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Summary 1 

Dynamic changes in the environment strongly impact our perception. Likewise, sensory systems 2 

preferentially represent stimulus changes, enhancing temporal contrast. In olfaction, odor 3 

concentration changes across consecutive inhalations (ΔCt) can guide odor source localization, 4 

yet the neural representation of ΔCt has not been studied in vertebrates. We have found that, in 5 

the mouse olfactory bulb, a subset of mitral/tufted (M/T) cells represents ΔCt, enhancing 6 

the contrast between different concentrations. These concentration change responses are 7 

direction selective: they respond either to increments or decrements of concentration, reminiscent 8 

of ON and OFF selectivity in the retina. This contrast enhancement scales with the magnitude, 9 

but not the duration of the concentration step. Further, ΔCt can be read out from the total spike 10 

count per sniff, unlike odor identity and intensity, which are represented by fast temporal spike 11 

patterns. Our results demonstrate that a subset of M/T cells represents ΔCt, providing a signal 12 

that may instruct navigational decisions in downstream olfactory circuits. 13 

Significance 

As an animal tracks an odor plume, concentration changes over time. Here we show that 14 

olfactory bulb neurons explicitly represent concentration changes between consecutive 15 

inhalations. This response property enhances temporal contrast, as in other sensory systems. Fine 16 

temporal spike patterns do not improve concentration change decoding. These signals may guide 17 

olfactory navigation in the natural environment.  18 
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Introduction 19 

The brain must track how external information changes with time (Wertheimer, 1912; Bregman, 20 

1994). Correspondingly, sensory circuits deploy specialized cell types for dynamic stimuli: 21 

visual neurons emphasize luminance changes and motion (Ratliff et al., 1963), auditory neurons 22 

capture amplitude and frequency modulation (Langner, 1992), and somatosensory neurons 23 

encode vibrating touch (Werner and Mountcastle, 1965; Mountcastle et al., 1967). For many 24 

animals, odor concentration changes are equally relevant, since they carry information about 25 

odor source location (Murlis et al., 1992; Ache et al., 2016). Vertebrates can localize odor 26 

sources either by comparing between simultaneous samples from the two nostrils, or by 27 

comparing samples taken sequentially from different locations (Catania, 2013). When bilateral 28 

sampling is prevented by naris occlusion, animals are only partly impaired at localizing odor 29 

sources (Porter et al., 2007; Khan et al., 2012; Catania, 2013; Jones and Urban, 2018). Therefore, 30 

vertebrates must also sense changes of odor concentration, from sniff to sniff (ΔCt), to guide 31 

them to an odor source. Yet despite this evidence that ΔCt can guide odor tracking, whether 32 

olfactory neurons encode sniff to sniff changes has not been directly addressed.  33 

Unlike invertebrate olfactory systems, in which olfactory sensory neurons (OSNs) are 34 

continuously exposed to the medium, air-breathing vertebrates discretize the input to OSNs into 35 

intermittent inhalations. In this case, the brain must maintain a memory of odor concentration 36 

across the exhalation interval to compute ΔCt.  37 

How and where does the olfactory system solve this problem? We demonstrate here that a subset 38 

of neurons in the olfactory bulb encode ΔCt on the time scale of a single sniff. Thus, like their 39 

counterparts in other sensory systems such as ON/OFF responses in vision (KUFFLER, 1953; 40 

Schiller, 1992; Westheimer, 2007), a subset of olfactory neurons represents stimulus increments 41 

and decrements. Further, these representations depend on the magnitude of the concentration 42 

step, but not the duration of the step (i.e., for how many sniffs it lasts). Lastly, while fast 43 

temporal spike patterns can improve decoding of absolute concentration, concentration changes 44 

can be read out from total spike count. 45 

Experimental procedures 46 

Animals 47 

Data were collected in seven C57BL/6J male mice. Subjects were 8–16 weeks old at the 48 

beginning of recordings and were maintained on a 12-h light/dark cycle (lights on at 8:00 p.m.) 49 
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in isolated cages in an animal facility. All animal care and experimental procedures were in 50 

accordance with a protocol approved by the University of Haifa and University of Oregon 51 

Institutional Animal Care and Use Committees. 52 

Surgery 53 

Mice were anesthetized using isofluorane gas anesthesia, and a head plate and a pressure cannula 54 

were implanted. For sniffing cannula implantation, we drilled a small hole in the nasal bone, into 55 

which the thin 7-8 mm-long stainless cannula (gauge 23 capillary tubing, Small Parts) was 56 

inserted, fastened with glue, and stabilized with dental cement (Verhagen et al., 2007). A small 57 

craniotomy was performed above one of the olfactory bulbs, contralateral to the side of sniffing 58 

cannula implantation. The reference electrode was implanted in cerebellum. At the end of the 59 

procedure, the craniotomy was covered with a biocompatible silicone elastomer sealant (Kwik-60 

cast, WPI). The mice were given 3 days after a surgery for recovery. 61 

Odor delivery 62 

For stimulus delivery, we used a custom eight-odor air dilution olfactometer, based on a previous 63 

design (Bodyak and Slotnick, 1999). When no odor was being presented to the mouse, a steady 64 

stream of clean air (1,000 ml/min) was flowing to the odor port. During odorant presentation, N2 65 

flowed through the selected odorant vial. We used multiple odorants obtained from Sigma-66 

Aldrich. The odorants were stored in liquid phase (diluted either 1:5 or 1:10 in mineral oil) in 67 

dark vials. We used acetophenone, amyl acetate, geraniol, ethyl acetate, S - limonene, methyl 68 

butyrate, menthone, methyl salicylate, pentyl acetate and vanillin as odorants. The odorant 69 

concentration delivered to the animal was reduced additional tenfold by air dilution and 70 

homogenized in a long Teflon tube before reaching the final valve. After sufficient mixing and 71 

equilibration time, the dual three-way Teflon valve (SH360T042, NResearch) directed the odor 72 

flow to the odor port and diverted the clean airflow to the exhaust. All air flows and line 73 

impedances were equalized to minimize the pressure transients resulting from odor and final 74 

valve switching. The time course of odor concentration was checked by Photo-Ionization 75 

