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Abstract

Obsessive-compulsive disorder (OCD) is a neuropsychiatric disorder characterized by

the repeated rise of concerns (obsessions) and repetitive unwanted behavior

(compulsions). Although selective serotonin reuptake inhibitors (SSRIs) is the

first-choice drug, response rates to SSRI treatment vary between symptom dimensions.

In this study, to find a therapeutic target for SSRI-resilient OCD symptoms, we

evaluated treatment responses of quinpirole sensitization-induced OCD-related

behaviors in mice. SSRI administration rescued the cognitive inflexibility, as well as

hyperactivity in the lateral orbitofrontal cortex (IOFC), while no improvement was

observed for the repetitive behavior. D, receptor signaling in the central striatum (CS)

was involved in SSRI-resistant repetitive behavior. An adenosine A,s antagonist,

istradefylline, which rescued abnormal excitatory synaptic function in the CS indirect

pathway medium spiny neurons of sensitized mice, alleviated both of the QNP-induced

abnormal behaviors with only short-term administration. These results provide a new

insight into therapeutic strategies for SSRI-resistant OCD symptoms and indicate the

potential of A, antagonists as a rapid-acting anti-OCD drug.

Significance statement
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Clinical studies show distinct therapeutic efficacies for SSRIs between subtypes of

OCD symptoms. While abnormal activity in the cortico-striatal pathway is critically

involved in the pathophysiology of OCD, the neurological mechanisms and therapeutic

strategies for SSRI-resistant symptoms remain unclear. In this study, we showed that

repeated injection of dopamine D, receptor agonist, quinpirole elicited two distinct

OCD-related behaviors; cognitive inflexibility (SSRI-responsive) and repetitive

behavior (SSRI-resistant). While SSRI treatment normalized hyperactivity of the

orbitofrontal cortex, we also demonstrated the imbalanced excitatory inputs in the

central striatum of quinpirole-treated mice and the therapeutic potential of an Aja

antagonist as a modulator of indirect pathway medium spiny neurons (MSNSs).
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Introduction

Obsessive-compulsive disorder (OCD) is a psychiatric disorder characterized by

repetitive inappropriate thoughts (obsessions) and behaviors to get rid of obsessions

(compulsions) (Milad & Rauch, 2012; Bokor & Anderson, 2014). The lifetime

prevalence of OCD is approximately 2-3%, and most cases are childhood- or

adolescent-onset (Milad & Rauch, 2012; Pauls et al., 2014). Although selective

serotonin reuptake inhibitors (SSRIs) are the first-choice treatment for OCD, they

require a longer time and higher dose before the onset of therapeutic effects for OCD

treatment than for the treatment of major depression (Bokor & Anderson, 2014).

Furthermore, even when SSRIs are used properly, 40-60% of patients are resistant to the

therapy (Pallanti et al., 2004). Recent evidence has suggested that the efficacies of drug

treatment vary by symptom dimensions. For instance, patients with aggression-related

obsessions and checking compulsions respond well to SSRI treatment, while

sexual/religious obsessions are associated with a poor treatment response (Starcevic &

Brakoulias, 2008; Landeros-Weisenberger et al., 2010). In this situation, a novel

anti-OCD drug is strongly desired but remains challenging.

OCD was originally classified as an anxiety disorder; however, GABA-enhancing

anti-anxiety drugs are ineffective for OCD patients. Whereas anxiety symptoms in OCD

patients are heterogeneous, recent clinical studies postulate that cognitive inflexibility

5
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might cause unstoppable obsessions and compulsions, highlighting distinct features of

OCD and anxiety disorders (Van Ameringen et al., 2014). Based on these observations,

OCD and related disorders have recently been recategorized as a stand-alone group

characterized by repetitive behavior in the Diagnostic and Statistical Manual of Mental

Disorder (DSM-V; Van Ameringen et al., 2014). Consistent with the updated diagnostic

criteria, brain imaging studies have indicated that OCD patients show hyperactivity in

cortico-striatal circuits, especially in the orbitofrontal cortex and caudate (Baxter et al.,

1987; Graybiel et al., 2000). Hyperactivity of the frontal cortex and striatum was only

normalized in patients who responded to SSRI-treatment (Saxena et al., 1999); therefore,

control of cortico-striatal pathway activity may be a key for understanding the

pathophysiology of OCD and developing novel therapeutic targets for OCD.

Among existing experimental tools for the study of OCD, quinpirole-induced

psychosis in rats are known to be an easy-to-use tool (Stuchlik et al., 2016). After

several injections of a dopamine D, agonist, quinpirole (QNP), rats show several

OCD-related behaviors, e.g., robust repetitive checking behavior, which is considered to

be similar to the checking compulsion in OCD patients (Szechtman et al., 1998;

Stuchlik et al., 2016). However, despite the good similarity in the behavioral phenotype,

limited information regarding pharmacotherapeutic response, especially for SSRI
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treatment, is available (Stuchlik et al., 2016). Considering the limited efficacy of SSRI

treatment against several OCD symptoms, an assessment of both SSRI-responsive and

SSRI-resistant OCD-like behaviors is beneficial for the elucidation of the

pathophysiological and therapeutic mechanisms of OCD.

In the present study, we applied the QNP sensitization protocols to mice and

characterized OCD-related behavioral and neurological abnormalities. QNP-treated

mice showed OCD-like repetitive behavior, cognitive inflexibility, and hyperactivity of

the pyramidal neurons in the lateral OFC (IOFC). The cognitive inflexibility and I0FC

hyperactivity were rescued by chronic, high-dose SSRI administration, whereas the

repetitive behavior was not improved by SSRI administration. SSRI-resistant repetitive

behavior was rescued by the local inhibition of D, signaling in the central striatum (CS),

a projection site of the IOFC. The short-term administration of an adenosine Aja

receptor antagonist, istradefylline rescued both of SSRI-responsive and SSRI-resistant

OCD-like behaviors in QNP-treated mice. Finally, we showed that electrophysiological

studies showed abnormal excitatory inputs to the CS in a cell type-specific manner and

these abnormalities were improved by Asa receptor antagonism. The present results

offer a new insight into the therapeutic strategy for treatment-resistant OCD.
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Materials and methods
Reagents

DL-2-Amino-5-phosphonopentanoic acid (DL-APV; an NMDA antagonist;
Sigma-Aldrich, St-Louis, MO, USA) and tetrodotoxin (a voltage-dependent Na"
channel blocker; Sigma-Aldrich) were dissolved in water. (-)-Quinpirole (QNP; a
dopamine D, agonist; Tocris Bioscience, Bristol, UK) was dissolved in water (for ex
Vvivo recordings) or saline (for i.p. injection). 6,7-Dinitroquinoxaline-2,3(1H,4H)-dione
(DNQX; an AMPA antagonist; Tocris Bioscience, Bristol, UK), bicuculline (a GABAA
antagonist; Enzo Life Science, Farmingdale, NY, USA), raclopride (a D, antagonist;
Abcam Biochemicals, Cambridge, UK), PD98059 (a mitogen-activated protein kinase
kinase (MEK) inhibitor; Cayman Chemical Company, Ann Arbor, MI, USA) and CGS
21680A (an A4 receptor agonist; Toronto Research Chemicals, Toronto, Canada) were
dissolved in dimethyl sulfoxide (DMSO). Stock solutions were stored at -20°C until use
and dissolved in saline, artificial cerebrospinal fluid (ACSF) or pipette solution. The
final concentration of DMSO was lower than 5% for i.p. injection and microinjection

and 0.05% for electrophysiology.

