. Bayesian optimization of time perception. Trends Cogn Sci. 2013;17(11):556–64.

    PubMed  Google Scholar 

  159. French R, Addyman, C, Mareschal D, Thomas E. GAMIT – a fading-Gaussian activation model of interval timing: unifying prospective and retrospective time estimation. Timing Time Percept Rev (in press).

    Google Scholar 

  160. MacDonald CJ. Prospective and retrospective duration memory in the hippocampus: is time in the foreground or background? Philos Trans R Soc Lond B Biol Sci. 2014;369:20120463.

    Google Scholar 

  161. MacDonald CJ, Fortin NJ, Sakata S, Meck WH. Retrospective and prospective views on the role of the hippocampus in interval timing and memory for elapsed time. Timing Time Percept. 2014;2(1):51–61.

    Google Scholar 

  162. Matthews WJ, Meck WH. Time perception: The bad news and the good. WIREs Cogn Sci. 2014;5:429–46.

    Google Scholar 

  163. Yin B, Troger AB. Exploring the 4th dimension: hippocampus, time, and memory revisited. Front Integr Neurosci. 2011;5:36.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Warren H. Meck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

van Rijn, H., Gu, BM., Meck, W.H. (2014). Dedicated Clock/Timing-Circuit Theories of Time Perception and Timed Performance. In: Merchant, H., de Lafuente, V. (eds) Neurobiology of Interval Timing. Advances in Experimental Medicine and Biology, vol 829. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1782-2_5

Download citation

Publish with us

Policies and ethics