Skip to main content

Localization of Serotonin-Like Immunoreactivity in the Central Nervous System and Pituitary of the Rat, with Special References to the Innervation of the Hypothalamus

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 133))

Abstract

The localization and distribution of serotonin (5-HT) has in the rat brain been studied with the indirect immunofluorescence technique of Coons (1958)using a newly developed, specific antibody to 5-HT. This paper contains a detailed description of the distribution of 5-HT in the hypothalamus and hypophyis and a brief report on the localization of 5-HT containing cell bodies. Principally, 5-HT perikarya were present in neuron systems with a distribution similar to that revealed by the mapping of Dahlström & Fuxe (1964) with the formaldehyde-induced-fluorescence technique (FIF). However, in addition to the nine areas originally described, several other areas in the mesencephalon and rhombencephalon appeared to contain 5-HT cell bodies. In the hypothalamus no 5-HT positive neuronal perikarya could be observed. However, in the infundibulum and in the median eminence some 5-HT positive tanycytes and mast cells were observed. Serotonergic fibers and terminals are present throughout the hypothalamus. Particularly dense plexus of the fibers and terminals have been observed in the lateral hypothalamic area, nucleus mamillaris medialis, the nucleus perifornicalis, the nucleus suprachiasmaticus and the nucleus ventromedialis hypothalami. All remaining hypothalamic areas demonstrate various densities of 5-HT immunoreactive nerve fibers. In the pituitary 5-HT-like immunoreactivity have been found in the pars nervosa.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aghajanian G.K., Bloom F.E., Lowell R., Sheard M. and Freedman D.E. (1966) The uptake of 5-hydroxytryptamine-3H from the cerebral ventricles: autoradiographic localization. Biochem. Pharmacol. 15, 1401–1403.

    Google Scholar 

  • Aghajanian G.K., Kuhar M.J. and Roth R.H. (1973) Serotonin-contaifling neuronal perikarya and terminals: differential effects of p-chlorophenylamine. Brain Res. 54, 85–101.

    Article  PubMed  CAS  Google Scholar 

  • Baumgarten H.G. and Lachemmayer L. (1972) 5,7-dihydroxytryptamine: improvement in chemical lesioning of indolamine neurons in the mammalian brain. Z. Zellforsch. 135, 399–414.

    Article  PubMed  CAS  Google Scholar 

  • Baumgarten H.G. and Lachemmayer L. (1974) Indolamine-containing nerve terminals in the rat median eminence. Z. Zellforsch. 147, 285–292.

    Article  PubMed  CAS  Google Scholar 

  • Beaudet A. and Descarries L. (1979) Radioautographic characterization of a serotonin-accumulating nerve cell group in adult rat hypothalamus. Brain Res. 160, 231–243.

    Article  PubMed  CAS  Google Scholar 

  • Björkland A., Lindvall O. and Svensson L.-A. (1972) Mechanisms of fluorophore formation in the histochemical glyoxylic acid method for monoamines. Histochemie 32, 113–131.

    Article  Google Scholar 

  • Björklund A., Axelsson S. and Falck B. (1976) Intraneuronal indolamines in the central nervous system. In Adv. Biochem. Psychopharm. Vol. 15 (ed. Costa E., Giacobini E. and Paoletti R. ), pp. 87–94, Raven Press, New York.

    Google Scholar 

  • Björklund A. and Falck B. (1969) Pituitary monoamines in the cat with special reference to the presence of an unidentified monoamine-like substance in the adenohypophysis. Z. Zellforsch. 93, 254–264.

    Article  PubMed  Google Scholar 

  • Bogdansky D.F., Pletcher A., Brodie B.B. and Udenfriend S. (1956) Identification and assay of serotonin in brain. J. Pharmacol. Exp. Ther. 117, 82–88.

    Google Scholar 

  • Calas A., Alonso G., Arnauld E. and Vincent J.O. (1974) Demonstration of indolaminergic fibers in the median eminence of the duck, rat and monkey. Nature, London 250, 241–243.

    Google Scholar 

  • Chan-Palay V. (1977) Indolamine neurons and their processes in normal rat brain and in chronic diet-induced thiamine deficiency demonstrated by uptake of 3H-serotonin. J. Comp. Neur. 176, 467–494.