Animals



]
O
-
O
Vp)
)
-
(O
>
O
)
)
O
()
O
O
<(
O
S
>
(D)
Z
@

162

163

164

165

166

167

168

169

170

17

172

173

174

175

176

1717

178

179

All animal care and experimental procedures were conducted in accordance with the

cthical guidelines of the Kyoto University Animal Research Committee. Male

C57BL/6JImsSlc mice which are the C57BL/6J substrain mice

(RRID:IMSR_JAX:000664) maintained at Nihon SLC (Shizuoka, Japan) were

purchased and housed at a constant ambient temperature of 24 + 1°C on a 12-h

light-dark cycle with access to food and water ad libitum. For behavioral experiments,

mice greater than 7 weeks old were used. For the spatial discrimination task, habituation

was started at 5 weeks old or older, and training was started at 7 weeks old or older. For

electrophysiological recordings, 7-12-week-old mice were used.

For QNP sensitization, mice were intraperitoneally injected with QNP (1 mg/kg)

every weekday. For rat, a dose of 0.5 mg/kg was usually used (Szechtman et al., 1998;

Servaes et al., 2017). We calculated a dose for mice based on the body surface area

(Nair and Jacob, 2016). Mice that received more than 8 injections of QNP were

considered QNP-sensitized mice.

For chronic antidepressant treatment, citalopram hydrobromide (FWD Chemicals,

Shanghai, China) was dissolved in drinking water (0.2 mg/mL) and administered for 28

days, resulting in an average dose of 24 mg/kg/day (Asaoka et al., 2017). The

drug-containing drinking water was shielded from light and changed every 3-5 days.
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For the short-term administration of diazepam (0.3 mg/kg), citalopram (10 mg/kg)

and istradefylline (3 mg/kg), the drug was intraperitoneally injected 5 min before QNP

injection.

Recording of repetitive behavior

Mice were singly or pair-housed, and spontaneous behavior in their home cage was

videotaped. Chewing the cage bedding (wood chip) or, in rare cases, the cage mate’s

hair was considered repetitive (ritual) behavior. Repeated chewing behavior consisted of

the following behaviors; holding a wood chip (or fur) in the forelimbs and gently biting

and pulling the chip (or hair) by the mouth and forelimbs. At first, we chose the

pair-housed condition to reduce stress, but aggressive behavior toward the cage mate

was sometimes observed (in both vehicle-treated and drug-treated groups). Therefore, in

later experiments, mice were singly housed. There was no apparent difference in

repetitive behavior between pair-housed and singly housed mice (Pair-housed mice;

516.8 £ 15.1 s, n = 16, Singly housed mice; 532.4 = 18.38, n =19, P = 0.5256 by

Student’s t-test).

Spatial discrimination learning and reversal learning

10
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For the spatial discrimination task, mice were food-restricted (2-3 g/day) on weekdays
(80-90% of the ad libitum body weight; Miyazaki et al., 2014). On the weekend, food
was freely available.

For the habituation of the mice to the reward (sweetened milk), mice were allowed free
access to sweetened milk for approximately 30-60 min. After the 2-day habituation to
the reward, mice received pre-training for 4-6 days. In the pre-training period, mice
were placed in the T-maze, which consisted of one start arm (30 X 10 cm), two goal
arms (30 X 10 cm) and 30-cm-high surrounding walls, and were allowed to freely
explore. Both goal arms were rewarded during the pre-training period.

Spatial discrimination tests were performed as previously described (Moy et al., 2007,
Bannerman et al., 2008) with several modifications. Mice received 6 or 7-day training
and 8-day overtraining (Smith et al., 2012). During these periods, mice were trained for
5 free-choice trials per day. The rewarded goal arm (rewarded with 100 puL of sweetened
milk) was randomly chosen and fixed during the training and overtraining periods. At
the entrance of each goal arm, a guillotine door was placed, and once the mice entered
the goal arm, the door was immediately closed. Mice were returned to their home cage
during the preparation for the next trial (approximately 2 min).

On the 7™ or 8" training day, the correct choice rate during the previous three days was
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calculated, and mice that showed a correct choice rate of greater than 75% were used for

the subsequent overtraining. The day that the mice met this criterion was considered to

be Day 1 of the overtraining period (OT1).

During the overtraining period, mice received similar spatial discrimination training as

in the previous training period combined with QNP injection (1 mg/kg, i.p.). The effects

of reduced locomotion by an acute QNP injection were avoided by injecting QNP after

training on the first 2-3 overtraining days (OT1-2 or 3) and then 20-30 min after training

on OT3 or 4-8. For the second criterion, the correct choice rate during OT4-OT8 was

calculated, and mice that showed a correct choice rate of more than 80% were used for

the reversal learning test.

For reversal learning, the rewarded arm was reversed, and mice underwent 10

free-choice trials per day for 4 days (R1-4). During this period, QNP was injected 20-30

min before starting experiments.

The spatial discrimination task without an overtraining period (Figure 2h) consisted of

an 8-day training period (T1-8) and a 4-day reversal learning period (R1-4). QNP was

injected after (T1-2) and before (T3-8, R1-4) experiments.

Elevated plus maze test
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The elevated plus maze consisted of two open arms and two closed arms (30 x 5 cm)

extended from a central platform (5 x 5 cm). After 25 min of drug injection, mice were

placed on the central platform and monitored for 5 min. The time spent in each arm was

analyzed using a video tracking system (ANY-maze version 4.99).

Open field test

After 25 min of drug injection, mice were placed at the center of an open field (75 X

75 cm; without a wall; Szechtman et al., 1994) and monitored for 10 min. The total

distance traveled was analyzed using a video tracking system (ANY-maze version 4.99).

Preparation of the adeno-associated virus (AAV) vector

Lenti-X 293T cells were transfected with pAAV-hSyn1-Venus, pAAV-DJ, and pHelper

using polyethylenimine (polyethylenimine “Max", Polysciences), and 72 h after

transfection, the cells were gently scraped with a gradient buffer (composition in mM; 1

Tris, 15 NaCl and 1 MgCly). The buffer was freeze-thawed four times between liquid

nitrogen and a 55°C water bath to break the cell membrane. DNA and RNA were

removed by benzonase nuclease (Sigma), and cell debris was removed by centrifugation

at 3,000 g for 15 min. Viral stocks were purified using four different layers of an

13
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iodixanol (Opti Prep, Sigma) gradient, i.e., 15%. 25%, 40%, and 58%. After

ultracentrifugation for 105 min at 48000 rpm, the viral fraction was extracted from the

interface between the 40% and 58% layers.

Stereotaxic surgery and microinjection

Mice were anesthetized with sodium pentobarbital (50 mg/kg, i.p., Nakarai Tesque,

Kyoto, Japan) and fixed on a small animal stereotaxic frame (Narishige, Tokyo, Japan).

