Skip to main content

Chemical Communication in Insects: The Peripheral Odour Coding System of Drosophila Melanogaster

  • Chapter
Book cover Sensing in Nature

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 739))

Abstract

Animals use their chemosensory systems to detect and discriminate among chemical cues in the environment. Remarkable progress has recently been made in our knowledge of the molecular and cellular basis of chemosensory perception in insects, based largely on studies in the vinegar fly Drosophila melanogaster. This progress has been possible due to the identification of gene families for olfactory receptors, the use of electro-physiological recording techniques on sensory neurons, the manifold of genetic manipulations that are available in this species and insights from several insect model systems. The superfamilies of olfactory receptor proteins, the Or genes and the more recently discovered IR genes, represent the essential elements in olfactory coding, endowing olfactory receptor neurons with their abilities to respond to specific sets of odorants or pheromones. General odorants activate receptors in a combinatorial fashion, but some receptors are narrowly tuned to pheromones or to carbon dioxide. Surprisingly, olfactory receptors in insects are biochemically quite different to those in mammals and do not appear to signal via classical G protein pathways but rather via ionotropic mechanisms. Here we review the past decade of intensive research since the discovery of the first insect olfactory receptors in 1999, focusing on the molecules and cells that underly peripheral olfactory perception in Drosophila.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zozulya S, Echeverri F, Nguyen T. The human olfactory receptor repertoire. Genome Biol 2001;2: research0018.1–0018.12.

    Google Scholar 

  2. Olender T, Fuchs T, Linhart C et al. The canine olfactory subgenome. Genomics 2004; 83:361–372.

    Article  PubMed  CAS  Google Scholar 

  3. Alioto TS, Ngai J. The odorant receptor repertoire of teleost fish. BMC Genomics 2005; 6:173–187.

    Article  PubMed  Google Scholar 

  4. Robertson HM, Warr CG, Carlson JR. Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster. Proc Natl Acad Sci USA 2003; 100:14537–14542.

    Article  PubMed  CAS  Google Scholar 

  5. Galizia CG, Menzel R. Odour perception in honeybees: coding information in glomerular patterns. Curr Opin Neurobiol 2000; 10:504–510.

    Article  PubMed  CAS  Google Scholar 

  6. Davis RL. Olfactory learning. Neuron 2004; 44:31–48.

    Article  PubMed  CAS  Google Scholar 

  7. Dobritsa A, Van der Goes van Naters WM, Warr CG et al. Integrating the molecular and cellular basis of odor coding in the Drosophila antenna. Neuron 2003; 37:827–841.

    Article  PubMed  CAS  Google Scholar 

  8. Neuhaus EM, Gisselmann G, Zhang W et al. Odorant receptor heterodimerization in the olfactory system of Drosophila melanogaster. Nature Neurosci 2005; 8:15–17.

    Article  PubMed  CAS  Google Scholar 

  9. Kiely A, Authier A, Kralicek AV et al. Functional analysis of a Drosophila melanogaster olfactory receptor expressed in Sf9 cells. J Neurosci Methods 2007; 159:189–194.

    Article  PubMed  CAS  Google Scholar 

  10. Hildebrand JG, Shepherd GM. Mechanisms of olfactory discrimination: converging evidence for common principles across phyla. Ann Rev Neurosci 1997; 20:659–631.

    Article  Google Scholar 

  11. Shanbhag SR, Muller B, Steinbrecht RA. Atlas of olfactory organs of Drosophila melanogaster 1. T ypes, external organization, innervation and distribution of olfactory sensilla. Int J Insect Morphol Embryol 1999; 28:377–397.

    Article  Google Scholar 

  12. Stocker RF. The organization of the chemosensory system in Drosophila melanogaster: a review. Cell Tissue Res 1994; 275:3–26.

    Article  PubMed  CAS  Google Scholar 

  13. Stocker RF, Gendre N. Courtship behavior of Drosophila genetically or surgically deprived of basiconic sensilla. Behavior Genetics 1989; 19:371–385.

    Article  PubMed  CAS  Google Scholar 

  14. Venard R, Stocker RF. Behavioral and electroantennogram analysis of olfactory stimulation in lozenge: a Drosophila mutant lacking antennal basiconic sensilla (Diptera: Drosophilidae). J Insect Behavior 1991; 4:683–705.

    Article  Google Scholar 

  15. Clyne PJ, Grant AJ, O’Connell RJ et al. Odorant response of individual sensilla on the Drosophila antenna. Invertebrate Neurosci 1997; 3:127–135.