Detector (200B mini-PID, Aurora Scientific). The concentration reached a steady state ~40 ms 76 

after final valve opening (Resulaj and Rinberg, 2015).  Further, to change odor concentration, we 77 

passed stable odorized airflow through a concentration change manifold (Fig. 1a). Odor 78 

concentration changes were achieved by activating a pair of matching solenoids 79 

(LHQA2411220H; The Lee Company) which performed air dilution. For each pair of solenoids, 80 

one valve was connected to a vacuum channel and the other to a clean airflow channel. Solenoid 81 
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activation in the vacuum channel diverted part of the odorized air, while solenoid activation in 82 

the air channel contributed an equal amount of flow back into the system. To maintain constant 83 

total airflow (Extended data Figure 1-1b), the impedance of each air channel was matched to the 84 

impedance of the corresponding vacuum channel using manual needle valves R1..3 (NV3H-85 

1012-3-S; Beswick Engineering). To ensure that the temporal profile of odor concentration 86 

stabilized before inhalation began, we predominantly used odorants with higher vapor pressure 87 

(Martelli et al., 2013). For these high vapor pressure odorants, the stimulus reaches 95% of final 88 

concentration in 20-40 ms (Fig. 1c). 89 

Electrophysiological recording 90 

We recorded M/T cell activity using acute 16- or 128-channel matrix array of Si-probes (a2x2-91 

tet-3mm-150-150-121-A16, M4x8-5mm-Buz-200/300um, NeuroNexus). Cells were recorded in 92 

both ventral and dorsal mitral cell layers. The data were acquired using a 128-channel data 93 

acquisition system (RHD2000, Intan Technologies) at 20 KHz sampling frequency. To monitor 94 

sniffing, the intranasal cannula was connected to a pressure sensor with polyethylene tubing 95 

(801000, A-M Systems). The pressure was measured using a pressure sensor (24PCEFJ6G, 96 

Honeywell). The amplified output signal from the pressure sensor was recorded in parallel with 97 

electrophysiological data on one of the analog input channels.  98 

Before recording began, the mice were first adapted to head fixation. Mice typically remained 99 

quiescent after 1–2 sessions of head fixation, after which recording sessions started. We 100 

presented 2-3 odors in a single session in pseudo-random sequence with an average inter 101 

stimulus interval of 7 s. Each odor was presented in four temporal patterns: 1) static high – high 102 

concentration (~1-2% of saturated vapor pressure) of odor for 4 sniff cycles; 2) static low – low 103 

concentration (50% of high concentration level) for 4 sniff cycles; 3) a step from high to low – 104 

for the first two sniff cycles, concentration level was equal to the level of static high, after which 105 

the concentration stepped to the low concentration; 4) and a step from low to high – two sniff 106 

cycles of low concentration followed by two sniffs of high concentration. We controlled odor 107 

concentration using a custom-built concentration change manifold (CCM, see next section). 108 

Odor onsets and concentration changes were triggered at the beginning of the exhalation phase, 109 

which occur at positive-going zero crossings of the pressure signal. Since odor cannot 110 

orthonasally enter the nose during exhalation, triggering by exhalation onset allows enough time 111 

for the odor stimulus to reach a steady state of concentration by the time the animal begins to 112 

inhale. One session usually lasted for 60–90 min and consisted of 300–400 trials.  113 
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Spike extraction and data analysis  114 

All analysis was done in Matlab (MathWorks). Electrophysiological data were filtered between 115 

300 Hz – 5 KHz and spike sorted. For spike sorting we used software package written by Alex 116 

Koulakov (Shusterman et al., 2011). 117 

Statistical table 118 

 
Data structure Type of test Power 

If cell is responsive to an odor Fitted data, non-
normal 

Kolmogorov-
Smirnov test p < 0.005 

ROC analysis CI Fitted data, normal t-test p = 0.63 

ROC analysis CT Fitted data, normal t-test p = 0.08 

ROC analysis +/- ΔCt Fitted data, normal t-test p < 0.001 

Spike count contrast 
enhancement for +/-ΔCt 

Fitted data, non-
normal 

Wilcoxon 
signed rank test 

p = 7.57e-5 for +ΔCt responses 

p = 8.64e-5 for -ΔCt responses 

Spike count contrast 
enhancement for CT 

Fitted data, non-
normal 

Wilcoxon 
signed rank test p = 0.20 

Spike count contrast 
enhancement for CI 

Fitted data, non-
normal 

Wilcoxon 
signed rank test p = 0.18 

Peak amplitude contrast 
enhancement for +/-ΔCt 

Fitted data, non-
normal 

Wilcoxon 
signed rank test 

p= 2.41e-6 for +ΔCt responses 

p= 2.08e-8 for -ΔCt responses 

Peak amplitude contrast 
enhancement for CT 

Fitted data, non-
normal 

Wilcoxon 
signed rank test p = 0.97 

Peak amplitude contrast 
enhancement for CI 

Fitted data, non-
normal 

Wilcoxon 
signed rank test p = 0.21 

ΔCt sensitivity is step magnitude 
dependent 

Normal 
distribution t-test 

1.25-fold change: p=0.72;  

1.5-fold change: p<0.01;  

2-fold change: p<0.01 

ΔCt sensitivity is step duration 
independent 

Normal 
distribution Wilcoxon test 

for spike count p = 0.08;  

for peak amplitude p = 0.12 

 119 
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Temporal alignment of responses 120 

For analysis, sniffing traces were down-sampled to 1 kHz, and filtered in the range of 0.5–30 Hz. 121 

The inhalation onset and offset were detected by zero crossings of a parabola fit to the minima of 122 

the pressure signal following the onset of the inhalation. Inhalation onset/offset was defined as 123 

the first/second zero crossing of the parabola (Shusterman et al., 2011). We defined two 124 

intervals: the first is from inhalation onset to inhalation offset and the second is the rest of the 125 

sniffing cycle, from the inhalation offset to the next inhalation onset. While the duration of the 126 

first interval is concentration independent, the duration of the second interval depends on the 127 

concentration of presented odor (Extended data Figure 5). To compare neuronal responses across 128 

trials and concentrations, we morphed the inhalation part of the sniff cycle and corresponding 129 

spike train to the average one (Shusterman et al., 2011). The second part of the sniff cycle and 130 

corresponding neural activity were matched to the average over trials: longer cycles were 131 

truncated and shorter were zero padded. 132 

Odor responses. 133 

To establish whether a cell is responsive to an odor, we compared the cumulative distribution of 134 

the neuronal spikes without odors to the cumulative distribution of neuronal activity during the 135 

first odorized sniff cycle, using the Kolmogorov-Smirnov test. Neuronal activity without odor 136 

was sampled from 3 sniffs preceding odor delivery across all trials. Neuronal activity for a given 137 

odor was sampled from the first sniff after stimulus onset. Cells were considered responsive if 138 

the distribution of spiking activity during the first odorized cycle statistically differed from the 139 

distribution of baseline responses in at least one 10 ms bin relative to inhalation onset (p < 0.005; 140 

Benjamini-Hochberg multiple comparison correction) or if their average spike rate over the sniff 141 

cycle differed significantly from baseline (p < 0.05).  142 

Recovery index  143 

To measure how ΔCt cell-odor pairs recover in sniffs after the concentration step, we quantified 144 

a recovery index (RI), using the peak amplitude of the response. For positive ΔCt responses it 145 

consists of the ratio between change of response between two consecutive sniff cycles after the 146 

concentration change (LH3-LH4) to the difference between ΔCt response and the response on 147 

the matching static stimulus (LH3-H3): 148 

3 4
3 3

LH LH
LH H

 149 
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If the M/T cell responds with identical amplitude on two sniff cycles following the concentration 150 

step, this will lead to LH4 = LH3, the numerator will be zero and thus RI=0. In the other limiting 151 

case, when the response on the second sniff following the step (LH4) is equal to the static 152 

response (H3), the denominator will be equal to the numerator and therefore RI will be equal 1. 153 

Therefore most of the RIs will be distributed between 0 and 1.  154 

By analogy, for negative ΔCt responses, RI will take the following form: 155 

3 4
3 3

HL HL
HL L

 156 

ROC analysis of contrast enhancement 157 

ROC analysis provides a measure of how well a given cell-odor pair can discriminate between 158 

two stimuli. To measure the discriminability between the static odor stimuli, high and low, we 159 

compute the area under the ROC curve (auROC) for the distributions of spike counts over the 160 

third sniff of each stimulus (Extended Data Figure 4-2 A1, B1, C1; Green and Swets, 1966). 161 

ROC curves were created by plotting the probability that the single-trial spike count (Extended 162 

Data Figure 4-2 A2) exceeds a given value (Extended Data Figure 4-2 A3, B3, C3) for two 163 

stimulus types. For each point, on the x-axis is the probability for one stimulus type, on the y-164 

axis is the probability for another stimulus type. Dark curves show the probabilities for dynamic 165 

versus static, while lighter curves show the probabilities of static high vs static low. An auROC 166 

value of 1 indicates no overlap between the two distributions while a value of 0.5 indicates 167 

complete overlap between the two distributions. We then plot the static stimulus auROC against 168 

the ΔCt discriminability (Extended Data Figure 4-2 D, E). This plot shows whether a given cell-169 

odor pair shows contrast enhancement between concentrations during step stimuli.  170 

Three example cell-odor pairs are shown in such a plot (Extended Data Figure 4-2, A-C). 171 

Concentration invariant responses do not discriminate between high and low concentration and 172 

have values of near 0.5 for both static and step stimuli. Concentration-tracking responses 173 

discriminate between step stimuli and corresponding control equally as well as they discriminate 174 

between the two static control stimuli. Thus, they fall along the diagonal of this plot. Finally, ΔCt 175 

responses discriminate better between sniffs of step stimuli than for sniffs of static stimuli, so 176 

they fall above the diagonal. CI responses do not discriminate between high and low 177 

concentration (t-test, p = 0.63), and give values of near 0.5 for both static and flickering stimuli 178 

(Extended Data Figure 4-2E). CT responses discriminate equally well between static and 179 

flickering stimuli, and thus fall along the diagonal of this plot (t-test, p = 0.08). ΔCt responses 180 
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discriminate better between dynamic and static stimuli than between two static stimuli, so that 181 

they fall above the diagonal (t-test, p < 0.001 for both +ΔCt and -ΔCt). These analyses 182 

demonstrate that ΔCt sensitivity enhances the contrast between concentrations, potentially 183 

facilitating detection of concentration change. 184 

Odor concentration classification analysis.  185 

To estimate how well single neurons (n=49) can discriminate between two odor concentrations 186 

on a trial by trial basis, we constructed a Mahalanobis distance linear classifier. For 187 

concentration discrimination, we calculated discriminability between responses to static high and 188 

static low on the 3rd sniff cycle, L3 and H3. For every cell and for every pair of concentrations we 189 

counted spikes using multiple time bins (5, 10, 20, 40, 80 and 160 ms). Single trials were 190 

randomly selected and compared to a set of templates constructed from 70% of trials for each of 191 

the two concentrations. We used the mahal function in Matlab to estimate Mahalanobis distance 192 

from each single trial vector to two groups of multiple trial templates representing two 193 

concentrations. This procedure was repeated 300 times for different single trial population 194 

vectors and was repeated for each bin size. 195 

A similar analysis was performed on the same cell-odor pairs to estimate discriminability in ΔCt. 196 

For ΔCt discrimination we calculated discriminability between LH3 and L3 sniffs for +ΔCt 197 

responses and HL3 and H3 sniffs for -ΔCt responses. 198 

Behavioral experiments 199 

2 mice were implanted with a head bar and a cannula in their nose, both secured to the skull by 200 

dental cement (Smear et al., 2011). After recovery from surgery, mice were water restricted so 201 

that they are motivated to work for water reward during behavioral testing.  202 

To measure ΔCt sensitivity, we used a go/no-go paradigm (Smear et al., 2011). Trial events were 203 

controlled and behavioral outputs (sniffing and licking) were measured using MATLAB and a 204 

custom-built Arduino-based behavior-control system. Stimulus presentation is synchronized to 205 

the sniff cycle, such that changes in odor concentration only occur while the animal is exhaling. 206 

Thus, there is no change in odor concentration during inhalation, and the animal must compare 207 

two discrete odor samples across time to detect any changes in odor concentration. 208 

Mice were initially trained in a simple odor detection task, in which they are supposed to lick 209 

when odor is presented, and not lick when a blank stimulus occurs. After they have acquired at 210 

least 90% performance in this task, they begin ΔCt training. In the second phase of training, mice 211 
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were trained to report positive or negative ΔCt relative to an absolute concentration, C. All trials 212 

start by delivering the baseline concentration C to the subject during the first sniff. During the 213 

second sniff, however, the concentration can either change (C+ ΔCt or C- ΔCt; No-Go trials) or 214 

stay at C (Go trials). Trials containing the ΔCt signal are used as No-Go trials, because in a 215 

Go/No-go task most errors are false alarms. By delivering ΔCt stimuli during no-go trials, we 216 

ensure that the majority of errors occur during ΔCt trials, making these trials more informative. 217 

Responses are classified into correct - hits (H: Go trial, mouse licks), correct rejections (CR: No-218 

Go trial, mouse doesn't lick) – and incorrect – false alarms (FA: No-Go trial, mouse licks) & 219 

misses (M: Go trial, mouse doesn't lick).  220 

Results 221 

Experimental setup and response types 222 

We recorded respiration and M/T cell activity (7 mice, 92 cells, 242 cell-odor pairs) in awake, 223 

head-fixed mice (Fig. 1A). To rapidly change odor concentration, we developed a novel 224 

concentration change manifold, with which rapid concentration changes were achieved by air 225 

dilution (Fig. 1A; Methods). Sniffing was measured through an intranasal pressure cannula (Fig. 226 

1A). Using real-time closed-loop odor presentation, we switched odor concentrations at the 227 

beginning of the exhalation phase so that the stimulus reached its new steady state concentration 228 

before the onset of the next inhalation (Fig. 1B; and Extended data Figure 1-1). 229 

In most experiments, we presented odorants in two static concentration patterns: high (H), low 230 

(L), and two dynamic patterns: a step from high to low (HL), and a step from low to high (LH). 231 

The high concentration was twice that of the low concentration, a concentration difference that is 232 

within the range of concentration changes that would be encountered in turbulent plumes 233 

(Crimaldi et al., 2002; Gaudry et al., 2012; Gire et al., 2016). Behavioral testing in a Go/No go 234 

paradigm confirmed that two-fold concentration steps are perceptible to mice (Extended data 235 

Figure 1-2).  236 

Step stimuli consisted of a presentation of one concentration for two sniff cycles, followed by a 237 

switch to the other concentration. These stimuli evoked three different response types across 238 

odor-cell pairs. For some cell-odor pairs, spiking responses were proportional to odor 239 

concentration on the current sniff but were not affected by odor concentration on previous sniffs. 240 

Thus, these concentration-tracking cell-odor pairs (CT; Fig. 1C-D) faithfully represented the 241 

concentration on each sniff. For other cell-odor pairs, the response did not change across 242 
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concentrations for static or step stimuli. We refer to these as concentration-invariant (CI; Fig. 1E-243 

F).  These unchanging responses may be specialized for odor identification, for which 244 

concentration invariance is an important property (Wilson and Mainen, 2006; Shusterman et al., 245 

2017; Wilson et al., 2017; Bolding and Franks, 2018). However, testing with a wider range of 246 

concentrations would be needed to fully determine these cells’ concentration response function 247 

for a given odor. Lastly, we observed responses that were sensitive to changes in odor 248 

concentration (ΔCt; Fig. 2). For these cell-odor pairs, responses to step stimuli could not be 249 

predicted from responses to static stimuli.  These ΔCt cell-odor pairs responded to LH (+ΔCt 250 

responses; Fig. 2A-B and Extended data figure 2-1A) or to HL stimuli (-ΔCt responses; Fig. 2C-251 

D and Extended data figure 2-1A). For example, such a cell-odor pair may exhibit an identical 252 

response to static high and static low stimuli but respond differently when these same 253 

concentrations are alternated in the HL stimuli (Fig. 2C-D). Because of this history dependence, 254 

such a response carries information about concentration change rather than the concentration per 255 

se. The majority of ΔCt responses were selective for the direction of change (41/49; Extended data 256 

Figure 2-2). Further, almost all ΔCt responses increased firing rate with positive concentration 257 

changes and decreased firing rate with negative changes (46/49). Strikingly, 25% of the +ΔCt 258 

responses did not respond to the initial stimulus onset (first sniff), a change from no odor to odor, 259 

but only after the upward step in concentration (7/28; Fig. 2A). 260 

For a cell to reliably report ΔCt with single sniff temporal resolution, its response should only be 261 

detectably different in the sniff that immediately follows the concentration change. On the next 262 

sniff, the response should return to the level evoked by static stimuli. To quantify the extent of 263 

recovery to the static level on the second sniff after the concentration change, we devised a 264 

recovery index (see Methods and Extended Data Figure 2-3). This index ranges from 1 for 265 

complete recovery, to 0 for no recovery to the static stimulus response (Fig. 2E-F). While +ΔCt 266 

responses mostly recovered near to the static level (Fig. 2E), -ΔCt responses do not recover 267 

completely (Fig. 2F). 268 

All responses were classified as ΔCt, CT, or CI. To categorize each response, we tested whether 269 

the cumulative distribution of spike count after inhalation onset differed between stimuli 270 

(Kolmogorov-Smirnov test; Fig. 3A; see Methods). This statistical test is sensitive not only to 271 

changes in the total number of spikes within a sniff cycle but also to temporal redistribution of 272 

spikes within the cycle. Importantly, due to adaptation, both representation of odor concentration 273 

(Cang and Isaacson, 2003; Sirotin et al., 2015) and perception of odor intensity (Wojcik and 274 
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Sirotin, 2014) depend on the duration of odor exposure. Therefore, for all analyses, we compare 275 

responses to different stimuli on the same sniff cycle after stimulus onset (e.g., we compare the 276 

3rd sniff of the step stimulus to the 3rd sniff of the static stimulus; see Extended Data Figure 2-4 277 

for an example response with strong adaptation). 278 

Concentration tracking (CT) responses differ on the first sniff of the static stimuli, but do not 279 

differ between the third sniff of step and static stimuli. (Fig. 3B1, C). A cell-odor pair is 280 

categorized as concentration invariant (CI) if the response on the first sniff of the static stimuli 281 

does not significantly differ between high and low, and the response on the third sniff of the 282 

concentration step stimulus does not differ from the third sniff of the two static stimuli. (Fig. 283 

3B2, C). ΔCt sensitive responses differ on the third sniff of the ΔCt stimulus from the third sniff 284 

of both static stimuli. If after a positive change in concentration, the cell responded differently 285 

from its response to static high concentration, this cell-odor pair was categorized as +ΔCt (Fig. 286 

3B3, C). -ΔCt cell-odor pairs gave a different response to the low concentration depending on the 287 

concentration in the preceding sniff (Fig 3B4, C). In summary, 51% (n=123) of cell-odor pairs 288 

responded to the odorants we presented. Of these responsive cell-odor pairs, 41% were ΔCt, 20% 289 

were CT and 39% were CI (Fig. 3D).  290 

What is the cellular basis of ΔCt sensitivity? Are there dedicated “ΔCt cells” that represent 291 

concentration changes for all their effective odor stimuli, or does ΔCt sensitivity depend on odor 292 

identity? To approach this question, we compared the responses of each cell to different odors 293 

(Fig. 3E). An individual cell could belong to different response types for different odors. 294 

Importantly, cells with ΔCt sensitivity to one odor are not always ΔCt sensitive to other odors at 295 

the tested concentrations (Fig. 3E). Therefore, ΔCt sensitivity cannot be invariant to both odor 296 

identity and concentration. Further studies using a wider range of absolute concentrations will be 297 

necessary to determine whether there is invariance to either of these features. 298 

Contrast between concentrations depends on the stimulation history  299 

In ΔCt responses (Fig. 2), the response to a given concentration depends on the concentration 300 

presented in the previous sniff. On the sniff after a concentration change, the difference between 301 

responses to different concentrations will be enlarged, thus enhancing the contrast for that sniff. 302 

Responses of M/T cells may encode odor stimuli either by changes in spike count or by changes 303 

in temporal profile without changes in spike count (Cury and Uchida, 2010; Shusterman et al., 304 

2011). Our method of classifying responses is sensitive not only to changes in the total number 305 
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of spikes within a sniff cycle but also to temporal redistribution of spikes within the cycle. To 306 

separately quantify which features of neuronal responses contribute to contrast enhancement, we 307 

compared the difference between responses to high and low concentrations when preceded by a 308 

step to the difference when preceded by the same concentration (Fig. 4A). We plotted full sniff 309 

spike count differences between the 3rd sniffs of the two static stimuli (|High - Low|) against 310 

spike count differences between a dynamic step stimulus and the corresponding static stimulus 311 

(i.e., |Dynamic - Static|). In this visualization, the farther a cell-odor pair is from the diagonal, the 312 

stronger its contrast enhancement (Fig. 4B). Both +ΔCt and -ΔCt response populations showed 313 

contrast enhancement, with responses significantly shifted from the diagonal (Wilcoxon signed 314 

rank test, p= 7.57e-5 for +ΔCt and p= 8.64e-5 for -ΔCt responses), while the distributions for CT 315 

(Wilcoxon signed rank test, p = 0.20, n=25) and CI (Wilcoxon signed rank test, p = 0.18, n = 49) 316 

responses are symmetric about the diagonal (Fig. 4C, Extended Data Figure 4-1A).  317 

To quantify how ΔCt sensitivity enhances sub-sniff temporal differences between odor responses, 318 

we next performed the same comparison for differences in peak amplitude (peak firing rate) (Fig. 319 

4D, Extended Data Figure 4-1B), a feature that reflects fast temporal patterning (Cury and 320 

Uchida, 2010; Shusterman et al., 2011). Peak amplitude difference distributions for ΔCt 321 

responses were significantly shifted from the diagonal (Wilcoxon signed rank test, p= 2.41e-6 for 322 

+ΔCt and p= 2.08e-8 for -ΔCt responses), while for CT and CI responses the distributions were 323 

symmetric about the diagonal (Wilcoxon signed rank test, p = 0.97 and 0.21, respectively). Thus, 324 

ΔCt sensitivity also increased contrast at the faster sub-sniff timescale. Lastly, to determine the 325 

trial by trial reliability of contrast enhancement by ΔCt responses, we used receiver operator 326 

characteristic (ROC) analysis (see Methods).  In this analysis, ΔCt responses discriminated better 327 

between dynamic and static stimuli than between two static stimuli (Extended Data Figure 4-2). 328 

These analyses demonstrate that ΔCt sensitivity enhances the contrast between concentrations, 329 

potentially facilitating detection of concentration changes. 330 

ΔCt sensitivity is step magnitude dependent 331 

We next tested how ΔCt sensitivity depends on the magnitude of the concentration step. Because 332 

two-fold concentration changes are in the range observed in turbulent plumes (Mylne and 333 

Mason, 1991; Crimaldi et al., 2002), and because firing rates fell to near zero in some -ΔCt 334 

responses (Fig. 2C, Extended data Figure 2-2), we tested responses to smaller concentration steps. 335 

In addition to the twofold steps used in the experiments above, we included a 1.5-fold and a 336 

1.25-fold step, both LH and HL (Fig. 5A, D). To quantify ΔCt sensitivity, we took the ratio of the 337 
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response to the dynamic stimulus to that of the static stimulus, for full sniff spike count as well 338 

as peak amplitude of the PSTH. +ΔCt responses (Fig. 5B) were largest for the 2-fold 339 

concentration increase, as expressed by the ratio of the response to the 3rd sniff of the dynamic 340 

stimulus (LH3) to that of the corresponding static stimulus (H3), both for spike count and peak 341 

amplitude (Fig. 5C). Across the population of +ΔCt responses, the two larger steps gave 342 

significant increases in spike count (t-test; 1.25-fold change: P=0.72; 1.5-fold change: p<0.01; 2-343 

fold change: p<0.01), whereas only the largest step evoked a significant increase in peak 344 

amplitude: count (t-test; 1.25-fold change: p=0.5; 1.5-fold change: p=0.06; 2-fold change: 345 

p<0.001). For -ΔCt responses (Fig. 5E), spike counts were significantly reduced for all step sizes 346 

tested (Fig. 5F; t-test; 1.25-fold change: p<0.01; 1.5-fold change: p<0.001; 2-fold change: 347 

p<0.01), while peak amplitudes were significantly reduced for the two larger steps (Fig. 5F; t-348 

test; 1.25-fold change: p=0.019; 1.5-fold change: p<0.001; 2-fold change: p<0.001). Thus, larger 349 

concentration steps give rise to stronger contrast enhancement. 350 

ΔCt sensitivity is independent of step duration  351 

All responses we have shown thus far come from stimuli with steps lasting 2 sniffs. In natural 352 

environments, more rapid variations in odor concentration are common (Murlis et al., 1992). To 353 

test the extent to which ΔCt sensitivity is also evoked by briefer steps, we performed additional 354 

experiments in which concentration changed after one sniff (Fig. 6A). To quantify step duration 355 

dependent differences in ΔCt sensitivity, we normalized the peak amplitude (Fig. 6B) and spike 356 

count (Fig. 6C) of the ΔCt responses to the response for the one sniff step. While some responses 357 

were step duration dependent (5/13), across the population the differences were not significant 358 

(Wilcoxon test; Fig. 6B, p=0.08; Fig 6C, p=0.12). To characterize the extent to which contrast 359 

depends on step duration, as above we calculated the ratio of the dynamic response magnitude to 360 

static response magnitude for response amplitude (Fig. 6D) and spike count (Fig. 6E) and 361 

normalized this value to that of the one sniff long step. Across the population these differences 362 

were not significant (Wilcoxon test; Fig 6D, p=0.16; 6E, p=0.41).  363 

Concentration decoding depends on temporal pattern, while ΔCt decoding does not 364 

In awake animals, M/T cell activity carries information about odor identity (Cury and Uchida, 365 

2010; Shusterman et al., 2011) and intensity (Sirotin et al., 2015) at sub-sniff timescales. To 366 

compare how information about concentrations and about changes in concentration might be 367 

decoded by downstream olfactory areas, we performed discriminant analysis (see experimental 368 
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procedures). We first evaluated the accuracy with which responses to two odor concentrations 369 

can be discriminated by cell-odor pairs with a ΔCt response (Fig. 7A). Classification of 370 

concentrations was performed on concatenated vectors of firing rates with multiple bin sizes: 5, 371 

10, 20, 40, 80 and 160 ms. Concentration classification performance depended on bin size: 372 

smaller bin sizes yielded better discrimination (one-way ANOVA; p < 0.01; Fig. 7C). Thus, 373 

information about odor concentration can be read out most accurately from fine timescale 374 

temporal patterns. Using the same classification procedure, we next evaluated whether decoding 375 

of concentration changes by the same ΔCt cell-odor pairs similarly depends on temporal 376 

resolution (Fig. 7B). This analysis indicates that decoding of concentration changes is invariant 377 

across the full range of bin sizes (one-way ANOVA, p=0.22; Fig. 7C). These findings suggest 378 

that downstream neurons decode concentration and ΔCt via different mechanisms. 379 

Discussion 380 

Studies of freely moving animals have established the importance of odor concentration 381 

dynamics in guiding olfactory navigation (Khan et al., 2012; Catania, 2013; Jones and Urban, 382 

2018). While these paradigms have revealed behavioral strategies, odor stimuli in an open field 383 

cannot currently be precisely controlled or measured. Without precise knowledge of the stimulus, 384 

neuronal responses are difficult to interpret. To achieve precise stimulus control, we have 385 

developed a novel system for presenting rapidly changing odor concentration stimuli to head-386 

fixed mice.  387 

Our concentration step stimuli have revealed three response types across cell-odor pairs: 1) 388 

concentration tracking (CT) responses, in which firing rate is proportional to odor concentration 389 

on the current sniff, irrespective of concentration in past sniffs; 2) concentration invariant (CI) 390 

responses, in which firing rate does not vary across the range of presented odor concentrations; 391 

and 3) concentration change sensitive (ΔCt) responses, in which firing rate depends not only on 392 

the currently-sniffed concentration, but also that of the previous sniff. A given M/T cell can give 393 

different response types to different odorants. Thus, it does not appear that these response types 394 

map onto particular cell types. 395 

ΔCt responses enhance the contrast between different concentrations, both in fine and coarse 396 

timescales. This contrast enhancement scales with the concentration step magnitude but does not 397 

depend on the duration of the step. Lastly, we show that decoding of concentration steps doesn’t 398 
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depend on the duration of time bins: reading fine timescale features does not improve 399 

classification performance. 400 

Taken together, we have obtained the first evidence that neurons in the mammalian olfactory 401 

system represent inter-sniff changes in odor concentration. Such temporal contrast enhancement 402 

is widespread in other sensory modalities, consistent with the paramount importance of sensing 403 

stimulus dynamics. Furthermore, we find that this representation is already present near the 404 

sensory periphery, in the olfactory bulb. Computing ΔCt near the periphery allows the signal to 405 

be broadcast to the OB’s numerous targets in the cortex. 406 

Neuronal mechanisms of ΔCt sensitivity  407 

Invertebrate olfactory organs sample incoming odors continuously, so that their OSNs are 408 

directly exposed to gradients of odor concentration (Nagel and Wilson, 2011; Kim et al., 2015; 409 