For IOFC neuronal labeling, 0.75 pL AAV-hSynl-Venus was microinjected into the

I0FC (AP +2.7 mm, ML +1.7 mm, DV +2.7 mm from bregma). After 4 weeks, mice

were decapitated, and coronal forebrain slices were prepared by using a vibratome (see

“Preparation of acute brain slices for electrophysiological analysis™). Forebrain slices

were fixed in 4% paraformaldehyde. After fixation, slices were washed in

phosphate-buffered saline, and the green fluorescence of Venus was visualized using a

Nikon Diaphot 200 microscope equipped with a laser scanning confocal imaging system

(MRC-1024, Bio-Rad Laboratories, Hercules, CA).

For drug microinjection, mice were implanted with a bilateral guide cannula directed

at the central striatum (CS; AP +1.2 mm, ML +2.0 mm, DV +3.8 mm from bregma,

angled 10°) and fixed to the skull by dental cement. On the experimental day, the

14
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injection cannula was inserted into the guide, and drug (1 pg raclopride or PD98059 in 1
pL or 0.3 ng CGS 21680A in 1 puL) was injected at a rate of 0.15 pL/min. After injection,
the injection cannula was left in place for for 5 min (for raclopride) or 10 min (for
PD98059). For CGS 21680A, the injection cannula was left during the recording. After
experiments, 0.5 pL of Evans Blue solution was injected through the cannula to confirm
the injection site. When injection site was incorrect, the animal was excluded from

analysis.

Preparation of acute brain slices for electrophysiological analysis

For electrophysiological analysis, mice were received 8 injections of QNP or saline
and the next day after the 8" injection, acute brain slices were prepared. Mice were
deeply anesthetized with isoflurane and decapitated. The brains were rapidly collected
in ice-cold cutting solution (composition in mM: 120 N-Methyl-D-glucamin-Cl, 2.5
KCl, 26 NaHCOs3, 1.25 NaH,POy4, 0.5 CaCl,, 7 MgCly, 15 D-glucose, and 1.3 ascorbic
acid, pH 7.2). Coronal brain slices (200-um thick) were prepared with a vibratome
(VT1000S, Leica, Wetzlar, Germany). For recording from the CS, slices were dissected
from relatively anterior part of the striatum, where OFC send dense projections

(Hunnicutt et al., 2016). Slices were recovered in oxygenated ACSF (composition in

15
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mM: 124 NaCl, 3 KCI, 26 NaHCOs, 1 NaH,PO,, 2.4 CaCl,, 1.2 MgCl,, and 10

D-glucose, pH 7.3) at 32°C for at least 1 h before recording. After recovery, individual

slices were transferred to a recording chamber with continuous perfusion of oxygenated

ACSF at a flow rate of 1-2 mL/min. ACSF was warmed to keep the recording chamber

at 27 + 1°C. Recordings were performed only within 4 h after recovery.

Electrophysiological recordings

Electrophysiological recordings were performed with an EPC9 amplifier (HEKA,

Pfalz, Germany), and the data were recorded using Patchmaster software (HEKA). The

resistance of the electrodes was 3-6 MQ when filled with the internal solution

(composition in mM: 140 K-gluconate, 5 KCI, 10 HEPES, 2 Na-ATP, 2 MgCl,, and 0.2

EGTA, pH 7.3 adjusted with KOH for current-clamp recordings and EPSC recordings

from the 10FC; 70 K-gluconate, 75 KCI, 10 HEPES, 2 Na-ATP, 2 MgCl,, and 0.2

EGTA, pH 7.3 adjusted with KOH for IPSC recordings; and 120 CsMeSOy, 15 CsCl, 8

NaCl, 10 HEPES, 2 Mg-ATP, 0.3 Na-GTP, 0.2 EGTA, 10 TEA-CI, and 5 QX-314, pH

7.3 adjusted with CsOH for EPSC recordings from the striatum). Individual neurons

were visualized with a microscope equipped with a 40 x water-immersion objective lens

(Carl Zeiss, Jena, Germany) and a CCD camera. The series resistance was compensated

16
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by 70% and maintained within 35 MQ.

For recording from IOFC pyramidal neurons, a current injection (100-300 pA, 1-s

duration) was performed to elicit action potentials. As previously reported (Tateno &

Robinson, 2006), pyramidal neurons showed regular-spiking activity (Figure 1A and D),

whereas interneurons showed fast-spiking activity (Figures 1B-D). 10FC neurons

showing regular-spiking activity were used for experiments. Action potentials were

evoked by current injection (0-500 pA, 1-s duration). EPSCs were recorded with bath

application of the GABAa antagonist (20 uM bicuculline), while AMPA/NMDA

antagonists (20 pM DNQX and 50 uM APV) were applied to record IPSCs.

Tetrodotoxin (0.3 uM) was added to the bath solution for recording miniature EPSCs

and IPSCs. Events were analyzed by Minianalysis software (SynaptoSoft, Decatur, GA).

The membrane potential during voltage-clamp recordings was held at -70 mV.

For the recordings from CS MSNs, MSNs were determined by their morphological

features, and after the recording, single-cell PCR was performed to identify the cell type.

For acute QNP treatment, QNP (10 uM) was bath applied for at least 3 min. For

electrical stimulation, a stimulation electrode was placed near the recording electrode.

AMPA-mediated eEPSCs and mixed AMPA and NMDA-mediated eEPSCs were

evoked by stimulation at -70 mV and +40 mV, respectively. NMDA-mediated eEPSC
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amplitude was determined as the average amplitude between 45 and 55 ms after

stimulation. The average of 3 NMDA/AMPA ratio measurements was used for analysis.

Single-cell reverse transcription-polymerase chain reaction (RT-PCR)

After the whole-cell recording, the contents of the cell were aspirated into the

recording pipette and harvested in a sampling tube. The collected samples were

reverse-transcribed using a ReverTra Ace RT kit (TOYOBO, Tokyo, Japan) and

amplified with Blend Taq (TOYOBO, Tokyo, Japan). The oligonucleotide primers used

were 5'- CCCAGGCGACATCAATTT-3' and 5'-

TCTCCCAGATTTTGAAAGAAGG-3' for proenkephalin (Penk); 5'-

CCAGGGACAAAGCAGTAAGC-3" and 5'- CGCCATTCTGACTCACTTGTT-3' for

prodynorphin (Pdyn);, and 5'-CCGCTGATCCTTCCCGATAC-3' and

5-CGACGTTGGCTGTGAACTTG-3' for enolase 2 (Eno2) as a neuronal marker. The

PCR products were analyzed using agarose gel electrophoresis. Pdyn-positive neurons

were considered to be direct pathway MSNs (dMSNs), and Pdyn-negative and

Penk-positive neurons were considered to be indirect pathway MSNs (iMSNss) (Figures

2A and B).
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Experimental design and Statistical analysis

All data are presented as the mean =+ standard error of mean (S.E.M). Statistical

analysis was performed with GraphPad Prism 5 (GraphPad, San Diego, CA, USA;

RRID:SCR _002798). Differences with P < 0.05 were considered significant. The

differences between two groups were compared by a two-tailed Student’s t test or

unpaired t test with Welch's correction. When differences within a mouse were

compared, a two-tailed paired t-test was used for analysis. The differences between

more than three groups were compared by one-way analysis of variance (ANOVA) with

post hoc Tukey's multiple comparison test. For examination of the time-course or

current injection experiments, two-way ANOVA for repeated measures and following

Bonferroni post-test was used for analysis. Before performing repeated measures

ANOVA, Mauchly's sphericity test were performed by using R (version 3. 5. 2;

RRID:SCR _001905) and when the assumption of sphericity is violated, the

Greenhouse-Geisser correction was used. Changes in the NMDA/AMPA ratio were

analyzed by one-sample t-test.