    Article  CAS  Google Scholar 

  16. Kurtovic A, Widmer A, Dickson BJ. A single class of olfactory neurons mediates behavioural responses to a Drosophila sex pheromone. Nature 2007; 446:542–546.

    Article  PubMed  CAS  Google Scholar 

  17. Van der Goes van Naters W, Carlson JR. Receptors and neurons for fly odors in Drosophila. Current Biology 2007; 17:606–612.

    Article  PubMed  Google Scholar 

  18. Jallon J-M. A few chemical words exchanged by Drosophila during courtship and mating. Behavior Genetics 1984; 14:441–478.

    Article  PubMed  CAS  Google Scholar 

  19. Bartelt RJ, Schaner AM, Jackson LL. cis-Vaccenyl acetate as an aggregation pheromone in Drosophila melanogaster. J Chem Ecol 1985; 11:1747–1756.

    Article  CAS  Google Scholar 

  20. Hansson BS. Olfaction in Lepidoptera. Experientia 1995; 51:1003–1027.

    Article  CAS  Google Scholar 

  21. Yao CA, Ignell R, Carlson JR. Chemosensory coding by neurons in the coeloconic sensilla of the Drosophila antenna. J Neurosci 2005; 25:8359–8367.

    Article  PubMed  CAS  Google Scholar 

  22. Steinbrecht RA. Pore structures in insect olfactory sensilla: a review of data and concepts. Int J Insect Morphol Embryol 1997; 26:229–245.

    Article  Google Scholar 

  23. Park S-K, Shanbhag SR, Wang Q et al. Expression patterns of two putative odorant-binding proteins in the olfactory organs of Drosophila melanogaster have different implications for their functions. Cell Tissue Res 2000; 300:181–192.

    Article  PubMed  CAS  Google Scholar 

  24. Pikielny CW, Hasan G, Rouyer F et al. Members of a family of Drosophila putative odorant-binding proteins are expressed in different subsets of olfactory hairs. Neuron 1994; 12:35–49.

    Article  PubMed  CAS  Google Scholar 

  25. Shanbhag SR, Park S-K, Pikielny CW et al. Gustatory organs of Drosophila melanogaster: fine structure and expression of the putative odorant-binding protein PBPRP2. Cell Tissue Res 2001; 304:423–437.

    Article  PubMed  CAS  Google Scholar 

  26. de Bruyne M, Clyne PJ, Carlson JR. Odor coding in a model olfactory organ: the Drosophila maxillary palp. J Neurosci 1999; 19:4520–4532.

    PubMed  Google Scholar 

  27. de Bruyne M, Foster K, Carlson JR. Odor coding in the Drosophila antenna. Neuron 2001; 30:537–552.

    Article  PubMed  Google Scholar 

  28. Ayer J, Carlson JR. acj6: A gene affecting olfactory physiology and behaviour in Drosophila. Proc Natl Acad Sci USA 1991; 88:5467–5471.

    Article  PubMed  CAS  Google Scholar 

  29. Elmore T, Ignell R, Carlson JR et al. Targeted mutation of a Drosophila odor receptor defines receptor requirement in a novel class of sensillum. J Neurosci 2003; 23:9906–9912.

    PubMed  CAS  Google Scholar 

  30. Sass H. Olfactory receptors on the antenna of Periplaneta: response constellations that encode food odors. J Comp Physiol 1978; 128:227–233.

    Article  Google Scholar 

  31. Selzer R. The processing of a complex food odor by antennal olfactory receptors of Periplaneta americana. J Comp Physiol A 1981; 144:509–519.

    Article  Google Scholar 

  32. Rostelien T, Borg-Karlson AK, Mustaparta H. Selective receptor neurone responses to E-beta-ocimene, beta-myrcene, E,E-alpha-farnesene and homo-farnesene in the moth Heliothis virescens, identified by gas chromatography linked to electrophysiology. J Comp Physiol A 2000; 186:833–847.

    Article  PubMed  CAS  Google Scholar 

  33. Buck LB, Axel R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 1991; 65:175–187.

    Article  PubMed  CAS  Google Scholar 

  34. Clyne PJ, Warr CG, Freeman MR et al. A novel family of divergent seven-transmembrane proteins: candidate odorant receptors in Drosophila. Neuron 1999; 22:327–338.