Schulze et al., 2015), as well as intermittent intensity fluctuations found in plumes (Vickers et 410 

al., 2001). In contrast, terrestrial vertebrates such as mice sample odors intermittently. In order to 411 

compare the intensities of the previous and the current inhalation, the animal must preserve a 412 

representation of the previous concentration during the exhalation interval. A simple way in 413 

which information can persist over time is through history-dependent adaptation. Adaptation 414 

allows cells to match their limited dynamic range to the distribution of stimulus intensities in the 415 

environment (Kohn, 2007). We propose that the function of ΔCt responses is to shift the dynamic 416 

range of olfactory neurons to increase sensitivity to concentrations close to the recently inhaled 417 

stimulus. A similar adjustment of dynamic range has been observed for motion processing in the 418 

insect visual system (Fairhall et al., 2001). Mechanistically, shifts in dynamic range may be 419 

implemented via intrinsic neuronal properties, such as spike threshold adaptation(Henze and 420 

Buzsaki, 2001; Itskov et al., 2011) Alternatively, ΔCt sensitivity may be achieved by circuit 421 

mechanisms, such as intrabulbar interactions (Shepherd and Greer, 1998; Wachowiak and 422 

Shipley, 2006; Burton, 2017)  or cortical feedback (Luskin and Price, 1983; Li and Hopfield, 423 

1989; Boyd et al., 2012; Markopoulos et al., 2012; Boyd et al., 2015; Otazu et al., 2015).  424 

A cell with ΔCt sensitivity to one odor can have a different response type to another effective 425 

odor. This eliminates the possibility that a dedicated population of “ΔCt cells” represents ΔCt 426 

irrespective of odor identity and absolute concentration. Similarly, malleable stimulus selectivity 427 

has been observed in other sensory systems. For example, in the retina, although it is widely 428 

accepted that retinal ganglion cells consist of dedicated cell types with selectivity for a particular 429 
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visual feature, recent work challenges this view (Rivlin-Etzion et al., 2018; Wienbar and 430 

Schwartz, 2018). Identified ON or OFF retinal ganglion cells can change their polarity based on 431 

stimulation outside the receptive field (Geffen et al., 2007) and ambient light levels(Tikidji-432 

Hamburyan et al., 2014). Direction-selective ganglion cells can reverse their preferred direction 433 

of motion depending on recent stimulus history (Rivlin-Etzion et al., 2012). Thus, even classic 434 

“feature detector” cell types of the retina can change their selectivity under different conditions. 435 

As with other sensory features, understanding ΔCt processing will require a more thorough 436 

exploration of stimulus space, in as close to natural conditions as possible. 437 

Potential relevance of ΔCt sensitivity in the natural environment 438 

Odor concentration gradients are critical for odor source localization (Murlis et al., 1992). Mice 439 

must locate odor sources in various airflow conditions, which will largely determine the 440 

spatiotemporal statistics of odor concentration. Turbulence disrupts concentration gradients 441 

emanating from a distant odor source (Murlis et al., 1990; 1992; Weissburg, 2000). However, 442 

even in turbulent flow, gradients, and therefore ΔCt, become increasingly informative closer to 443 

the source (Justus et al., 2002; Riffell et al., 2008; Gire et al., 2016). Therefore, when following a 444 

plume from a nearby source (Catania, 2013; Gire et al., 2016), or when tracking a depositional 445 

odor trail (Khan et al., 2012; Jones and Urban, 2018), ΔCt signals can guide the nose.  446 

In the real world, there may also be odor fluctuations faster than the inhalation time scale. We 447 

argue that temporal changes in odor concentration on the sub-sniff scale are not relevant, due to 448 

several slow processes. First, based on the physics of the nasal cavity, odor fluctuations will be 449 

low pass filtered (Doebelin, 1990). Second, the odorant molecules must transition from air to 450 

liquid and diffuse through the mucus (Hahn et al., 1994). Lastly, the flicker fusion frequency of 451 

mouse OSNs in vitro is 3-5 Hz (Ghatpande and Reisert, 2011). Because of these slow processes, 452 

we think it is unlikely that sub-sniff timescale changes in odor concentration are available to the 453 

olfactory system.  454 

Vertebrates sense gradients by stereo (inter-naris) and serial (inter-sniff) comparisons (Rajan et 455 

al., 2006; Catania, 2013). Because the nares are close together, stereo comparison should be most 456 

informative near an odor source, where odor gradients are steep. Shallower gradients, farther 457 

from a source, may require the inter-sniff comparison, since the distance between sampling 458 

locations can be larger than the inter-naris distance (Catania, 2013). In a turbulent environment 459 

with noisy gradients (Gire et al., 2016), comparison over more than two sniff cycles may be 460 
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required. While stereo comparisons have been studied both behaviorally (Rajan et al., 2006; 461 

Porter et al., 2007; Catania, 2013) and electrophysiologically (Rajan et al., 2006; Kikuta et al., 462 

2010), the serial component, which should dominate over a wider range of distances, has not 463 

been explored. Our study demonstrates a neural representation of ΔCt. We propose that this 464 

representation contributes to olfactory search in natural olfactory scenes.   465 
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Figure 1. Concentration tracking and concentration invariant odor responses.  597 

A. Schematic of the experiment. Right: A head-fixed mouse implanted with an intranasal 598 

cannula and a multi-electrode chamber was positioned in front of the odor delivery port. Left: 599 

concentration change manifold. B. Odor concentration step paradigm. Odor concentration 600 

changes every two sniff cycles. Green curve indicates the response of a photoionization detector 601 

(PID) to presentation of ethyl acetate. Sniff waveforms (black) are shown below the plots. Grey 602 

areas indicate inhalation. Vertical dashed lines indicate onset of concentration changes. C.-D. 603 

Examples of concentration tracking (CT) responses from two cells. Raster and PSTH plots of 604 

M/T cell response to static high concentration (orange), static low concentration (blue) and 605 

concentration step stimuli (black). The responses of these cell odor pairs change with odor 606 

concentrations the same way in both static and step stimuli. Bar graph on right shows peak 607 

response amplitudes on the third sniff cycle for each stimulus. Error bars indicate standard 608 

deviation (see Methods). E.-F. Same as C-D, but for two cell-odor pairs that are invariant to odor 609 

concentration in the presented range.  610 

 611 

Figure 2. M/T cells responsive to changes in odor concentration.  612 

A, B. Examples of + ΔCt responses. Raster and PSTH plots of two M/T cell’s responses to static 613 

high concentration (orange), static low concentration (blue) and low to high (black). Bar graph 614 

on right shows peak response amplitudes on the third sniff cycle for each stimulus. Error bars 615 

indicate standard deviation. C, D. Examples of - ΔCt responses. Raster and PSTH plots of two 616 