Results

Repeated injection of quinpirole induced OCD-related behaviors and IOFC
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hyperactivity

First, we produced QNP-sensitized mice and characterized their behavioral and

neurological changes. Mice received a QNP (1 mg/kg) injection every weekday, and

after 8-9 injections, QNP-treated mice showed more locomotor activity in the open field

than saline-treated mice (Figures 3A and D) but did not display any anxiogenic effects

in the elevated-plus maze test (Figures 3A-C). Hyper-locomotion in the open field is

reported to be a feature of QNP sensitization in rats (Szechtman et al., 1994), and thus,

this result was indicative of the successful establishment of QNP sensitization in mice.

Repetitive behaviors are one of the widely accepted OCD-related behaviors in rodents

(Boulougouris et al., 2009, Camilla d'Angelo et al., 2014; Zike et al., 2017). Following

3 to 4 injections of QNP, mice showed repeated chewing behavior in their home cages

(chewing wood chip bedding or cage mate’s hair; see “Recording of repetitive behavior”

in Materials and Methods). This repetitive behavior peaked after 8 injections (Figures

3E and F, ). Additional injection of QNP (total 9-12 injections) did not induce further

changes in the duration of chewing behavior (Figure 31, “QNP+Saline group”). This

robust chewing was only observed after the QNP injection and was eliminated within 60

min of the injection (Figure 3G). Therefore, the repeated injection and challenge with

QNP induced repetitive behavior. In addition, the short-term administration of diazepam

20



]
O
-
O
Vp)
)
-
(O
>
O
)
)
O
()
O
O
<(
O
S
>
(D)
Z
@

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

(0.3 mg/kg) and citalopram (10 mg/kg), which do not show therapeutic effects in OCD

patients, had no effect on the chewing behavior (Figures 3H and I).

Recent clinical evidence has suggested that OCD patients exhibit cognitive

inflexibility and increased reliance on habitual responses (Gillan et al., 2011; Gillan et

al., 2016). To assess this feature, we performed a spatial discrimination and reversal

learning task. Daily QNP injection did not affect spatial learning (Figures 3J and K),

indicating that the repeated QNP injection did not affect goal-directed learning. In a

spatial discrimination task, longer training period enhances habitual learning (Smith et

al., 2012). To assess whether QNP-treated mice showed cognitive inflexibility after

longer learning period, mice received modest overtraining (5 trials/day, 8 days) after the

training period (Figures 3L and M). Under this condition, saline-treated mice still

showed flexible behavior, while QNP-treated mice displayed a deficit in reversal

learning (Figure 3N), indicating that QNP-treated mice easily exhibit habit-like

inflexible behavior.

Clinical studies have suggested that activity in the lateral OFC (IOFC) is higher in

OCD patients than in healthy controls and that successful SSRI treatment normalizes

this activity (Baxter et al., 1987; Saxena et al., 1999). To determine whether

QNP-treated mice show OCD-like neurological abnormalities, the firing activity was
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recorded by using ex vivo electrophysiological recording from I0FC pyramidal neurons

(Figure 4A). 10FC pyramidal neurons from QNP-treated mice showed a higher firing

response than those from saline-treated mice. This increase was abolished in the

presence of AMPA and NMDA antagonists (20 uM DNQX and 50 uM AP-V) (Figures

4B and C). There was no difference between the resting membrane potential of

pyramidal neurons from QNP and saline-treated mice (Saline group; -80.41 = 1.23 mV,

n =10 from 3 mice, QNP group; -81.25+ 2.02 mV, n = 11 from 3 mice, P = 0.7358 by

Student’s t-test). Both the spontaneous and miniature EPSC frequencies in 10FC

pyramidal neurons were significantly higher in QNP-treated mice than in saline-treated

mice (Figures 4D, E and G), while no change in the EPSC amplitude was observed

(Figures 4F and H), suggesting a plastic change in the glutamatergic synapses in the

10FC of QNP-treated mice.

Chronic SSRI administration rescued the cognitive inflexibility and neurological

deficits but not the repetitive behavior in QNP-treated mice

To examine the treatment response to a high dose of an SSRI, mice were treated with

citalopram (24 mg/kg/day) for 28 days. In QNP-treated mice, although the SSRI failed

to reduce the repetitive chewing behavior (Figures SA and B), SSRI treatment improved
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the reversal learning in the spatial discrimination task combined with overtraining

(Figures 5C-E).

In electrophysiological recordings, SSRI treatment decreased the firing activity of

10FC pyramidal neurons in QNP-treated mice (Figures 6A and B). The inhibitory effect

of SSRI treatment was suppressed by a GABAA antagonist (Figure 6C). No differences

were observed in the spontaneous [IPSC amplitude or in the miniature IPSC frequency

and amplitude between SSRI-treated and treatment-free QNP-treated mice (Figures 6D,

F-H), whereas the spontaneous IPSC frequency was increased in the SSRI plus

QNP-treated mice compared to that in the QNP-only treated mice (Figure 6E),

suggesting that SSRI treatment increased the GABAergic inhibition of IOFC pyramidal

neurons.

D,-ERK signaling in the CS is involved in SSRI-resistant repetitive behavior in

QNP-treated mice

Although 10FC hyperactivity was improved by chronic SSRI treatment, the repetitive

chewing behavior was not reversed. Since the OFC-striatum pathway is activated in

OCD patients (Baxter et al., 1987; Beucke et al., 2013), we hypothesized that synaptic

changes in the 10FC-striatum pathway might be involved in the chewing behavior in
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QNP-treated mice. To test this hypothesis, we first confirmed the projection site of

10FC neurons in the striatum. For IOFC neuronal labeling, an adeno-associated virus

that expressed Venus protein (AAV-hSyn-Venus) was injected into the IOFC (Figure

7A). Consistent with a previous report (Gremel et al., 2016), green

fluorescence-positive terminals were observed in the central part of the striatum (CS),

which is functionally classifies as a part of the associative striatum (Chuhma et al.,

2016), indicating the presence of IOFC inputs in the CS (Figure 7B).

Robust chewing behavior was observed only after challenge with QNP, suggesting that

not only chronic changes but also the stimulation of D, receptors were necessary for the

induction of chewing behavior. To identify the contribution of D, receptors in the CS,

we performed a local bilateral injection of a D, antagonist, raclopride (1 pg/side), in the

CS (Figure7C). After the raclopride injection, QNP failed to elicit repetitive chewing in

QNP-treated mice (Figure 7D), indicating that D, receptor signaling in the CS is

required for repetitive chewing in QNP-treated mice.

In striatal neurons, the stimulation of D, receptors activates extracellular

signal-regulated kinase (ERK) (Brami-Cherrier et al., 2002, Shioda et al., 2017). The

local bilateral injection of a MEK/ERK inhibitor, PD98059 (1 pg/side), in the CS

significantly reduced QNP-induced chewing behavior (Figure 7E), suggesting the
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involvement of D, receptor signaling-induced activation of the MEK/ERK pathway in

repetitive chewing.

Adenosine A,a receptors are Gg-coupled receptors that modulate ERK activation

(Moreau et al., 1999). Because, in the striatum, A, receptors are expressed in iMSNs

but not dMSNs (Calabresi et al., 2014), we hypothesized that stimulation of Aja

receptors facilitates D, receptor stimulation-induced chewing behavior in QNP

sensitized mice. To test this hypothesis, we examined the effects of intra-CS injection of

an A,a receptor agonist on subthreshold dose of QNP-induced behavior. For the

definition of the subthreshold dose of QNP, we examined three different doses of QNP

(1.0, 0.5, 0.3 mg/kg, i.p.). After 7-time injection of normal dose of QNP (1 mg/kg), mice

were received different dose of QNP challenge (Figure 7F). At the dose of 0.5 mg/kg,

there seemed a slight decrease in chewing behavior, whereas chewing behavior was not

observed at 0.3 mg/kg (Figure 7G). From these results, we defined a dose of 0.3 mg/kg

as subthreshold dose of QNP. Next, we examined the effects of a combination of an Aya

receptor agonist (CGS 21680A; CGS) and subthreshold dose of QNP. After sensitization,

CGS (0.3 ng/side) or vehicle was infused into the CS and concurrently, subthreshold

dose of QNP (0.3 mg/kg, i.p.) was injected (Figure 7H). CGS + QNP elicit significant

increase in chewing behavior compared to Veh + QNP (Figure 71), even though CGS +
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QNP-induced chewing duration was short relative to that induced by the normal dose of

QNP. The leading causes of this weak effect may be sedative effect of the combination

treatment. While CGS alone and subthreshold dose of QNP did not cause sedation, CGS

+ QNP showed sedative effects, suggesting that CGS + QNP combination facilitated

both QNP-induced chewing behavior and CGS-induced sedative effect (Barraco et al.,

1994; Chen et al., 2001). Despite the lowered locomotion, CGS + QNP showed

significant increase in chewing behavior and, indicating the involvement of A4 receptor

signaling in the CS on QNP-induced repetitive chewing behavior.

Istradefylline rescued both the behavioral and cognitive symptoms in QNP-treated

mice

The local injection experiments indicate the involvement of A, receptor and

MEK/ERK signaling on QNP-induced behavioral abnormality, we assumed that an Asa

receptor antagonist could rescue QNP-induced chewing behaviors. A single

administration of an A,a receptor antagonist, istradefylline (3 mg/kg), significantly

decreased the total chewing time in QNP-treated mice, and this effect was potentiated

following repeated injections (Figures 8A and B). In addition to the effect on the

repetitive behavior, the short-term administration of istradefylline improved reversal
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learning in QNP-treated mice (Figures 8C-E), suggesting the rapid effects of

istradefylline on both SSRI-responsive and SSRI-resistant symptoms.

Istradefylline rescued the altered synaptic plasticity in CS iMSNs from QNP-treated

mice

Rapid effects of istradefylline on SSRI-resilient chewing behaviors suggests a different

action mechanism of istradefylline from that of chronic SSRI. Therefore, we tested the

above-mentioned hypothesis that istradefylline acts on the CS iMSNs by using

electrophysiological recordings (Figure 9A).

First, to investigate repeated QNP injection-induced changes in the CS MSNs, we

recorded the basal NMDA/AMPA ratios of the CS MSNs from mice received repeated

QNP or saline injection.. Compared to the saline-treated mice, the basal NMDA/AMPA

ratio was increased in iMSNs from QNP-treated mice, whereas no significant changes

were observed in dAMSNs (Figures 9B and C). In addition, to examine the effects of

challenge with QNP, we compared NMDA/AMPA ratios before (basal) and after the

bath application of QNP (10 uM), which mimics an in vivo challenge with QNP. In

contrast to the basal NMDA/AMPA ratio, the bath application of QNP (10 pM) induced

a significant reduction in the NMDA/AMPA ratio in iMSNs from QNP-treated mice but
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not from saline-treated mice (Figures 9D and E). The intracellular application of

PD98059 (50 uM) through the recording electrode restored those abnormal synaptic

functions for both baseline and QNP application induced-responses (Figures 9C and E),

suggesting that, in QNP-treated mice, CS iMSNs showed altered synaptic plasticity

through D,-ERK signaling.

We then examined the effects of istradefylline on the QNP-induced synaptic changes.

As expected, the bath application of istradefylline (10 uM) had no effects on the

NMDA/AMPA ratios recorded from the CS dMSNs (Figures 9B and C). In case of

iMSNs, bath application of istradefylline tend to increase the baseline NMDA/AMPA

ratio from saline-treated mice and no further increase was observed in QNP-treated

mice (Figure 9D). The QNP application induced-response in iMSNs from QNP-treated

mice was also inhibited by bath application of istradefylline (Figure 9E).

Discussion

In this study, we characterized QNP sensitization-induced OCD-related behaviors and

treatment responses in mice. Both the cognitive inflexibility and the abnormal IOFC

activity in QNP-treated mice were rescued by chronic high-dose SSRI, whereas these

treatments failed to improve the repetitive chewing behavior. Finally, we showed that D,
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signaling in CS iMSNs, where I0FC neurons project, was required for this repetitive

behavior and that the short-term administration of a clinically approved A, antagonist,

istradefylline, rescued both SSRI-responsive and SSRI-resistant symptoms in

QNP-treated mice.

As OCD-like behaviors in rodents, most existing reports evaluate repetitive behaviors

(e.g., excessive grooming) and perseverative behaviors (e.g., deficits in spontaneous

alternation and reversal learning) (Alonso et al., 2015; Stuchlik et al., 2016). However,

the pathophysiological mechanisms of those OCD-like behaviors are not fully

understood, especially about the differences in the neurological and therapeutic

mechanisms between the two symptoms (Alonso et al., 2015; Stuchlik et al., 2016).

QNP-treated mice exhibited both of these behaviors, demonstrating that the

QNP-induced behavioral abnormalities in mice are convenient for examining

pathophysiological mechanisms and subsequent drug screening.

Dopaminergic drug-induced repetitive behaviors are widely reported both in basic and

clinical studies. In animal experiments, single administration of psychostimulant elicits

various stereotypic behaviors, including chewing and grooming (Izawa et al., 2006;

Milesi-Hallé et al., 2007). Recent evidence demonstrated the modulating effects of
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mutation of OCD-related gene in psychostimulant-induced stereotypy (Zike et al.,

2017). In psychostimulant abusers and parkinsonian patient with dopaminergic

replacement therapy, non-goal-directed complex stereotypies, which are similar to OCD

symptoms, are observed (Voon et al., 2009; Fasano et al., 2010). These observations

suggest the existence of the common mechanisms underlying OCD and dopaminergic

drug-induced stereotypies. Based on this, QNP-induced repetitive chewing might also

share the common mechanisms, while further discrimination against other repetitive

behaviors, such as tic disorder which is often comorbid with OCD, should be carefully

performed.

