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Abstract  14 

 15 

Obesogenic diets lead to overeating and obesity by inducing the expression of genes involved in 16 

hedonic and homeostatic responses in specific brain regions. However, how the effects on gene 17 

expression are coordinated in the brain so far remains largely unknown. In our study, we provided 18 

mice with access to energy-dense diet, which induced overeating and overweight, and we explored 19 

the transcriptome changes across the main regions involved in feeding and energy balance: 20 

hypothalamus, frontal cortex and striatum. Interestingly, we detected two regulatory processes: a 21 

switch-like regulation with differentially expressed genes changing over 1.5-fold, and “fine-tuned” 22 

subtler changes of genes whose levels correlated with body weight and behavioral changes. We 23 

found that genes in both categories were positioned within specific topologically associating domains 24 

(TADs), which were often differently regulated across different brain regions. These TADs were 25 

enriched in genes relevant for the physiological and behavioral observed changes. Our results 26 

suggest that chromatin structure coordinates diet-dependent transcriptional regulation. 27 

28 



Significance Statement  29 

 30 

Mice fed with free-choice access to chocolate mixture become overweight and compulsive, 31 

recapitulating what happens during obesity. For the first time, we correlated these physical and 32 

behavioural changes with the transcriptome in the frontal cortex and the striatum, involved in the 33 

hedonic “liking” associated to eating, and the hypothalamus, involved in the homeostasic regulation of 34 

food intake. We detected two groups of genes: some transcript were strongly deregulated in term of 35 

fold changes; while others were only subtly deregulated but were especially correlating with 36 

measurements associated with body-weight and compulsivity. These genes were not randomly 37 

distributed, but were positioned in chromatin domains, many of which rich in genes differentially co-38 

regulated across brain areas. 39 

40 



Introduction 41 

 42 

Overeating, leading to obesity, is a serious concern in developed countries. Obesity is a major public 43 

health threat leading to related diseases such as type II diabetes or atherosclerosis, and increasing 44 

mortality (Di Angelantonio et al., 2016). The brain circuitry controlling eating in humans, and 45 

participating in obesity development is modulated not only by homeostatic mechanisms regulating 46 

food intake and energy expenditure, but also by reward, emotion/memory, attention, and cognitive 47 

systems (Saper et al., 2002). Those mechanisms are non-homeostatic with regard to the body's 48 

metabolism and energetic balance, and may lead to addictive-like behaviours such as compulsive-49 

overeating and inflexibility upon obesity development (Lee et al., 2012), being potent drivers of food 50 

seeking (Kenny, 2011). The hypothalamus controls the energy-driven component of feeding 51 

behaviour, while other regions, such as the frontal cortex and the striatum, control reward-related 52 

aspects of food intake. These “metabolic” and “hedonic” brain areas need to be coordinated to allow a 53 

proper ingestive behaviour and a balanced energy intake (Berthoud, 2012) and would be affected by 54 

facilitated access to energy-dense and palatable food (Berridge et al., 2010). This coordination among 55 

distant brain areas naturally uses multiple mechanisms, including cell-to-cell signalling and long-range 56 

projections among different brain regions (Atasoy et al., 2012; Sweeney and Yang, 2017). However, it 57 

also requires coordinated transcriptional regulation in various brain regions (Fenselau et al., 2017). 58 

Much of the transcriptional response associated to overeating remains to be studied and the relational 59 

patterns in gene expression changes among different metabolic and hedonic-related brain regions are 60 

unknown. 61 

One possibility would be that this regulation takes place in the context of topologically associated 62 

domains (TADs). TADs are chromosomal domains evolutionarily conserved across tissues and 63 

species. The genes present in TADs usually exhibit similar expression profiles (Dixon et al., 2012), 64 

forming co-regulated clusters (Nora et al., 2012). Thus, we propose that the TAD structure 65 

orchestrates the gene expression changes across different brain regions, allowing both a coordinated 66 

and region specific response across different brain regions. 67 

Here we explored the transcriptional profiles of frontal cortex, striatum, and hypothalamus, key brain 68 

areas involved in overeating, in mice fed with free choice of a high palatable and energy-dense diet, a 69 



model for overeating and unhealthy food consumption. We also measured physical and behavioral 70 

parameters in order to correlate them with transcriptional changes. Once we detected the genes 71 

changing their expression levels and correlating with body weight and behaviour, we explored their 72 

distribution on TADs across brain regions. 73 

Matherials and Methods 74 

Animals 75 

We used sixteen C57BL/6 (Charles River, France) female mice, of five weeks of age at the beginning 76 

of the experiments. Mice were housed in individually ventilated cages (IVCs) (Tecniplast, Italy) and 77 

PheCOMP cages (Multitake model, Panlab, Barcelona, Spain) in the Animal Facilities if the Barcelona 78 

Biomedical Research Park (PRBB, Barcelona, Spain, EU) in controlled laboratory conditions with the 79 

temperature maintained at 22 ºC ± 1ºC and humidity at 55 ± 10% on a 12 hour light/dark cycle (lights 80 

off 20:00 hours). Food and water were available ad libitum. All animal procedures were performed in 81 

accordance with the [Author University] animal care committee's regulations. 82 

Diet induced weight gain 83 

All mice were habituated to their cages for one week provided with food and water ad libitum. Then, 84 

they were allocated to the group receiving standard chow (SC) or chocolate mixture (CM), balanced 85 

by body weight and housed individually in special metabolic cages (see below). During 8 weeks, SC 86 

mice had access to standard chow mouse diet (Trans 23 diet, Mucedola, Italy) providing 10,870 87 