    Article  PubMed  CAS  Google Scholar 

  • Coons A.H. (1958) Fluorescent antibody methods. In General Cytoche-mical Methods (ed. Danielli J.F. ), pp. 399–422, Academic Press, New York.

    Google Scholar 

  • Cummings J.P. and Felten D.L. (1979) A raphe dendrite bundle in the rabbit medulla. J. Comp. Neurol. 183, 1–24.

    Article  PubMed  CAS  Google Scholar 

  • Dahlström A. and Fuxe K. (1964) Evidence for the excistence of monoamine containing neurons in the central nervous system. I. Demonstration of monoamines in cell bodies of brain stem neurons. Acta. Physiol. Scand. 62, suppl. 232, 1–55.

    Google Scholar 

  • Dahlström A., Häggendal J. and Atack C. (1974) Localization and transport of serotonin. In Adv. Biochem. Psychopharmacol., Vol. 11, (ed. Costa E., Gessa G.L. and Sandler M. ), pp. 87–96, Raven Press, New York.

    Google Scholar 

  • Daly J., Fuxe K. and Jonsson G. (1974) 5,7-Dihydroxytryptamine as a tool for the morphological and functional analysis of central 5 - hydroxydryptamine neurons. Res. Comm. Chem. Pathol. Pharmacol. 1, 175–187.

    Google Scholar 

  • Descarries L., Beaudet A. and Watkins K.C. (1975) Serotonin nerve terminals in adult rat neocortex. Brain Res. 100, 563–588.

    Article  PubMed  CAS  Google Scholar 

  • Emson P.C. and Lindvall O. (1979) Distribution of putative neuro- transmitters in the neocortex. Neuroscience 4, 1–30.

    Article  PubMed  CAS  Google Scholar 

  • Eränkö O. (1967) The practical demonstration of catecholamines by formaldehyde-induced fluorescence. J.R. micros. Soc. 87, 259–276.

    Google Scholar 

  • Falck B. and Owman C. (1968) 5-Hydroxytryptamine and related amines in endocrine cell systems. Advances in Pharmacology, Vol. 6A, (ed. Garattini I., Ihose P.A.),pp. 211–231, Academic Press.

    Google Scholar 

  • Fuxe K. (1965) Evidence for the existence of monoamine neurons in the central nervous system. IV. Distribution of monoamine terminals in the central nervous system. Acta Physiol. Scand. 64, suppl. 247, 39–85.

    Google Scholar 

  • Fuxe K., Hökfelt T., Nilsson 0. and Reinius S. (1966) A fluorescence and electron microscopic study on central monoamine nerve cells. Anat. Rec. 155, 33–40.

    Google Scholar 

  • Fuxe K. and Jonsson G. (1967) A modification of the histochemical fluorescence method for the improved localization of 5-hydroxytryptamine. Histochemie 11, 161–166.

    Article  PubMed  CAS  Google Scholar 

  • Fuxe K. and Ungerstedt U. (1968) Histochemical studies on the distribution of catecholamines and 5-hydroxytryptamine after intraventricular injections. Histochemie 13, 16–28.

    Article  PubMed  CAS  Google Scholar 

  • Furness J.B., Heath J.W. and Costa M. (1978) Aqueous Aldehyde ( Faglu) methods for the fluorescence histochemical localization of catecholamines and for the ultrastructural studies of central nervous tissue. Histochemistry 57, 285–295.

    Google Scholar 

  • Green A.R., Koslow S.H. and Costa E. (1973) Identification and quantitation of a new indolealkylamine in rat hypothalamus. Brain Res. 51, 371–374.

    Article  PubMed  CAS  Google Scholar 

  • Hökfelt T. and Ljungdahl A. (1972) Modification of the Falck Hillarp formaldehyde fluorescence method using the Vibratome: simple, rapid and sensitive localization of catecholamines in sections of unfixed or formal in fixed brain tissue. Histochemistry 29, 325–339.