    Article  PubMed  CAS  Google Scholar 

  35. Clyne PJ, Warr CG, Carlson JR. Candidate taste receptors in Drosophila. Science 2000; 287:1830–1834.

    Article  PubMed  CAS  Google Scholar 

  36. Vosshall LB, Amrein H, Morozov PS et al. A spatial map of the olfactory receptor expression in the Drosophila antenna. Cell 1999; 96:725–736.

    Article  PubMed  CAS  Google Scholar 

  37. Gao Q, Chess A. Identification of candidate Drosophila olfactory receptors from the genomic DNA sequence. Genomics 1999; 60:31–39.

    Article  PubMed  CAS  Google Scholar 

  38. Kim J, Moriyama E, Warr CG et al. Identification of novel multi-transmembrane proteins from genomic databases using quasi-periodic structural properties. Bioinformatics 2000; 16:767–775.

    Article  PubMed  CAS  Google Scholar 

  39. Warr CG, Vosshall LB, Amrein H et al. A unified nomenclature system for the Drosophila odorant receptors. Cell 2000; 102:145–146.

    Article  CAS  Google Scholar 

  40. Kreher SA, Kwon JY, Carlson JR. The molecular basis of odor coding in the Drosophila larva. Neuron 2005; 46:445–456.

    Article  PubMed  CAS  Google Scholar 

  41. Störtkuhl KF, Kettler R. Functional analysis of an olfactory receptor in Drosophila melanogaster. Proc Natl Acad Sci USA 2001; 98:9381–9385.

    Article  PubMed  Google Scholar 

  42. Wetzel CH, Behrendt H-J, Gisselmannn G et al. Functional expression and characterization of a Drosophila odorant receptor in a heterologous cell system. Proc Natl Acad Sci USA 2001; 98:9377–9380.

    Article  PubMed  CAS  Google Scholar 

  43. Hallem EA, Ho MG, Carlson JR. The molecular basis of odor coding in the Drosophila antenna. Cell 2004; 117:965–979.

    Article  PubMed  CAS  Google Scholar 

  44. Hallem EA, Carlson JR. Coding of odors by a receptor repertoire. Cell 2006; 125:143–160.

    Article  PubMed  CAS  Google Scholar 

  45. Brand AH, Perrimon N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 1993; 118, 401–415.

    PubMed  CAS  Google Scholar 

  46. Couto A, Alenius M, Dickson BJ. Molecular, anatomical and functional organization of the Drosophila olfactory system. Current Biology 2005; 15:1535–1547.

    Article  PubMed  CAS  Google Scholar 

  47. Fishilevich E, Vosshall LB. Genetic and functional subdivision of the Drosophila antennal lobe. Current Biology 2005; 15:1548–1553.

    Article  PubMed  CAS  Google Scholar 

  48. de Bruyne, M, Baker, TC. Odor detection in insects: volatile codes. J Chem Ecol 2008; 34:882–897.

    Article  PubMed  CAS  Google Scholar 

  49. Scott K, Brady R, Cravchik A et al. A chemosensory gene family encoding candidate gustatory and olfactory receptors in Drosophila. Cell 2001; 104:661–673.

    Article  PubMed  CAS  Google Scholar 

  50. Goldman AL, van der Goes van Naters W, Lessing D et al. Coexpression of two functional odor receptors in one neuron. Neuron 2005; 45:661–666.

    Article  PubMed  CAS  Google Scholar 

  51. Larsson M, Domingos AI, Jones WD et al. Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron 2004; 43:703–714.

    Article  PubMed  CAS  Google Scholar 

  52. Hill CA, Fox AN, Pitts RJ et al. G protein-coupled receptors in Anopheles gambiae. Science 2002; 298:176–178.

    Article  PubMed  CAS  Google Scholar 

  53. Melo ACA, Rutzler M, Pitts RJ et al. Identification of a chemosensory receptor from the yellow fever mosquito, Aedes aegypti, that is highly conserved and expressed in olfactory and gustatory organs. Chem Senses 2004; 29:403–410.

    Article  PubMed  CAS  Google Scholar 

  54. Krieger J, Klink O, Mohl C et al. A candidate odorant receptor subtype highly conserved across different insect orders. J Comp Physiol A 2003; 189:519.

    Article  CAS  Google Scholar 

  55. Jones WD, Nguyen T-A, Kloss B et al. Functional conservation of an insect odorant receptor gene across 250 million years of evolution. Curr Biol 2005; 15:R119–R121.