KJ/Kg and CM mice had a free choice access to standard chow (SC) and to a chocolate mixture 88 

consisting of an equal weight of Mars®, Bounty®, Snickers® and Milka® prepared as homogenous 89 

food pellets following Heyne et al. protocol (Heyne et al., 2009). The chocolate provides 20,595 KJ/Kg 90 

with 52% of its energy from carbohydrate, 17% from protein and 24% from fat. The experimental 91 

schedule is shown in the Fig 1-1A-B.  92 

 93 

Feeding behavior analysis 94 

We used the PheCOMP multi-take metabolism cages (Panlab-Harvard Instruments, Barcelona, 95 

Spain) to obtain fine grain data for individualized mouse including the grams of food consumed, the 96 

number of meal events and the temporal distribution of the feeding bouts in a continuous recording 97 



(Espinosa-Carrasco et al., 2018). The system contains two foods dispensers. SC mice received 98 

standard rodent chow (SC) in both whereas CM mice had one dispenser with standard chow and the 99 

other with chocolate-mixture. The location of each dispenser was counterbalanced between cages. 100 

From the quantitative data obtained by the PheCOMP cages, we calculated the energy intake, 101 

measured by multiplying the known energy content (kJ/g) of individual foods by the amount of food 102 

consumed. The eating rate (kJ/sec) was obtained using the COMPULSE software (Panlab-Harvard 103 

Instruments, Barcelona, Spain). 104 

 105 

Test battery for the study of compulsivity 106 

Tests were performed in a set order designed to minimise the effect of testing on following tests and 107 

with sufficient inter-test intervals to provide an opportunity for the mouse to re-establish its previous 108 

feeding behaviour and relieve any test-induced stress. The free-choice diet was suspended only 109 

during the “limited access to chocolate mixture” and “CM adulteration” tests (five days in total). 110 

Thereafter the initial diet was reintroduced during six days, before the animals were sacrificed. 111 

 112 

Temporally limited access to chocolate mixture (CM)  113 

We used limited access to CM to measure the binge-like behaviour, as readout of compulsion 114 

induced by restricted access to the preferred food. Standard chow and water were provided ad 115 

libitum. Access to CM was restricted to 1 hour per day during the middle of the light phase for 3 116 

consecutive days (Heyne et al., 2009). SC mice were also provided with CM during this hour. In CM 117 

mice, we compared the CM consumed during the period of access with the CM consumed in non-118 

limited conditions. This value was obtained as the mean of 3 days of CM intake during the previous 119 

week of the battery of tests, at the same time (between 14:00 and 15:00). 120 

 121 

Chocolate mixture adulteration  122 

Chocolate adulteration provides information concerning flexibility of food intake under aversive 123 

conditions. Mice were given a free choice between standard chow (SC) and a pellet of the chocolate 124 



mixture (CM) adulterated with quinine hydrochloride (SIGMA-Aldrich) 1g/kg food to give it a bitter 125 

taste. According to (Heyne et al., 2009) flexible mice will avoid or decrease the intake of CM. 126 

 127 

Nestlet shredding test and grooming behaviour  128 

Mice were given a cotton square (Ancare, New York, USA) in their home cage under food-deprived 129 

conditions (water was still provided ad libitum) for 30 minutes during the middle of the light phase. The 130 

cotton was weighed before and after the test to provide a measure of nesting ability based on the 131 

amount of material the mouse had used to nestlet (Deacon, 2006). The grooming behaviour was 132 

recorded (Biobserve, Bonn, Germany) and the number and length of events were quantified by an 133 

investigator blind to the experimental condition. 134 

Statistical analysis of behaviour 135 

Repeated measures ANOVA was used for the comparison of the body weight evolution across the 136 

experimental weeks. Differences were considered significant at P< 0.05. All results are expressed in 137 

mean ± SEM. The statistical analysis was performed using the Statistical Package for Social Science 138 

program SPSS® 12.0 (SPSS Inc, Chicago, USA). 139 

Gene expression 140 

Frontal cortex, striatum and hypothalamus, from SC and CM groups, were dissected upon completion 141 

of an 11-day test battery and total RNAs extracted with Qiagen’s RNeasy mini kit for hybridization with 142 

Agilent’s gene expression arrays (SurePrint G3 Mouse GE 8x60K array v1). 143 

Cyanine-3 (Cy3) labelled cRNA was prepared from 100ng of total RNA using the LowInputQuick Amp 144 

Labelling kit Agilent 5190-2305 according to the manufacturer's instructions, followed by RNAeasy 145 

column purification (QIAGEN, Valencia, CA). Dye incorporation and cRNA yield were checked with 146 

the NanoDrop ND-1000 Spectrophotometer. 147 

After fragmentation, 600 ng of labelled cRNA from each sample was hybridised in in situ hybridisation 148 

oven (Agilent) for 17 h at 65ºC and washed during 1 min at room temperature in Gene Expression 149 