    PubMed  Google Scholar 

  • Hökfelt T., Fuxe K. and Goldstein M. (1973) Immunohistochemical localization of aromatic L–aminoacid decarboxylase. (DOPAdecarboxylase) in central dopamine and 5-hydroxytryptamine nerve cell bodies of the rat brain. Brain Res. 53, 175–180.

    Article  PubMed  Google Scholar 

  • Jacobowitz D.M. and Palkovits M. (1974) Topographic atlas of catecholamine and actylcholinesterase-containing neurons in the rat brain I. Forebrain (Telencephalon, Diencephalon). J. Comp. Neurol. 157, 13–28.

    Article  PubMed  CAS  Google Scholar 

  • Joh T.H. Shikimi T. Pickel V.M. and Reis D.J. (1975) Brain tryptophan hydroxylase: purification of production of antibodies to, and cellular and ultrastructural localization of serotonergic neurons of rat midbrain. Proc. Natl. Acad. Sci. U.S.A. 72, 3575–3579.

    Google Scholar 

  • Jonsson G.,Pollare T., Hallman H. and Sachs Ch. (1978) Development plasticity of central serotonin neurons after 5,7–dihydroxytryptamine treatment. In: Proc. New York Acad. Sci., Symp. on. “Serotonin Neurotoxins”. (eds Jacoby J. and Lytle L.), pp. 150–167.

    Google Scholar 

  • Kawa A., Ariyama T., Taniguchi Y., Kamisaki T. and Kanehisa T. (1978) Increased sensitivity to 5- hydroxytryptamine due to intraventricular administration of 5,6- dihydroxytryptamine. Acta Endocr. 89, 432–437.

    PubMed  CAS  Google Scholar 

  • Kent 0.L. and Sladek J.R. (1978) Histochemical, pharmacological and microspectrofluorometric analysis of new sites of serotonin localization in the rat hypothalamus. J. Comp. Neurol. 180, 221–236.

    Article  Google Scholar 

  • König J.F.R. and Klippel R.A. (1963) The rat brain. A Stereotaxic Atlas of the Forebrain and Lower Parts of the Brain Stem. Williams and Wilkins, Baltimore.

    Google Scholar 

  • Leger L. and Descarries L. (1978) Serotonin nerve terminals in the locus coerulus of adult rat: a radioautoradiographic study. Brain Res. 145, 1–13.

    Article  PubMed  CAS  Google Scholar 

  • Ljungdahl A., Hökfelt T. and Nilsson G. (1978) Distribution of Substance P-like immunoreactivity in the central nervous system of the rat. I. Cell bodies and nerve terminals. Neuroscience 3, 861–943.

    Google Scholar 

  • Lichtensteiger W., Mutzner U. and Langemann H. (1967) Uptake of 5hydroxytryptamine and 5-hydroxytryptophan by neurons on the central nervous system normally containing catecholamines. J. Neurochem. 14, 489–497.

    Article  PubMed  CAS  Google Scholar 

  • Levitt P. and Moore R.Y. (1978) Developmental organization of raphe serotonin neuron groups in the rat. Anat. Embryol. 154, 241–251.

    Article  PubMed  CAS  Google Scholar 

  • Lorén V., Björklund A., Falck B. and Lindvall O. (1976) An improved histofluorescence procedure for freeze-dried paraffin-embedded tissue based on combined formaldehyde-glyoxylic acid perfusion with high magnesium content and acid pH. Histochem. 49, 177–192.

    Article  Google Scholar 

  • Lowry O.H., Rosebrough N.J., Farr A.L. and Randall R.J. (1951) Protein measurement with the folin phenol reagent. J. Biol. Chem. 193, 265–275.

    Google Scholar 

  • Massari V.J., Tizabi Y., Gottesfeld Z. and Jacobowitz D.M. (1978) A fluorescence histochemical and biochemical evaluation of the effect of p-chloroamphetamine on individual serotonergic nuclei in the rat brain. Neuroscience 3, 339–344.

    Article  PubMed  CAS  Google Scholar 

  • Nygren L.G. (1976) On the visualization of central dopamine and noradrenaline nerve terminals in cryostat sections. Med. Biol. 54, 278–285.