SSRIs are the first-choice drugs for OCD patients, and in SSRI-responsive patients,

SSRIs normalizes the activity of the anterior IOFC (Saxena et al., 1999). The OFC can

be divided into the medial OFC (mOFC) and the 10FC, which encode essentially

similar but distinct information (Milad & Rauch, 2012). For instance, the mOFC is

activated by positive reward stimuli, while the IOFC responds to punishment (Ursu &

Carter, 2005; Plassmann et al., 2008). OCD patients exhibit a deficiency in

punishment-related learning (Nielen et al., 2009), and possibly as a result of this

abnormal punishment processing, OCD patients, especially in severe cases, are unable

to stop their compulsions, even when the compulsions cause a disadvantage to the
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patients themselves (Pauls et al., 2014). In this situation, IOFC hyperactivity might be

one of the common neurological bases and a therapeutic target for cognitive inflexibility

among OCD patients and QNP-treated mice.

In contrast to cognitive inflexibility, repetitive chewing behavior was SSRI-resistant,

suggesting that the inhibition of IOFC outputs was insufficient to improve repetitive

behavior. Recent optogenetic research demonstrated that the repeated activation of the

OFC-striatum pathway increased grooming behavior (Ahmari et al., 2013), and the

overall inhibition of the OFC-striatum pathway contributed to the inhibition of

compulsive grooming behavior in a genetic OCD model, the Dlgap3 (Sapap3)-knockout

mice (Burguiere et al., 2013). However, both in the optogenetic stimulation model and

Sapap3-knockout mice, repetitive behavior was reduced by SSRI administration (Welch

et al., 2007, Burguiére et al., 2013). One possible reason for this discrepancy is that the

input-output balance between striatal AMSNs and iMSNs was differentially altered in

QNP-treated mice and the overall decrease in IOFC inputs failed to rectify the abnormal

activity balance between MSN subtypes. In other word, after challenge with QNP, the

OFC-striatum iMSN pathway rather than the OFC-striatum dMSN pathway was

potentiated, causing the abnormal transmission of OFC information. While further

experiments on the pathway-specific control are required, hyperactivity in the IOFC-CS
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iMSN pathway might contribute to SSRI-resistant repetitive behavior in QNP-treated

mice.

Changes in the activity balance between iMSNs and dMSNs contributes to habit

formation (Shan et al., 2015; O’Hare et al., 2016). Recent research demonstrated that

the selective reduction of excitatory inputs from the OFC to striatal dMSNs promotes

habit formation (Renteria et al., 2018). Considering that habit learning is facilitated in

OCD patients (Gillan et al., 2011; Gillan et al., 2016), this finding supports the idea that

an abnormal activity balance between iMSNs and dMSNs contributes to OCD

pathophysiology. Considering that the OFC-striatum pathway contributes to

goal-directed behavior, and the activation of the OFC promotes a goal-directed

behavioral pattern rather than habit formation (Gremel & Costa, 2013; Gourley &

Taylor, 2016), an abnormal activity balance between iMSNs and dMSNs might explain

the clinical features of OCD.

Although the D, receptor signal theoretically inhibits neurons, a recent study

demonstrated that the acute activation of D, receptors does not inhibit iMSNs (Lemos et

al., 2016), possibly because of the lack or low levels of expression of G protein-coupled

inwardly rectifying potassium channels in iMSNs (Kobayashi et al., 1995). The

sustained activation of D, receptors by a selective agonist activates ERK signaling in
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iMSNs, possibly through D, receptor internalization (Brami-Cherrier et al., 2002;

Shioda et al., 2017), resulting in the activation of rather than the inhibition of iMSNs.

Supporting this idea, both in OCD patients and in QNP-sensitized rats after challenge

with QNP, D, receptor occupancy was decreased (Denys et al., 2013, Servaes et al.,

2017), suggesting increased the D, receptor signaling (e.g., increased baseline dopamine

release) and/or facilitation of D, receptor internalization. Accordingly, repeated QNP

injection might mimic the abnormal D, receptor signaling, resulting in activation of

iMSNs.

In iMSNs, the A4 receptor signal contributes to synaptic plasticity (Shen et al, 2008).

In contrast, the blockade of A, receptors by istradefylline inhibits iMSNs (Shen et al,

2008) and then, facilitates AMSN-mediated signal transduction. A, receptor signaling

in the striatum is involved in the mediation of goal-directed learning and habit

formation in naive mice (Yu et al., 2009; Li et al., 2016), supporting our findings that

istradefylline improved the cognitive inflexibility in QNP-treated mice.

Besides cognitive inflexibility, istradefylline improved the SSRI-resistant repetitive

chewing behavior, suggesting the therapeutic potential of A,s antagonists for a wide

range of OCD symptoms. Future work is needed to determine whether istradefylline and

other A,x antagonists show similar therapeutic effects in other OCD-related behaviors
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and model animals.

Recent evidence suggests that A, receptors and D, receptors form heteromers and that

a change in the surface expression of this heteromer might be involved in habit

formation (He et al., 2016). In A,4-D> heteromers, A,a receptor signaling positively

modulates D, agonist-induced internalization and the resulting intracellular signaling,

such as ERK phosphorylation (Borroto-Escuela et al., 2011; Huang et al., 2013). In

accordance with this, co-stimulation of A,x receptors and D, receptors facilitated

repetitive chewing behavior in QNP-sensitized mice. The A,s signaling-mediated

internalization of A,s-D, heteromers might be involved in OCD pathophysiology and

the anti-OCD action of istradefylline; however, further studies are required.

In conclusion, we characterized distinct treatment responses of OCD-related

abnormalities in QNP-treated mice. Chronic high-dose SSRI rescued 10OFC

hyperactivity, while the therapeutic effect was restricted. An A,s antagonist,

istradefylline, normalized synaptic functions in CS iMSNs and improved both the

SSRI-responsive and SSRI-resistant OCD-related behaviors in QNP-treated mice.

Considering that istradefylline has already been approved as an anti-Parkinsonian agent,

the present results support the drug repositioning of istradefylline to be a rapid-acting
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and effective anti-OCD drug.
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Figure legends

Figure 1

Electrophysiological characteristics of IOFC pyramidal neurons and fast-spiking

interneurons

(A-C) Representative firing activity recorded from a pyramidal neuron (A; 200 pA

injection) and fast-spiking interneuron (B; 100 pA injection, C; 200 pA injection). (D)

Current injection-induced firing activity of pyramidal neurons and fast-spiking

interneurons. Please note that the data set for pyramidal neurons is same as that in Fig.

4B (Saline group). (Pyramidal neurons; n = 10 from 3 mice, Fast-spiking interneurons;

n =25 from 3 mice.)

Figure 2

Representative single-cell PCR from a CS dMSN and iMSN.