Wash Buffer 1 (Agilent) and 1 min at 37 ºC with Gene Expression Wash buffer 2 (Agilent). 150 

Scanned on an Agilent G2539A scanner at 3 um resolution and 100% PMT. The intensity data of 151 

each individual hybridization were extracted and the quality was assessed with the Feature Extraction 152 



software 10.7 (Agilent). The intensity data of each individual hybridization were extracted and the 153 

quality was assessed with the Feature Extraction software 10.7 (Agilent). 154 

Bioinformatic analysis 155 

Intensity values were imported into R using the limma function read.maimages (Ritchie et al., 2015). 156 

Samples were background corrected and normalised using the normexp normalization: a convolution 157 

of normal and exponential distributions is fitted to the foreground intensities using the background 158 

intensities as a covariate, and the expected signal given the observed foreground becomes the 159 

corrected intensity (Shi et al., 2010). This results in a smooth monotonic transformation of the 160 

background subtracted intensities such that all the corrected intensities are positive. Background has 161 

been computed from the 95% percentile of the intensity of the negative control probes on each array, 162 

keeping probes that are at least 10% higher than the negative controls on at least four arrays 163 

(because there are four biological replicates). Values for within-array replicate probes are replaced 164 

with their average to have a “one value - one gene” matrix. We fitted a linear model by using both 165 

brain areas and diet as covariates, blocking for the mouse for taking into consideration the same 166 

provenance of the three brain regions. The values of the moderated t-statistics were corrected for 167 

multiple-testing using the Benjamini-Hochberg correction (Benjamini and Hochberg, 1995). 168 

Multi-Dimensional Scaling was performed using the limma plotMDS function. The distance between 169 

each pair of samples is the root-mean-square deviation for the top 500 genes (selected for each pair 170 

of samples). Distances on the plot can be interpreted as leading log2-fold-change, meaning the 171 

typical (root-mean-square) log2-fold-change between the samples for the genes that distinguish those 172 

samples (Ritchie et al., 2015). 173 

We used the matplotlib_venn python module and gplots R package (Warnes et al.) for drawing the 174 

overlaps and we assessed the significance of the overlaps with the exact Fisher test. 175 

Probes were converted to entrez identifier by using the biomaRt package (Durinck et al., 2009) and 176 

gene ontology and pathway analysis were performed with the clusterProfiling package (Yu et al., 177 

2012).  178 

Correlation with behavioural data 179 

We correlated each of the gene expression microarray intensities with body weight and the 180 

behavioural data measured in our mice. Since we were interested both in the final body weight and in 181 



its increase, we performed a PCA with these two variables and extracted for each mouse the resulting 182 

values of principal component 1 to combine those variables in a unique measurement (Fig 3-1 C). 183 

Similarly, we combined through PCA six other variables to have a unique measurement of 184 

compulsivity: grooming; nesting; the energy rate from day 1, 2, 3; and from the quinine adulteration 185 

test (Fig 3-1 B-F). The variables within these two sets were correlated with the gene expression 186 

values. After this analysis, we finally selected five parameters to correlate: two set of PC1 values–187 

body weight and compulsivity–and three behavioural measurements inflexibility, energy intake, and 188 

eating rate. We selected for further analyses only the correlating microarray probes changing between 189 

SC and CM mice at least by 10% and whose adjusted p-value upon z-fisher correction was lower than 190 

0.05.  191 

Testing if the gene expression fold changes fitted the TAD segmentation 192 
profile  193 
 194 
We mapped genes with the Entrez identifiers using BiomaRt (Ensembl archive May, 2017) to the TAD 195 

borders as defined in Dixon et al. (Dixon et al., 2012) for cerebral cortex. TADs borders were defined 196 

using a Directionality Index method (Dixon et al., 2012). To test whether there was agreement 197 

between the differential expression profile in the three studied brain regions and the TAD 198 

segmentation we have performed three types of in silico permutation testing (Fig 4-1A). For the tests, 199 

we selected only the genes that were clustered within TADs containing five or more genes. In the first 200 

approach genes were re-assigned to random TADs, however maintaining original gene numbers in 201 

particular TADs and using only the genes, which were within TADs in the original case. Second type 202 

of permutation involved changing borders of TADs by permuting the collection of pairs of: TAD's 203 

length + distance to the next TAD downstream, maintaining the original gene localizations on 204 

chromosomes. Each type of permutations was made 1000 times and each time Kruskal-Wallis test 205 

was performed. Finally, the H-statistics from original data were compared with the averaged values 206 

from the permuted H-statistics as well as compared with the decreasing rank of the permuted H-207 

values. 208 

Selecting regulated TADs 209 

We defined as regulated TADs, the TADs with a significantly higher number of DE or correlating 210 

genes across the three brain areas. Once mapped these genes to TADs, we used the PowerLaw R 211 