    PubMed  CAS  Google Scholar 

  • Olivereau M. and Olivereau J. (1979) Effect of serotonin on prolactin and MSH-secreting cells in the cell comparison with the effect of 5-hydroxytryptophan. Cell.Tiss. Res. 196, 397–408.

    CAS  Google Scholar 

  • Palkovits M. and Jacobowitz D.M. (1974) Topographic atlas of catecholamine and acetylcholinesterase–containing neurons in the rat brain. H. Hindbrain (mesencephalon, rhombencephalon). J. Comp. Neurol. 157, 29–41.

    Article  CAS  Google Scholar 

  • Pickel V.M., Joh. T.H. and Reis D.J. (1977) A serotonergic innervation of noradrenergic neurons in nucleus locus coeruleus: demonstration by immunocytochemical localization of the transmitter specific enzymes tyrosine and tryptophan hydroxylase. Brain Res. 131, 197–214.

    CAS  Google Scholar 

  • Richards J.G., Da Prada M., Würsch J., Lorez H.P. and Pieri L. (1979) Mapping monoaminergic neurons with (3H) reserpine by autoradiography. Neuroscience 4, 937–950.

    Article  PubMed  CAS  Google Scholar 

  • Saavedra J.M., Palkovits M., Brownstein M.J. and Axelrod J. (1974) Serotonin distribution in the nuclei of the rat hypothalamus and preoptic region. Brain Res. 77, 157–165.

    Article  PubMed  CAS  Google Scholar 

  • Saavedra J.M., Palkovits M., Kizer J.I., Brownstein M. and Zivin J. A. (1975) Distribution of biogenic amines and related enzymes in the rat pituitary gland. J. Neurochem. 25, 257–260.

    Article  PubMed  CAS  Google Scholar 

  • Sachs C. and Jonsson G. (1975) 5,7–dihydroxytryptamine induced changes in the postnatal development of central 5- hydroxytryptamine neurons. Med. Biol. 53, 156–164.

    Google Scholar 

  • Steinbusch H.W.M., Verhofstad A.A.J. and Joosten H.W.J. (1978) Localization of serotonin in the central nervous system by immunohistochemistry: description of a specific and sensitive technique and some applications. Neuroscience 3, 811–819.

    Article  PubMed  CAS  Google Scholar 

  • Steinbusch H.W.M. and Verhofstad A.A.J. (1979) Immunofluorescent staining of serotonin in the central nervous system. In: Adv. Pharmacol. Ther. Vol. 2 (ed. by Simon P. ). pp. 151–160, Pergamon Press, Oxford.

    Google Scholar 

  • Swanson L.W. and Hartman B.K. (1975) The central adrenergic system. An immunofluorescence study of the localization of cell bodies and their efferent connections in the rat utilizing dopamine-Hydroxylase as a marker. J. Comp. Neurol. 163, 467–506.

    Article  PubMed  CAS  Google Scholar 

  • Thoenen H. and Tranzer J.P. (1973) The pharmacology of 6–hydroxydopamine. A. Rev. Pharmac. 13, 169–180.

    Article  CAS  Google Scholar 

  • Thronton V.F. and Geschwind J.J. (1975) Evidence that serotonin may be a melanocyte stimulating hormone releasing factor in the lizard, Anolis carolinensis. Gen. Comp. Endocrinol. 26, 346–353.

    Article  Google Scholar 

  • Twarog B.M. and Page I.H. (1953) Serotonin content of some mammalian tissues and urine and a method for its determination. J. Physiol., London, 175, 157–161.

    CAS  Google Scholar 

  • Ungerstedt U. (1971) Stereotaxic mapping of the monoamine pathways in the rat brain. Acta Physiol. Scand. 82. Suppl. 367, 1–48.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Steinbusch, H.W.M., Nieuwenhuys, R. (1981). Localization of Serotonin-Like Immunoreactivity in the Central Nervous System and Pituitary of the Rat, with Special References to the Innervation of the Hypothalamus. In: Haber, B., Gabay, S., Issidorides, M.R., Alivisatos, S.G.A. (eds) Serotonin. Advances in Experimental Medicine and Biology, vol 133. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3860-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3860-4_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3862-8

  • Online ISBN: 978-1-4684-3860-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics