Table 1.

Statistical table

FigureComparisonData Structure (Shapiro–Wilk normality test unless otherwise stated)Type of testStatisticConfidence, 95% CI
a11BiWT vs Panx1 KONormal distributionUnpaired two-tailed t testt = 4.051; df = 13p = 0.0014; 1.667 to 5.476
a21BiWT vs Panx1 KONormal distribution (D’Agostino-Pearson Normality Test chosen because of multiple identical values)Unpaired two-tailed t testi = 4.374; df = 39p < 0.0001; 1.894 to 5.153
b11CiWT vs Panx1 KONormal distribution (D’Agostino-Pearson Normality Test chosen because of multiple identical values)Unpaired two-tailed t testt = 2.844; df = 39p = 0.0071; 0.4654 to 2.758
b21CiWT vs Panx1 KONormal distributionUnpaired two-tailed t testt = 1.320; df = 30p = 0.1968; −0.3101 to 1.443
c1DWT vs Panx1 KONot normal (p < 0.0001)Mann-Whitney U test (two-tailed)U = 316,969p < 0.0001, 834622, 1.384e6
d1EWT vs Panx1 KONot normal (p < 0.0001)Mann-Whitney U test (two-tailed)U = 294,294p < 0.0001; 811947, 1.407e6
e11FiiWT vs Panx1 KO, interaction effectNormal distributionTwo-way ANOVAF(2, 90) = 3.475p = 0.0352
e21FiiWT vs Panx1 KO, cell-type effectNormal distributionTwo-way ANOVAF(2, 90) = 2615p < 0.0001
e31FiiWT vs Panx1 KO, genotype effectNormal distributionTwo-way ANOVAF(1, 90) = 4.934e-008p = 0.9998
e41FiiWT vs Panx1 KO, excitatory neuronsNormal distributionTwo-way ANOVA with Bonferroni’s correctionp = 0.9702, −2.347 to 5.568
e51FiiWT vs Panx1 KO, inhibitory neuronsNormal distributionTwo-way ANOVA with Bonferroni’s correctionp = 0.7500, −2.079 to 5.835
e61FiiWT vs Panx1 KO, astrocytesNormal distributionTwo-way ANOVA with Bonferroni’s correctionp = 0.1026, −7.445 to 0.4690
e71FiiWT vs Panx1 KONormal distributionSimple effect ANOVAaF(5, 90) = 1047p < 0.0001
e81FiiWT vs Panx1 KO, excitatory neuronsNormal distributionSimple effect ANOVAa with Bonferroni’s correctionp = 0.9702, −2.347 to 5.568
e91FiiWT vs Panx1 KO, inhibitory neuronsNormal distributionSimple effect ANOVAa with Bonferroni’s correctionp = 0.7500, −2.079 to 5.835
e101FiiWT vs Panx1 KO, astrocytesNormal distributionSimple effect ANOVAa with Bonferroni’s correctionp = 0.1026, −7.445 to 0.4690
f1GWT vs Panx1 KO Formazan absorbance (MTT conversion to formazan)Normal distributionUnpaired two-tailed t testt = 0.128 df = 4p = 0.9089, −25.76 to 23.59
g12AiiiPSD-95 and Panx1 expression in Homogenate (H) vs Synaptosome (P3) content interactionNormal distributionTwo-way ANOVAF(1, 8) = 9.847p = 0.0138
g22AiiiPSD-95 and Panx1 expression effectNormal distributionTwo-way ANOVAF(1, 8) = 9.847p = 0.0138
g32AiiiH vs P3 content effectNormal distributionTwo-way ANOVAF(1, 8) = 74.46p < 0.0001
g42AiiiPSD-95 expression in H vs P3Normal distributionTwo-way ANOVA with Bonferroni’s correctionp < 0.0001; −358.0 to −180.1
g52AiiiPanx1 expression in H vs P3Normal distributionTwo-way ANOVA with Bonferroni’s correctionp = 0.0093; −214.5 to −36.58
g62AiiiPSD-95 and Panx1 expression in H vs P3Normal distributionSimple effect ANOVAaF(3, 8) = 31.38p < 0.0001
g72AiiiPanx1 expression in H vs P3Normal distributionSimple effect ANOVAa with Bonferroni’s correctionp < 0.0001; −214.5 to −36.58
g82AiiiPSD-95 and Panx1 expression in H and P3Normal distributionSimple effect ANOVAa with Bonferroni’s correctionp = 0.0093; −358.0 to −180.1
h12BiiiPanx1 expression P7–P63Normal distributionOne-way ANOVAF(3, 8) = 365.9p < 0.0001
h22BiiiPanx1 expression P7–P14Normal distributionOne-way ANOVA with Bonferroni’s correctionp < 0.0001; 0.6377 to 0.8563
h32BiiiPanx1 expression P14-P29Normal distributionOne-way ANOVA with Bonferroni’s correctionp = 0.0006; 0.1161 to 0.3218
h42BiiiPanx1 expression P29–P63Normal distributionOne-way ANOVA with Bonferroni’s correctionp = 0.9604; −0.08815 to 0.1304
i13BPanx1 expression WT vs KO (genotype) by age interactionNormal distributionTwo-way ANOVAF(1, 16) = 84.46p < 0.0001
i23BGenotype effectNormal distributionTwo-way ANOVAF(1, 16) = 144.7p < 0.0001
i33BAge effectNormal distributionTwo-way ANOVAF(1, 16) = 84.46p < 0.0001
i43BPanx1 expression WT P14 vs WT P29Normal distributionTwo-way ANOVA with Bonferroni’s correctionp < 0.0001;70.14 to 103.1
i53BPanx1 expression KO P14 vs KO P29Normal distributionTwo-way ANOVA with Bonferroni’s correctionp = > 0.9999; −16.48 to 16.48
i63BPanx1 expression WT P14–P29 and KO P14–P29Normal distributionSimple effect ANOVAaF(3, 16) = 104.5p < 0.0001
i73BPanx1 expression WT P14 vs WT P29Normal distributionSimple effect ANOVAa with Bonferroni’s correctionp < 0.0001, 67.87 to 105.4
i83BPanx1 expression WT P14 % KO 14Normal distributionSimple effect ANOVAa with Bonferroni’s correctionp < 0.0001; 81.25 to 118.7
i93BPanx1 expression WT 29 vs KO P29Normal distributionSimple effect ANOVAa with Bonferroni’s correctionp = 0.2476; −5.369 to 32.13
i103BPanx1 expression KO P14 vs KO P29Normal distributionSimple effect ANOVAa with Bonferroni’s correctionp > 0.9999; −18.75 to 18.75
j13BPSD-95 expression WT vs KO (genotype) by age interactionNormal distributionTwo-way ANOVAF(1, 16) = 4.208p = 0.0570
j23BGenotype effectNormal distributionTwo-way ANOVAF(1, 16) = 37.42p < 0.0001
j33BAge effectNormal distributionTwo-way ANOVAF(1, 16) = 175.8p < 0.0001
j43BPSD-95, WT P14 vs KO P14Normal distributionTwo-way ANOVA with Bonferroni’s correctionp < 0.0001; −113.1 to −45.30
j53BPSD-95, WT P29 vs KO P29Normal distributionTwo-way ANOVA with Bonferroni’s correctionp = 0.0220; −73.34 to −5.516
k13BGluA1 expression WT vs KO (genotype) by age interactionNormal distributionTwo-way ANOVAF(1, 16) = 0.1996p = 0.6611
k23BGenotype effectNormal distributionTwo-way ANOVAF(1, 16) = 9.090p = 0.0082
k33BAge effectNormal distributionTwo-way ANOVAF(1, 16) = 0.02040p = 0.8882
k43BGluA1, WT P14 vs KO P14Normal distributionTwo-way ANOVA with Bonferroni’s correctionp = 0.1763; −131.3 to 20.11
k53BGluA1, WT P29 vs KO P29Normal distributionTwo-way ANOVA with Bonferroni’s correctionp = 0.0526; −150.6 to 0.7678
l13BGluA2 expression WT vs KO (genotype) by age interactionNormal distributionTwo-way ANOVAF(1, 16) = 1.156p = 0.2982
l23BGenotype effectNormal distributionTwo-way ANOVAF(1, 16) = 0.5621p = 0.4643
l33BAge effectNormal distributionTwo-way ANOVAF(1, 16) = 0.1894p = 0.6693
m13BGluN1 expression WT vs KO (genotype) by age interactionNormal distributionTwo-way ANOVAF(1, 16) = 4.900p = 0.0417
m23BGenotype effectNormal distributionTwo-way ANOVAF(1, 16) = 0.05221p = 0.8222
m33BAge effectNormal distributionTwo-way ANOVAF(1, 16) = 19.95p = 0.0004
m43BGluN1, WT P14 vs KO P14Normal distributionTwo-way ANOVA with Bonferroni’s correctionp = 0.3590; −22.63 to 6.241
m53BGluN1, WT P29 vs KO P29Normal distributionTwo-way ANOVA with Bonferroni’s correctionp = 0.2069; −4.355 to 24.52
m63BGluN1 expression WT P14–P29 and KO P14–P29Normal distributionSimple effect ANOVAaF(3, 16) = 8.300p = 0.0015