Package to check what kind of heavy-tail distribution the number of regulated genes per TAD 212 

approximated. We compared Poisson, Power-law, exponential, and log normal, finally selecting the 213 

log normal to select the TADs whose probability of finding by chance another TAD with a higher 214 

number of regulated genes was lower than 0.05. 215 

Testing if responsive genes are co-regulated within regulated TADs  216 

To test whether the DE and correlating genes contained in regulated TADs clustered according to 217 

their fold change (e.g. up-regulated genes in certain TADs, down-regulated genes in other TADs), we 218 

performed a permutation test. We considered as responsive genes each gene DE or correlating. Our 219 

rationale was that in case of an equal number of upregulated and downregulated genes, if genes 220 

were randomly distributed along TADs, the difference between the number of up-regulated and the 221 

number of downregulated genes had to be on average 0, while if the contrary were true, we would 222 

expect both TADs with a positive difference (more up-regulated genes), and with a negative 223 

difference (more down-regulated genes). Therefore, first we computed the absolute value of the 224 

differences between the number of upregulated and downregulated responsive genes for each TAD, 225 

and then we calculated the average observed deviation per regulated TAD, in each brain region. We 226 

then randomly shuffled 1000 times the responsive genes maintaining the number of genes per TAD 227 

fixed and recalculated the average deviations in each region. The p-value was given by summing how 228 

many times we observed by chance (in the permuted datasets) a higher deviation than what observed 229 

in our data +1, divided by the number of permutation +1. Using only responsive genes for re-230 

assigning genes to regulated TADs, we assured that our results were significantly different than what 231 

expected by chance for a given pattern of fold changes. For instance, if upregulated genes among 232 

responsive were naturally more numerous, we would expect higher deviation from zero even if these 233 

genes were randomly distributed across regulated TADs, and therefore we took into account this 234 

higher probability of re-assigning an up-regulated gene in our permutations. 235 

All the code for the bioinformatic analysis is reported as Supplementary Data 1.  Analyses were 236 

performed with R version 3.5.0 (2018-04-23). Platform: x86_64-apple-darwin15.6.0 (64-bit) .Running 237 

under: macOS High Sierra 10.13.4. 238 



Contact map 239 

Contact-map was created using visualization tool DiffTAD (Zaborowski and Wilczynski, 2016) and the 240 

chromatin contacts data (TAD borders) come from the Hi-C experiment performed by Dixon et al. 241 

(Dixon et al., 2012).  242 

 243 

Data availability 244 

To be added after acceptance to respect double blindness  245 

246 



Results 247 

Free access to chocolate induces overweight and compulsive overeating  248 

To investigate the effect of our experimental design on the brain transcriptome we performed in vivo 249 

experiments and took measuraments from 8 mice given free access to chocolate mixture diet and 250 

standard chow (CM mice; Fig 1A-B) and 8 mice receiving standard chow (SC mice). CM mice 251 

increased their body weight upon chocolate mixture access (repeated measures ANOVA, F1,14 = 252 

19.30; P=0.001), whilst SC mice did not significantly change their weight along the experiment (Fig 253 

1C). There is a slight increase of body weight in both experimental groups during the first weeks, 254 

possibly reflecting the normal growth curve, but after 8 weeks of free chocolate mixture access, body 255 

weight was significantly higher in the CM group only. We also measured behavioral parameters in 256 

order to correlate them with transcriptional changes. The test battery included limited access to the 257 

chocolate, quinine test, nest building test (Fig 1B). Moreover, we monitored in both groups the energy 258 

intake (KJ/Kg), eating rate (mg/s), food intake during limited access and quinine test (g/Kg of body 259 

weight/h), and grams of cotton in the nest building test, and the grooming time (s). We then checked if 260 

these measurements were able to separate SC from CM mice using Principal Component Analysis 261 

(Fig 1D). Interestingly, behavioural variables contributed to the separation of SC and CM mice along 262 

PC1, as much or even more than body weight related variables, suggesting that body weight changes 263 

in CM mice are accompanied by strong behavioural changes. Raw behavioural data are accessible in 264 

Extended Data 1-1. 265 

Transcriptional responses can be clustered by brain region and diet 266 

We performed a microarray experiment to assess the effect of our experimental design on the 267 

transcriptional profile of three brain areas: the frontal cortex, the striatum, and the hypothalamus (4 268 

animals per group). Multidimensional scaling showed that the first leading dimension is mainly 269 

separating the hypothalamus from the frontal cortex and the striatum, indicating that the hypothalamic 270 

transcriptional profile diverges significantly from that of the striatum and frontal cortex, while the 271 

second dimension is further separating the frontal cortex from the striatum, and, less perfectly, SC 272 

from CM mice (Fig 2A).  273 



When assessing the CM-SC contrast with a linear model, we found 662 differentially expressed (DE) 274 

genes upon CM diet in the frontal cortex, 142 in the striatum and 44 in the hypothalamus upon setting 275 

specific threshold of fold-changes and adjusted p-value (Fig 2B-C). Two thirds of the striatal and half 276 

of the hypothalamic DE genes significantly overlapped with frontal cortex DE genes. Instead, we 277 

found no overlap between the striatum–part of the reward system–and the hypothalamus–involved in 278 

homeostatic energy intake. Volcano plots of the overall transcriptomic changes showed that frontal 279 

cortex genes presented the higher absolute fold changes, followed by the striatum, while 280 

hypothalamic genes showed modest fold changes, indicating that weight gain led to a wider and 281 

stronger response (in term of differential expression) in the frontal cortex (Fig 2C). Summary tables for 282 

the differential expression analyses are reported as Extended data 2-1, 2-2, and 2-3. 283 

Most of the genes highly correlating with behavioural variables show subtle 284 

expression changes 285 

To determine which transcriptional changes were correlating with the physical/behavioural alterations, 286 

we tested the correlation of the overall gene expression changes (not only those DE) with the five 287 

parameters that mainly contributed to the observed inter-sample variance (see Methods). These 288 

parameters included both composite measurements: body weight (Fig 3-1A), and compulsivity (Fig 3-289 

1B); and direct measurements: inflexibility (Fig 3-1C), total food intake, and eating rate (Fig 3-1D and 290 

Fig 3-1E). 291 

In each brain region, we identified sets of genes significantly correlating with specific 292 

behavioural/physical variables (Fig 3A). The frontal cortex showed the highest number of genes 293 

correlating with total food intake, body weight and inflexibility and, to a lesser extent, compulsivity and 294 

eating rate. In the hypothalamus, we detected a high number of genes correlating with body weight, 295 

while in the striatum we found a lower number of correlating genes–mostly correlating with inflexibility.  296 

Most of the genes highly correlating with behavioural variables showed subtle expression changes 297 

(average absolute log2FC of about 0.2-0.4; Fig 3B and Fig. 3-2 to Fig 3-6). When plotting the log2FC 298 

as a function of the Spearman “rho”, we observed a high correlation with phenotypic variables for 299 

genes changing less than 1.5 times (rho range: 0.27-0.86), and a low correlation for genes changing 300 

more than 1.5 times (rho range: 0-0.25).  301 



Instead, only few differentially expressed (DE) genes were significantly correlating with behaviour or 302 

body weight, as demonstrated by the low overlaps between DE genes and correlating genes (Fig 3C). 303 

The most relevant overlaps were found between hypothalamic DE genes correlating with body weight 304 

(31%), and frontal cortex DE genes correlating with inflexibility (13.7% of correlating genes). Overall 305 

79% of frontal cortex DE genes, 96% of striatum DE genes, and 66% of hypothalamic genes were not 306 

correlating with any of our studied variables, indicating that DE and correlating genes are two different 307 

categories of regulated genes. 308 

Contrary to DE genes, which were shared across brain regions with quite high overlap (frontal cortex 309 

DE genes with striatal and hypothalamic DE genes), genes correlating with a given phenotypic 310 

variable were not the same across the three brain regions (Fig 3C) with low overlaps both intra- 311 

(among phenotypical variables) and inter- brain region. This suggests the need of activation of both 312 

common and region specific transcriptional programs in each brain area, for each phenotypic change 313 

to occur. Two exceptions were the overlap of genes correlating with total intake and inflexibility in the 314 

frontal cortex (46%) and genes correlating with inflexibility and compulsivity in the striatum (63%, Fig 315 

3C). 316 

Transcriptional changes affect both common and region specific molecular 317 

pathways  318 

We then investigated the molecular pathways (Fig 3-7A for Reactome and 8B for KEGG), and gene 319 

ontologies (Fig 3-7C) enrichment of both DE genes (changing their expression more than 1.5-2 320 

times), and genes significantly correlating with phenotypic variables (mainly showing more modest 321 

log2 FCs of 0.2-0.4) in the three brain areas.  322 

In the hypothalamus DE genes were mainly enriched in Reactome’s “Olfactory Signaling pathways” 323 

(Fig 3-7A), KEGG’s “Olfactory transduction” (Fig 3-7B) and GOs “Olfactory receptor activity” and 324 

“Sensory perception of smell” (Fig 3-7C). Hypothalamic genes correlating with inflexibility were mainly 325 

enriched in the Reactome “Endosomal/Vacuolar pathway”, and the metabolic pathway “Translocation 326 

of GLUT4 to the plasma membrane” (Fig 3-7A) categories and several GOs related to the metabolism 327 

of fatty acids and sugars such as lactonase, hydrolase, mannosidase, and esterase activity (Fig 3-328 

7C). Finally, hypothalamic genes correlating with body weight showed enrichments mainly in 329 

epigenetic/chromatin pathways, indicating they are tightly regulated at the transcriptional level. 330 



Frontal cortex DE genes, similarly to hypothalamic ones, were also enriched in “Olfactory 331 

transduction” and “Taste transduction” pathways (Fig 3-7B), together with “Olfactory receptor activity” 332 

and “Sensory perception of chemical stimulus”. Frontal cortex genes correlating with inflexibility were 333 

similarly enriched in “Olfactory transduction” (Fig 3-7B) and “Olfactory receptor activity” (Fig 3-7C), 334 

consistently with the overlap between inflexibility genes and frontal cortex DE genes (Fig 3C). Finally, 335 

frontal cortex genes correlating with compulsivity were enriched in the immunity pathway “Alpha-336 

defensins” (Fig 3-7A). Taken together, the results indicate that genes belonging to olfactory 337 

transduction related pathways are commonly deregulated in both the hypothalamus and the frontal 338 

cortex, where part of these genes is also highly correlating with inflexibility. 339 

Regarding the striatum, genes correlating with inflexibility and compulsivity shared enriched 340 

categories, as expected by their high overlap of 63% (Fig 3C), suggesting that compulsivity and 341 

inflexibility are connected processes in the striatum, involving pathways such as “Alcoholism” (Fig 3-342 