M/T cell’s responses to static high concentration (orange), static low concentration (blue) and 617 

high to low stimulus (black). E, F. Distribution of recovery indices for + ΔCt and - ΔCt responses, 618 

respectively. A value of 1 indicates complete recovery to the static odor stimulus response, while 619 

a value of 0 indicates no recovery. 620 

 621 

Figure 3. Categorization of response types.  622 

A. Criteria for determining whether a cell was responsive to a given odor. Top: Example of 623 

excitatory odor response PSTH. The black line is a PSTH of spiking during odorized sniffs. The 624 

grey line is a PSTH during unodorized sniffs. Bottom: cumulative spike counts of data from top 625 

plot. The red line indicates the first moment when cumulative distributions with and without 626 



 

 
 

24 

stimulus become statistically different. B1-4. PSTHs from examples of each response type to 627 

high, low, and low->high stimuli are vertically separated. Arrows indicate which sniffs of the 628 

response are statistically compared. Non-significant differences are marked ns, and significant 629 

differences are marked with * (Kolmogorov-Smirnov test, p<0.01).  B1. A CT cell-odor pair 630 

responded differently to the two concentrations, and this difference is not affected by a 631 

concentration step. Example data are the same as Fig. 1D. B2. A CI cell-odor pair responded 632 

identically to both concentrations, with or without a step. Example data are the same as Fig. 1F. 633 

B3.  ΔCt cell-odor pairs responded differently to a given concentration after a concentration step.  634 

Example data are the same as Fig 2B. B4. Example -ΔCt response data are the same as Fig 635 

2C. C. Comparisons used to categorize odor-cell pairs. D. Distribution of different response 636 

types: Concentration Invariant (CI; n=49), Concentration Tracking (CT; n=25), Positive ΔCt 637 

(+ΔCt, n=28), and Negative ΔCt (-ΔCt; n=21). E. Distribution of responses to a second odor 638 

for positive ΔCt (orange), negative ΔCt (purple), CI (black), and CT (green) cell-odor pairs. 639 

 640 

Figure 4. Contrast between concentrations depends on the stimulus history.  641 

A. Schematic of contrast comparison. To compare contrasts, for each cell-odor pair, we take the 642 

difference in response between the 3rd sniffs of the static high (H) and static low (L) stimuli, and 643 

plot that against the difference between the 3rd sniffs of the dynamic stimulus and the 644 

corresponding static stimulus (in this example L). Thus, only the concentration in the preceding 645 

sniff varies, and the concentrations being compared are constant. B. Expected distribution of 646 

responses. CT responses will be distributed along diagonal, CI responses will be distributed near 647 

the origin, and ΔCt responses will be distributed above diagonal. C. Scatter plot of full sniff spike 648 

count differences between two static stimuli against differences between dynamic and static 649 

stimuli, on the 3rd sniff cycle. CI, CT, +ΔCt and -ΔCt are marked by black, green, orange, and 650 

blue color, respectively. Example cells from Fig. 3B1-4 are indicated by enlarged dots. 651 

Adjacent panel shows the means and STDs of the spike count differences. D. Same as (C) for 652 

differences in the peak amplitude of the response. Example cells from Fig. 3B1-4 are indicated 653 

by enlarged dots. Adjacent panel shows the means and STDs of the peak amplitude differences. 654 

See also Extended Data Figure 4-2. 655 

 656 



 

 
 

25 

Figure 5.  Contrast enhancement is proportional to the magnitude of concentration change 657 

step. 658 

A. Stimulation with positive steps of different size. B. Raster plots of M/T cell’s activity during 659 

L static and three LH dynamic step stimuli. C. Normalized changes in spike count and amplitude 660 

of the response as function of step size. Orange lines are normalized changes for specific cell-661 

odor pairs, black line is the mean+/-std change across all responsive cell-odor pairs. Asterisks 662 

mark statistically significant deviations from 1. D-F. Same for negative steps. 663 

 664 

Figure 6.  Contrast enhancement is independent of the duration of concentration change 665 

step 666 

A. Example of +ΔCt response to two stimuli of different step durations. Raster and PSTH plots 667 

of M/T cell response to static high concentration (orange), static low concentration (blue), low to 668 

high, step duration 1 sniff (brown), and low to high, 2 sniffs duration (black). PSTH of response 669 

for high static stimulus is not shown for clarity of visualization. B. and C. Normalized changes in 670 

spike count and amplitude of the +ΔCt responses as function of step duration. Orange lines are 671 

normalized changes for +ΔCt responses, purple lines are for -ΔCt responses. Asterisks mark 672 

responses for which the 1 sniff step response and the 2sniff step response differ significantly. D. 673 

and E. Same as (B and C) for changes in contrast (|Dynamic-Static|). 674 

 675 

Figure 7.  Discrimination among concentrations and changes in concentration by 676 

individual M/T cells.  677 

A. Top: PSTHs for a single neuron’s responses to two static stimuli (red: high concentration, 678 

blue: low concentration). Bottom: Corresponding static stimuli discrimination success as a 679 

function of time. Vertical dashed lines indicate the end of the inhalation interval. Horizontal 680 

dashed lines indicate chance level performance. Different colored traces indicate discrimination 681 

success for different bin sizes. B. Top: PSTHs for a neuron’s responses to a high concentration 682 

static stimulus (red), and to a positive concentration step (black). Bottom: Corresponding static 683 

stimulus vs step stimulus discrimination success as a function of time. Different colored traces 684 

indicate discrimination success for different bin sizes. C. Discrimination performance of a linear 685 

classifier between two odor concentrations (left) and between changes in concentration (right) 686 
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over the 320 ms window, as a function of bin size. Grey lines are performances of individual 687 

neurons. Black line is mean +/- std. Asterisk (*) indicates significant change (one-way ANOVA; 688 

p<0.01) in discrimination success as function of bin size. 689 
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