    Article  PubMed  CAS  Google Scholar 

  56. Benton R, Sachse S, Michnick SW et al. Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo. PLoS Biology 2006; 4:1–18.

    Article  Google Scholar 

  57. Fox AN, Pitts RJ, Robertson HM et al. Candidate odorant receptors from the malaria vector mosquito Anopheles gambiae and evidence of down-regulation in response to blood feeding. Proc Natl Acad Sci USA 2001; 98:14693–14697.

    Article  PubMed  CAS  Google Scholar 

  58. Nakagawa T, Sakurai T, Nishioka T et al. Insect sex-pheromone signals mediated by specific combinations of olfactory receptors. Science 2005; 307:1638–1642.

    Article  PubMed  CAS  Google Scholar 

  59. Robertson HM, Wanner KW. The chemoreceptor superfamily in the honey bee Apis mellifera: expansion of the odorant, but not gustatory, receptor family. Genome Res 2006; 16:1395–1403.

    Article  PubMed  CAS  Google Scholar 

  60. Krieger J, Raming K, Dewer YM et al. A divergent gene family encoding candidate olfactory receptors of the moth Heliothis virescens. Eur J Neurosci 2002; 16:619–628.

    Article  PubMed  Google Scholar 

  61. Hallem EA, Fox AN, Zwiebel LJ et al. Mosquito receptor for human-sweat odorant. Nature 2004; 427:212–213.

    Article  PubMed  CAS  Google Scholar 

  62. Carey AF, Wang G, Su C-Y et al. Odorant reception in the malaria mosquito Anopheles gambiae. Nature 2010; 464:66–72.

    Article  PubMed  CAS  Google Scholar 

  63. Sakurai T, Nakagawa T, Mitsuno H et al. Identification and functional characterisation of a sex pheromone receptor in the silkmoth Bombyx mori. Proc Natl Acad Sci USA 2004; 101:16653–16658.

    Article  PubMed  CAS  Google Scholar 

  64. Ha TS, Smith DP. A pheromone receptor mediates 11-cis-vaccenyl acetate-induced responses in Drosophila. J Neurosci 2006; 26:8727–8733.

    Article  PubMed  CAS  Google Scholar 

  65. Laughlin JD, Ha TS, Jones DN et al. Activation of pheromone-sensitive neurons is mediated by conformational activation of pheromone-binding protein. Cell 2008; 133:1255–1265.

    Article  PubMed  CAS  Google Scholar 

  66. Benton R, Vannice KS, Vosshall LV. An essential role for a CD36-related receptor in pheromone detection in Drosophila. Nature 2007; 450:289–293.

    Article  PubMed  CAS  Google Scholar 

  67. Smart R, Kiely A, Beale M et al. Drosophila odorant receptors are novel seven transmembrane proteins that can signal independently of heterotrimeric G proteins. Insect Biochem Mol Biol 2008; 38:770–780.

    Article  PubMed  CAS  Google Scholar 

  68. Ache B. Odorant-specific modes of signalling in mammalian olfaction. Chem Senses 2010; doi:10.1093/ chemse/bjq045.

    Google Scholar 

  69. Riesgo-Escovar J, Raha D, Carlson J. Requirement for a phospholipase C in odor response: overlap between olfaction and vision in Drosophila. Proc Natl Acad Sci USA 1995; 92:2864–2868.

    Article  PubMed  CAS  Google Scholar 

  70. Talluri S, Bhatt A, Smith DP. Identification of a Drosophila G protein alpha subunit (dGq alpha-3) expressed in chemosensory cells and central neurons. Proc Natl Acad Sci USA 1995; 92:11475–11479.

    Article  PubMed  CAS  Google Scholar 

  71. Kalidas S, Smith DP. Novel genomic cDNA hybrids produce effective RNA interference in adult Drosophila. Neuron 2002; 33:177–184.

    Article  PubMed  CAS  Google Scholar 

  72. Boekhoff I, Raming K, Breer H. Pheromone-induced stimulation of inositol trisphosphate formation in insect antennae is mediated by G-proteins. J Comp Physiol B 1990; 160:99–103.

    Article  CAS  Google Scholar 

  73. Lundin C, Käll L, Kreher SA et al. Membrane topology of the Drosophila Or83b odorant receptor. FEBS Lett 2007; 581:5601–5604.

    Article  PubMed  CAS  Google Scholar 

  74. Sato K, Pellegrino M, Nakagawa T et al. Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature 2008; 452:1002–1006.