7B) and chromatin pathways mainly related to gene silencing (Fig 3-7C). Other striatal genes such as 343 

genes correlating with eating rate were enriched in “Glyoxylate and dicarboxylate metabolism” (Fig 3-344 

7B), while genes correlating with body weight with GOs “Mitochondrial membrane” (Fig 3-7C). Finally, 345 

genes correlating with total intake in the striatum were both enriched with nuclear/transcriptional 346 

pathways and immune pathways related with leukocytes (Fig 3-7A and 3-7C). Summary tables for the 347 

enrichment analysis are reported as Extended data 3-1, 3-2, and 3-3. 348 

Gene expression changes are organised within regulatory domains 349 

The analyses above showed that the transcriptional responses involve both commonly regulated and 350 

brain-region specific genes. Recently published  results showed that genes lying within the same 351 

TADs have stronger correlation in expression than genes separated by TAD borders (Ramírez et al., 352 

2018) and that actively expressed open chromatin regions are spatially separated from inactive ones 353 

(Rennie et al., 2018). However, it has not been shown  whether changes in gene expression caused 354 

by a stimulus such as the different diets before the test battery in our experimental design would 355 

conform to the TAD structure as well or would be TAD-independent. Also, it has not been shown that 356 

such changes would occur in the mammalian brain. Therefore, to verify if such regulation could take 357 

place, we tested whether the genes conformed to a common regulatory domain (TAD) structure in 358 

each of the investigated brain areas. To this purpose, we used the segmentation of mouse 359 



chromosomes into 1519 TADs as determined by Dixon et al. (Dixon et al., 2012) based on Hi-C 360 

experiments in cortical tissue (Extended data 4-1). 361 

We compared the distributions of all gene expression fold changes within TADs with the Kruskal-362 

Wallis test. The distributions of fold changes across TADs were significantly different: in all brain 363 

areas the p-values of the Kruskal-Wallis test were lower than 10-37(Fig 4-1A). To assess the 364 

robustness of these significant p-values we performed two different permutation tests. First, we re-365 

assigned in silico genes to TADs, therefore completely changing the published topological 366 

organization (Dixon et al., 2012). This led to a dramatic drop of the H-statistics (for instance in the 367 

hypothalamus from H = 1991, p-val = 6.7E-47 to average H of 1000 permutations = 1157, p-val = 0.5), 368 

indicating that our results were specific for the specific TAD structure in the brain. Secondly, we 369 

applied a subtler permutation where we re-shuffled randomly TAD boundaries while keeping the 370 

original gene positions. As expected, in this case p-values were less severely affected than in the 371 

previous permutation (e.g. for hypothalamus, decrease from H = 1991, p-val = 6.7E-47 to average H-372 

statistics of the 1000 permutations H = 1665, p-val = 2.1E-27) (Fig 4-1A).  373 

We also investigated if the distribution of the rho values for each of our phenotypical variables (body 374 

weight, compulsivity, inflexibility, energy intake and eating rate) agreed with the TADs segmentation 375 

pattern. Again, the distribution of rho values was not random across TADs, indicating that the 376 

correlation values were not uniformly distributed but tended to cluster in agreement with the TAD 377 

structure (e.g. for hypothalamus, eating rate, H = 2514, p-val = 6.23 E-102, as compared to average of 378 

the 1000 permutations: H = 1154, p-val = 0.5) (Fig 4-1B).  379 

Overall, these analyses suggest that both gene expression changes between SC and CM groups and 380 

correlation values between genes and phenotypic variables occur in conformity with the brain TAD 381 

structure. 382 

A high number of TADs were simultaneously co-regulated across the three 383 

brain regions 384 

To determine if TADs were involved in the coordination of region specific transcriptional responses, 385 

we analysed all the TADs containing regulated genes–both DE and correlating–for each brain area. 386 

These TADs overlapped widely across the three brain regions, with 502 TADs shared in at least two-387 

brain regions, and 161 across the three brain regions (Fig 4A). Concordant to its higher and wider 388 



transcriptional response, the frontal cortex contained the highest number of region specific TADs. 389 

However, when looking at the number of genes per TADs, most of the regulated genes were 390 

contained in the same TADs across brain areas. This held true also for the frontal cortex, in which 391 

even though we found a higher number of region specific TADs, most of the regulated genes mapped 392 

to common TADs (Fig 4-2A). 393 

The number of regulated genes per TAD followed a heavy-tailed distribution with hundreds of TADs 394 

containing only one or few regulated genes and a long tail with few TADs highly enriched in regulated 395 

genes (Fig 4B). This tendency was significant, as verified by permutation testing. 396 

Considering the overall area of this distribution of TADs as 1, we named regulated TADs (n=37; bars 397 

on the right of the dashed line in Fig 4B) those in the tail on the right of the graph (cut off for the area 398 

of 0.05). These TADs contained more than 10 genes co-regulated either within a specific brain region 399 

and/or among regions. Interestingly, all regulated TADs contained genes regulated in at least 2 400 

different brain areas, and more than 90% of them contained genes regulated across all the three 401 

studied brain areas (Fig 4C).  402 

In the hypothalamus, genes correlating with body weight were mainly localised in regulated TADs 403 

suggesting that genes in these TADs are needed for body weight regulation (Fig 4D). In the frontal 404 

cortex, regulated TADs showed the highest enrichments in DE genes, and in genes correlating with 405 

inflexibility, body weight, and total intake. In the striatum regulated TADs were also enriched in genes 406 

correlating with inflexibility (Fig 4D).  407 

We detected transcriptional co-regulation both within and across brain regions. Within brain regions, 408 

many regulated TADs contained at the same time genes correlating with different phenotypical 409 

variables (e.g regulated TADs containing compulsivity genes and inflexibility genes in frontal cortex). 410 