Representative image of single-cell PCR from CS MSNs. Pdyn-positive neurons were

considered direct-pathway MSNs (dMSNs; A), while Pdyn-negative and Penk-positive

neurons were considered indirect-pathway MSNs (iMSNs; B).

Figure 3

Repeated injection of QNP elicited multiple OCD-related symptoms.
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(A) Time course of the elevated plus maze test and open field test. (B, C) Time spent
in the closed arm (B) and the open arm (C) in an elevated plus maze test. (D) Total
travel distance in the open field test. (Saline; n =5, QNP; n =5, B: Student’s t-test; t(8)
=2.178, P =0.0610, C: Student’s t-test; t(8) = 0.8863, P = 0.4013, D: Student’s t-test;
t(8) =4.343, P =0.0025.) (E) Time course of recording of QNP-induced repetitive
behavior. (F,G) Time spent chewing during the 20-30 min after the 1°-8"™ QNP injection
(F) and, before and after the 8" QNP injection (G). (F: Saline; n =6, QNP; n =7,
two-way repeated measures ANOVA; Drug (F1, 2432 = 37.18, P <0.0001), Injection
number (F21,53.75) = 22.41, P < 0.0001), Interaction (F21, 53.75) = 20.95, P < 0.0001),
Bonferroni post-test; P* < 0.05 and P < 0.001, G: n = 4, one-way repeated measures
ANOVA; F, 13y =38.61, P <0.0001, Tukey's multiple comparison test; P <0.01,P”
<0.001 vs. Pre.) (H) Time course of recording for QNP-induced repetitive behavior
combined with short-term administration of diazepam and citalopram. (I) Effects of the
short-term administration of an antianxiety agent, diazepam (Dzp; 0.3 mg/kg) and an
antidepressant, citalopram (Cit; 10 mg/kg) on repetitive behavior in QNP-treated mice.
(QNP+Saline; n =4, QNP+Dzp; n = 4, QNP+Cit; n = 4, two-way repeated measures
ANOVA; Drug (F(2, 36) = 0.41, P = 0.6748), Injection number (F(2, 36) = 0.56, P =

0.5786), Interaction (F(2, 36) = 0.42, P=0.7918)) (J,K) Protocols and percentage of
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correct choice during training with daily injection of QNP. (Saline; n =4, QNP; n =4,

K: two-way repeated measures ANOVA; Drug (F, 2023 = 0.01, P = 0.9224), Injection
number (F337,63.17) = 9.04, P = 0.0004), Interaction (F337,63.17) = 1.66, P = 0.2037)) (L)
Protocols of a spatial discrimination task and a reversal learning test. (M,N) Percentage
of correct choice during overtraining (M) and reversal learning (N). (Saline; n = 6,

QNP; n=5, M: two-way repeated measures ANOVA; Drug (F(1, 2563y = 0.07, P =
0.8025), Session number (F(2.85,73.04) = 1.93, P = 0.1519), Interaction (F3s,73.04) = 1.58,
P =0.2201), N: two-way repeated measures ANOVA; Drug (F, 36) = 10.46, P = 0.0102),
Session number (F, 144) = 34.86, P < 0.0001), Interaction (F, 144) = 4.29, P = 0.0061),

Bonferroni post-test; P < 0.01.)

Figure 4

Hyperactivity of IOFC pyramidal neurons in QNP-treated mice

(A) Time course of electrophysiological recordings. (B,C) Current injection induced
firing activity of IOFC pyramidal neurons in the absence (B) and presence (C) of
AMPA/NMDA antagonists. (B: Saline; n = 10 from 3 mice, QNP; n = 10 from 3 mice,
two-way repeated measures ANOVA; Drug (F1,3627) = 6.15, P = 0.0227), Current (F 01,

6927 = 324.00, P < 0.0001), Interaction (F(i.01, 6027y = 4.07, P = 0.0270), Bonferroni
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post-test; P*<0.05and P™" < 0.01, C: Saline; n =11 from 3 mice, QNP; n = 10 from 3
mice, two-way repeated measures ANOVA; Drug (Fi,3897) = 0.03, P = 0.8743), Current
(F229, 89.24) = 209.69, P < 0.0001), Interaction (F(229, 89.24) = 0.45, P = 0.6660)) (D)
Representative traces of spontaneous EPSCs (sSEPSCs) and miniature EPSCs (mEPSCs).
(E,F) sEPSC frequency (E) and amplitude (F) in IOFC pyramidal neurons. (Saline; n =
8 from 3 mice, QNP; n= 15 from 3 mice, E: unpaired t test with Welch's correction;
t(21) = 2.632, P = 0.0160, F: Student’s t-test; t(21) = 0.7675, P = 0.4513.) (G,H)
mEPSC frequency (G) and amplitude (H) in IOFC pyramidal neurons. (Saline; n = 7
from 3 mice, QNP; n=9 from 3 mice, G: Student’s t-test; t(14) = 2.740, P = 0.0160, H:

Student’s t-test; t(14) = 1.277, P =0.2223.)

Figure 5

Chronic SSRI treatment rescued cognitive inflexibility in QNP-treated mice but not the
abnormal repetitive behavior.

(A) Time course of recording for QNP-induced repetitive behavior combined with
chronic SSRI administration. (B) Time spent chewing during the 20-30 min after the gt
QNP injection. (Water+Saline; n = 7, Cit+Saline; n= 6, Water+QNP; n = 7, Cit+QNP;

n= 6, two-way ANOVA; p.o. administration (F(, 22 = 0.56, P = 0.4616), i.p. injection
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(Fa, 220 = 727.10, P < 0.0001), Interaction (F¢, 2y = 0.11, P = 0.7440), Bonferroni
post-test; not significant (n.s.)) (C) Time course of a spatial discrimination task and a
reversal learning test combined with chronic SSRI administration. (D,E) Percentage of
correct choices during overtraining (D) and reversal learning (E). (WatertQNP; n = 5,
Cit+QNP; n= 5, D: two-way repeated measures ANOVA; Drug (F(1, 269 = 2.47, P =
0.1547), Session number (F3.36,90.33) = 1.27, P = 0.3040), Interaction (F 36, 90.38) = 0.62,
P =0.6233), E: two-way repeated measures ANOVA; Drug (F(1,32 = 9.71, P = 0.0143),
Session number (F4, 128) = 48.66, P < 0.0001), Interaction (F, 128) = 1.63, P = 0.1920),

Bonferroni post-test; P* < 0.05.)