    Article  PubMed  CAS  Google Scholar 

  75. Wicher D, Schafer R, Bauernfeind R et al. Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels. Nature 2008; 452:1007–1011.

    Article  PubMed  CAS  Google Scholar 

  76. Kain P, Chakraborty TS, Sundaram S et al. Reduced odor responses from antennal neurons of Gqa, phospholipase Cb and rdgA mutants in Drosophila support a role for a phospholipid intermediate in insect olfactory transduction. J Neurosci 2008; 28:4745–4755.

    Article  PubMed  CAS  Google Scholar 

  77. Nagel G, Szellas T, Huhn W et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci USA 2003; 100:13940–13945.

    Article  PubMed  CAS  Google Scholar 

  78. Bhave G, Nadin BM, Brasier DJ et al. Membrane topology of a metabotropic glutamate receptor. J Biol Chem 2003; 278:30294–30301.

    Article  PubMed  CAS  Google Scholar 

  79. Dahanukar A, Foster K, Van der Goes van Naters WM et al. A Gr receptor is required for response to the sugar trehalose in taste neurons of Drosophila. Nature Neurosci 2001; 4:1182–1186.

    Article  PubMed  CAS  Google Scholar 

  80. Jones WD, Cayirlioglu P, Kadow IG et al. Two chemosensory receptors together mediate carbon dioxide detection in Drosophila. Nature 2007; 445:86–90.

    Article  PubMed  CAS  Google Scholar 

  81. Kwon JY, Dahanukar A, Weiss LA et al. The molecular basis of CO2 reception in Drosophila. Proc Natl Acad Sci USA 2007; 104:3574–3578.

    Article  PubMed  CAS  Google Scholar 

  82. Edwards SL, Charlie NK, Milfort MC et al. A novel molecular solution for ultraviolet light detection in Caenorhabditis elegans. PLoS Biology 2008; 6:e198.

    Article  PubMed  Google Scholar 

  83. Benton R, Vannice KS, Gomez-Diaz C et al. Variant ionotropic glutamate receptors as chemosensory receptors in Drosophila. Cell 2009; 136:149–162.

    Article  PubMed  CAS  Google Scholar 

  84. Vogt RG, Riddiford LM. Pheromone binding and inactivation by moth antennae. Nature 1981; 293:161–163.

    Article  PubMed  CAS  Google Scholar 

  85. Steinbrecht RA, Laue M, Ziegelberger G. Immunolocalization of pheromone-binding protein and general odorant-binding protein in olfactory sensilla of the silk moths Antherea and Bombyx. Tissue Cell 1995; 282:203–217.

    Article  CAS  Google Scholar 

  86. Du G, Prestwich GD. Protein structure encodes the ligand binding specificity in pheromone binding proteins. Biochemistry 1995; 34:8726–8732.

    Article  PubMed  CAS  Google Scholar 

  87. Galindo K, Smith DP. A large family of divergent Drosophila odorant-binding proteins expressed in gustatory and olfactory sensilla. Genetics 2001; 159:1059–1072.

    PubMed  CAS  Google Scholar 

  88. Hekmat-Scafe DS, Scafe CR, McKinney AJ et al. Genome-wide analysis of the odorant-binding protein gene family in Drosophila melanogaster. Genome Res 2002; 12:1357–1369.

    Article  PubMed  CAS  Google Scholar 

  89. McKenna MP, Hekmat-Scafe DS, Gaines P et al. Putative Drosophila pheromone-binding proteins expressed in a subregion of the olfactory system. J Biol Chem 1994; 269:16340–16347.

    PubMed  CAS  Google Scholar 

  90. Shanbhag SR, Hekmat-Scafe DS, Kim M-S et al. Expression mosiac of odorant-binding proteins in Drosophila olfactory organs. Microsc Res Tech 2001; 55:297–306.

    Article  PubMed  CAS  Google Scholar 

  91. Pelosi P, Zhou JJ, Ban LP et al. Soluble proteins in insect chemical communication. Cell Mol Life Sci 2006; 63:1658–1676.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Coral G. Warr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Tunstall, N.E., Warr, C.G. (2012). Chemical Communication in Insects: The Peripheral Odour Coding System of Drosophila Melanogaster . In: López-Larrea, C. (eds) Sensing in Nature. Advances in Experimental Medicine and Biology, vol 739. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1704-0_4

Download citation

Publish with us

Policies and ethics