Across brain regions, regulated TADs contained genes correlating with phenotypical variables in at 411 

least 2 or 3 brain regions (e.g. inflexibility genes or body weight genes across the three brain regions, 412 

Fig 4E).  413 

Since TADs would provide the epigenetic environment for co-expression of groups of genes, up-414 

regulated and down-regulated genes may cluster separately in certain regulated TADs. In fact, 415 

differences between up- and down-regulated genes per TAD often deviated from zero (Fig 4-2B, left 416 

side). These deviations were higher in frontal cortex with a group of regulated TADs containing mainly 417 

up-regulated genes, and another group containing mainly down-regulated genes. In the 418 



hypothalamus, almost the all regulated TADs contained down-regulated genes while the striatum 419 

showed much lower deviations in the number of up- and down-regulated genes per TAD (Fig 4-2B, 420 

left side). These deviations were significant for the frontal cortex (mean difference per TADs between 421 

the number of up-regulated and down-regulated genes of 3.78, p-value=0.02), and for the 422 

hypothalamus (mean deviation of 2, p-value=0.002), but not for the striatum (mean deviation of 1.14, 423 

p-value=0.7). See Methods for a detailed explanation of the permutation test used. These results 424 

indicate that in both the frontal cortex and the hypothalamus, responsive genes distribute accordingly 425 

to their fold-change along the regulated TADs, showing intra-TAD co-regulation. 426 

Interestingly, over 70% of regulated TADs contained genes up-regulated in the frontal cortex, and 427 

down-regulated in the hypothalamus, supporting the idea that in some cases TADs are regulated 428 

differently depending on the brain area. Each regulated TAD contained genes correlating to different 429 

phenotypical variables or DE genes (Fig 4-2B, right side), suggesting that these functions could be 430 

finely regulated in space and time thanks to the TAD organization. 431 

One example of a TAD containing co-regulated genes is TAD 624 (Fig 4F), with a group of genes 432 

mainly up-regulated in the frontal cortex, mainly down-regulated in the hypothalamus, and with less 433 

evident intra co-regulation in the striatum (clusters of blue or red bars). 434 

435 



 436 
Discussion 437 

 438 

In this work, we were interested in understanding the mechanisms of transcriptional responses 439 

comparing mice receiving two different diet regimes–standard chow versus energy-dense, free choice 440 

diet– in brain regions involved in the homeostatic and hedonic control of feeding behaviour.  441 

The transcriptional profile in the frontal cortex, striatum and hypothalamus was modified consistently 442 

with the transcriptional associated domain (TAD) segmentation pattern. We detected two levels of 443 

transcriptional regulation: a switch-like regulation with differentially expressed (DE) genes changing 444 

over 1.5 fold; and a “fine-tuned” gene regulation, with subtler expression changes, but highly 445 

correlated with body weight gain and behavioural changes. Even though the modulation of many 446 

genes was brain-region specific, mapping of the transcriptional response at the TAD level revealed 447 

many TADs that were responsive (contained DE or correlating genes) in more than one brain area. 448 

Interestingly, the 37 TADs containing the highest number of regulated genes were common across 449 

brain areas. In most cases, genes in a given TAD were up-regulated in one brain area and down-450 

regulated in another, indicating the importance of the TAD structure for achieving both a coordinated 451 

and brain-area specific response. 452 

We conclude that the conserved TAD structure from Dixon et al. (Dixon et al., 2012), participates in 453 

orchestrating gene regulation within and among brain regions controlling energy intake and reward, 454 

probably allowing a coordinated homeostatic and hedonic response.  455 

Different physical and behavioral parameters correlate with transcription, 456 

suggesting a coordinated and specific response across brain areas 457 

Our free-choice paradigm promoted body weight gain and meal pattern and behavioural changes in 458 

mice. In our microarray experiment, the hypothalamus showed a remarkably different transcriptional 459 

response compared to the striatum and the frontal cortex as revealed by multidimensional scaling. 460 