Figure 6

Chronic SSRI treatment rescued IOFC hyperactivity in QNP-treated mice

(A) Time course of electrophysiological recordings combined with chronic SSRI
administration. (B,C) Current injection induced firing activity of 10FC pyramidal
neurons in the absence (B) and presence (C) of GABA4 antagonists. (B: Water+QNP; n
= 8 from 3 mice, Cit+QNP; n = 12 from 3 mice, two-way repeated measures ANOVA;
Drug (Fq, 27.06) = 6.96, P = 0.0167), Current (F(iss, 4334y = 309.92, P < 0.0001),

Interaction (F 55, 43.34) = 4.04, P = 0.0297), Bonferroni post-test; P* < 0.05and P <

50



]
O
-
O
Vp)
)
-
(O
>
O
)
)
O
()
O
O
<(
O
S
>
(D)
Z
@

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

0.01, C: Water+QNP; n = 11 from 3 mice, Cit+QNP; n = 11 from 3 mice, two-way
repeated measures ANOVA; Drug (Fi,40.58) = 0.00, P = 0.9673), Current (F.03,8238) =
250.93, P < 0.0001), Interaction (F2.03,8238) = 0.12, P = 0.8889) ) (D) Representative
traces of sIPSCs and mIPSCs. (E,F) sIPSC frequency (E) and amplitude (F) in IOFC
pyramidal neurons. (Water+Saline; n = 14 from 3 mice, Water+QNP; n = 17 from 3
mice, Cit+QNP; n = 15 from 3 mice, E: one-way ANOVA; F(, 43y = 3.758, P = 0.0313,
Tukey's multiple comparison test; P~ < 0.05, F: one-way ANOVA; F,43=0.1188, P =
0.8883.) (G,H) mIPSC frequency (G) and amplitude (H) in IOFC pyramidal neurons.
(G: Water+Saline; n = 12 from 3 mice, Water+QNP; n = 13 from 3 mice, Cit+QNP; n =
11 from 3 mice, one-way ANOVA; F(, 33y = 0.2934, P = 0.7476, H: Water+Saline; n =
12 from 3 mice, Water+QNP; n = 11 from 3 mice, Cit+QNP; n = 10 from 3 mice,

one-way ANOVA; F(z, 30) = 0.13 10, P= 0.8777.)

Figure 7

D,-ERK signaling in the CS was required for repetitive behavior in QNP-treated mice
(A,B) Representative images from AAV-hSyn-Venus mediated labeling of 10FC
neurons. Green fluorescence was observed at both the AAV injection site (A; IOFC) and

the striatal projection site (B; CS). Scale bar = 100 um (B; center) and 20 um (B; right).
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(C) Time course of stereotaxic surgery and recording of QNP-induced repetitive
behavior combined with intra-CS local drug injection. (D,E) Effect of intra-CS injection
of racroprode (Rac; 1 pg/side) or PD98059 (1 pg/side) on repetitive chewing behavior
in QNP-treated mice. (D: n = 5, paired t test; t(5) = 15.31, P < 0.0001, E: n = 5, paired t
test; t(5) = 3.643, P = 0.0070.) (F) Time course of recording of low-dose QNP-induced
chewing behavior. (G) Time spent chewing during the 20-30 min after the 8"-10™ QNP
injection (1.0, 0.5, 0.3 mg/kg respectively). n = 5. (H) Time course of stereotaxic
surgery and recording of intra-CS local injection-induced repetitive behavior combined
with subthreshold dose of QNP injection. (I) Time spent chewing during the 20-30 min
after intra-CS injection of CGS 21680A (CGS; 0.3 ng/side) and subthreshold dose of

QNP injection (0.3 mg/kg). n = 3, paired t test; t(2) = 4.395, P = 0.0481.

Figure 8

Istradefylline rescued both the behavioral and cognitive symptoms in QNP-treated mice.
(A) Time course of recording of QNP-induced repetitive behavior combined with the
short-term administration of istradefylline (Ist). (B) Time spent chewing during 20-30
min after QNP and Ist injections. (QNP+Veh; n =5, QNP+Ist; n = 4, two-way repeated

measures ANOVA; Drug (F, 505 = 27.48, P = 0.0012), Injection number (F.15,926) =
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17.45, P = 0.0025), Interaction (F(1.15,926) = 17.78, P = 0.0024), Bonferroni post-test;
P <0.01, P <0.001.) (C) Time course of a spatial discrimination task and a reversal
learning test combined with the short-term administration of Ist. (D,E) Percentage of
correct choices during over training (D) and reversal learning (E). (QNP+Veh; n = 5,
QNP+Ist; n = 6, D: two-way repeated measures ANOVA; Drug (F(, 2501y = 0.72, P =
0.4175), Session number (F(2.75, 69.53) = 0.78, P = 0.5068), Interaction (F273, 69.53) = 1.04,
P =0.3878)), E: two-way repeated measures ANOVA; Drug (F1, 36 = 7.29, P = 0.0244),

Session number (F, 144) = 68.34, P < 0.0001), Interaction (F, 144) = 1.58, P = 0.2010))

Figure 9

Altered synaptic functions in the CS iMSNs from QNP-treated mice was rescued by an
Aja antagonist

(A) Time course of electrophysiological recordings from CS MSNs. (B) Baseline
NMDA/AMPA ratios recorded from CS dMSNs. (Control condition: Saline; n = 6 from
5 mice, QNP; n= 14 from 5 mice, Student’s t-test; t(18) = 0.09770, P = 0.9233,
PD98059: Saline; n = 12 from 4 mice, QNP; n= 11 from 4 mice, Unpaired t-test with
Welch's correction; t(12) = 0.7569, P = 0.4637, Ist (istradefylline): Saline; n = 4 from 3

mice, QNP; n= 6 from 3 mice, Student’s t-test; t(8) = 0.6724, P = 0.5203.) (C) Bath
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application of QNP-induced changes in the NMDA/AMPA ratio recorded from CS

dMSNSs. (Control condition: Saline; n = 6 from 5 mice, t(5) = 1.587, P = 0.1735, QNP;

n =14 from 5 mice, t(13) = 0.3219, P = 0.7526, PD98059: Saline; n = 12 from 4 mice,

t(11) = 0.2176, P = 0.8317, QNP; n = 11 from 4 mice, t(10) = 0.03232, P = 0.9748, Ist:

Saline; n = 4 from 3 mice, t(3) = 0.1016, P = 0.9255, QNP; n = 6 from 3 mice, t(5) =

0.5138, P =0.6293. One sample t-test compared with 100.) (D) Baseline NMDA/AMPA

ratios recorded from CS iMSNs. (Control condition: Saline; n = 7 from 3 mice, QNP;

n=5 from 4 mice, Student’s t-test; t(10) = 5.067, P = 0.0005, PD98059: Saline; n = 6

from 4 mice, QNP; n= 5 from 3 mice, Unpaired t-test with Welch's correction; t(6) =

2.277, P = 0.0630, Ist: Saline; n = 4 from 3 mice, QNP; n= 6 from 3 mice, Student’s

t-test; t(8) = 0.3501, P = 0.7353.) (E) Bath application of QNP-induced changes in the

NMDA/AMPA ratio recorded from CS iMSNs. (Control condition: Saline; n = 7 from 3

mice, t(6) = 0.1710, P = 0.8699, QNP; n = 5 from 4 mice, t(4) = 3.019, P = 0.0392,

PD98059: Saline; n = 6 from 4 mice, t(5) = 0.6388, P = 0.5510, QNP; n = 5 from 3

mice, t(4) = 0.6333, P =0.5610, Ist: Saline; n =4 from 3 mice, t(3) = 1.547, P =0.2195,

QNP; n = 6 from 3 mice, t(5) = 1.684, P = 0.1529. One sample t-test compared with

100.)
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