m73BGluN1 expression WT P14–P29Normal distributionSimple effect ANOVAa with Bonferroni’s correctionp = 0.0009; −43.99 to −11.15
m83BGluN1 expression KO P14–P29Normal distributionSimple effect ANOVAa with Bonferroni’s correctionp = 0.5231; −25.72 to 7.123
m93BGluN1 expression WT vs KO, P14Normal distributionSimple effect ANOVAa with Bonferroni’s correctionp = 0.7180, −24.62 to 8.227
m103BGluN1 expression WT vs KO, P29Normal distributionSimple effect ANOVAa with Bonferroni’s correctionp = 0.4138, −6.341 to 26.50
n13BGluN2A expression WT vs KO (genotype) by age interactionNormal distributionTwo-way ANOVAF(1, 16) = 0.05302p = 0.8208
n23BGenotype effectNormal distributionTwo-way ANOVAF(1, 16) = 7.892p = 0.0126
n33BAge effectNormal distributionTwo-way ANOVAF(1, 16) = 1.092p = 0.3115
n43BGluN2A, WT P14 vs KO P14Normal distributionTwo-way ANOVA with Bonferroni’s correctionp = 0.1739; −159.7 to 24.14
n53BGluN2A, WT P29 vs KO P29Normal distributionTwo-way ANOVA with Bonferroni’s correctionp = 0.0945; −171.8 to 12.03
o13BGluN2B expression WT vs KO (genotype) by age interactionNormal distributionTwo-way ANOVAF(1, 16) = 3.507p = 0.0795
o23BGenotype effectNormal distributionTwo-way ANOVAF(1, 16) = 1.219p = 0.2859
o33BAge effectNormal distributionTwo-way ANOVAF(1, 16) = 4.547p = 0.0488
o43BGluN2B, WT P14 vs WT P29Normal distributionTwo-way ANOVA with Bonferroni’s correctionp > 0.9999; −35.97 to 41.75
o53BGluN2B, KO P14 vs KO P29Normal distributionTwo-way ANOVA with Bonferroni’s correctionp = 0.0240; 5.644 to 83.37
p14BiSpine density WT P14 vs KO P14Normal distributionUnpaired two-tailed t testt = 3.962; df = 14p = 0.0014; −5.368 to −1.597
p24BiSpine length WT P14 vs KO P14Normal distributionUnpaired two-tailed t testt = 0.8432; df = 14p = 0.4133; −0.09070 to 0.2082
p34BiSpine head diameter WT P14 vs KO P14, total distributionNot normalMann-Whitney U test (two-tailed)U = 1.474e7p = 0.0131
p44BiSpine head diameter WT P14 vs KO P14, 25% right tail (> percentile 75)Not normalMann-Whitney U test (two-tailed)U = 931,253p = 0.4022.
q14BiSpine density WT P29 vs KO P29Normal distributionUnpaired two-tailed t testt = 5.754; df = 12p < 0.0001; 3.279 to 7.275
q24BiiiSpine lengthWT P29 vs KO P29Normal distributionUnpaired two-tailed t testt = 0.8214; df = 12p = 0.4274; −0.05194 to 0.1148
r14BiiiSpine densityPanx1f/f vs Panx1 cKOE Normal distributionUnpaired two-tailed t testt = 4.548; df = 4p = 0.0104; 2.767 to 11.44
r24CiiSpine length Panx1f/f vs Panx1 cKOENormal distributionUnpaired two-tailed t testt = 0.8717; df = 4p = 0.4326; −0.1602 to 0.3069
s14CiiSpine density WT vs KO primary cortical neuronsNormal distribution (D’Agostino-Pearson Normality Test chosen due to multiple identical values)Unpaired two-tailed t testt = 8.336; df = 25p < 0.0001;4.482 to 7.424
s24CiiPSD-95+ spines WT vs KO primary cortical neuronsNormal distribution (D’Agostino-Pearson Normality Test chosen due to multiple identical values)Unpaired two-tailed t testt = 4.243; df = 25p = 0.0003; 1.220 to 3.521
s34CiiSpine Length WT vs KO primary cortical neuronsNormal distributionUnpaired two-tailed t testt = 1.302; df = 25p = 0.2047; −0.4186 to 0.09428
  • a Group analyses were performed using two-way ANOVAs. When interactions were significant, a one-way ANOVA with Bonferroni’s multiple-comparison’s test correction was performed to evaluate simple effects (McDonald, 2014).