This would support the different role of the hypothalamus, which controls the homeostatic regulation, 461 

from the frontal cortex and the striatum, which control the hedonic regulation of appetite. This first 462 

approach used classical differential gene expression analyses that only consider those gene 463 

expression changes satisfying specific criteria of fold change and within-group variance (Phipson et 464 



al., 2016). However, thanks to our experimental design, we could directly test the correlation of gene 465 

expression with body weight and behavioural measurements. In fact, since we collected the brain 466 

samples six days after the test battery, our observed gene expression profiles might not only be the 467 

result of the diet (SC or CM), but also of the interaction of the chronic effect of the diet regime with the 468 

battery test performed (for example a gene could be differentially expressed when comparing the CM 469 

and the SC groups but only after the two groups undergo the test battery). Of course our experimental 470 

design does not allow to disentangle the respective contribution on gene expression of the diet, the 471 

behavioral battery, or their interaction, but that goes beyond our aim. What we can state is that 472 

whether an interaction between the effects of the diet and the behavioural battery occur or not, in both 473 

cases the observed differences would be triggered by the different diet regimes, since the test battery 474 

is performed in the exact same way for the two groups, and therefore would cancel out when 475 

computing the CM-SC contrast. This original approach revealed genes highly correlated with the 476 

phenotype, that otherwise would have been filtered out for having too subtle absolute differential 477 

expression fold changes and/or too high intra-group variability. To reduce the biases related to single 478 

variables, in the case of variables characterised by multiple types of measurements, we correlated the 479 

first principal component instead of single variables. For example, compulsivity is a complex 480 

behavioural domain that is reflected in increased grooming, impaired nesting behaviour, increased 481 

overeating (energy intake) across days, especially when access to energy dense diet is restricted, 482 

and inflexible behaviour in the quinine adulteration test. We speculate that genes correlating directly 483 

to a given phenotypical variable are responding to our experimental design even if in a subtler way. 484 

Remarkably, the number of correlating genes varied significantly among brain areas in accordance 485 

with their distinct biological role in feeding behaviour regulation. For example, inflexibility correlated 486 

with hundreds of genes in the frontal cortex and the striatum, the brain areas that are mainly 487 

responsible for this behaviour, but not in hypothalamus, whose genes mainly correlated with body 488 

weight. This fits with the hypothalamic role in the homeostatic control of energy intake (Sisley and 489 

Sandoval, 2011).  490 

Given the importance of this finding, we included both DE and correlating genes in our pathway 491 

analysis. Among the most significant pathways we found GO enrichment in “Olfactory signalling 492 

related processes” when analysing DE genes in the frontal cortex and in the hypothalamus, and 493 

genes correlating with inflexibility in frontal cortex. There are more than 1000 olfactory receptor genes 494 



in the mouse genome, that encode G-protein coupled receptor that work as chemical sensors in the 495 

brain (Garcia-Esparcia et al., 2013). Interestingly, among the natural ligands of those olfactory 496 

receptors are fatty acid derivatives (Sartorius et al., 2015) that would be increased by our chocolate 497 

mixture diet. Other categories found consistently enriched are related to the immune response. For 498 

instance, compulsivity genes in frontal cortex were enriched in defensins and total intake genes in the 499 

striatum in leukocyte-related pathways. In line with this, it is known that obesogenic food can also 500 

induce neuroinflammation (Beilharz et al., 2015). 501 

Moreover, according to the role of the striatum in reward and addiction, we found enrichment in the 502 

“Alcoholism” pathway for striatal genes correlating with inflexibility and compulsivity (Volkow et al., 503 

2013). The high overlap between striatal genes correlating with inflexibility and compulsivity suggests 504 

that the processes leading to compulsive and inflexible behaviours are similar in the striatum. In this 505 

region, genes correlating with eating rate were enriched in “Glyoxylate and dicarboxylate metabolism”, 506 

and genes correlating with body weight with “Mitochondrial membrane”. In the hypothalamus, we 507 

found genes involved with inflexibility that were enriched in pathways involved in the metabolism of 508 

glucose and fatty acids. For example, we detected an enrichment for the translocation of the glucose 509 

transporter GLUT4 on the plasma membrane, a pathway normally activated by insulin to allow the 510 

uptake of glucose from the bloodstream (Muretta and Mastick, 2009).  511 

Finally, many categories involved in chromatin, epigenetic and transcriptional regulation were 512 

specifically enriched when looking at genes correlating with body weight in the hypothalamus and 513 

compulsivity and inflexibility in the striatum. This suggests that these processes might be 514 

epigenetically regulated in these brain areas. 515 

TADs orchestrate the brain-area specific response 516 

In our dataset, some groups of genes, such as genes DE in frontal cortex and hypothalamus, genes 517 

correlating with inflexibility in frontal cortex, and genes correlating with compulsivity and inflexibility in 518 

the striatum were highly overlapping and shared biological pathways such as “Olfactory 519 

Transduction”. However, we also detected many region-specific genes, leading to region-specific 520 

pathway enrichments. We wondered how region-specific mechanisms would co-exist with the need to 521 

coordinate different responses both intra- and inter- brain areas.  522 



Therefore, we explored the distribution of regulated genes along the chromosomes to identify 523 

potential regulatory mechanisms leading to the observed expression profiles. We found that both DE 524 

genes and subtly regulated genes correlating with phenotypic and behavioural variables were not 525 

randomly distributed throughout the genome, but organised in genomic clusters, the TADs. The non-526 

random organization of genes along eukaryotic chromosomes is well established and plays a role in 527 

the coordination of gene expression, and thus might have a functional role at the transcriptional stage. 528 

To detect the most relevant genomic regions responsive to our experimental design in brain, we 529 

focused our analysis on the TADs with the highest number of DE genes or genes correlating with 530 

some specific behavioural variables across brain areas (what we named regulated TADs). All 531 

regulated TADs contained genes responsive across brain areas, and correlating with different 532 

phenotypical variables, indicating that they are important for the regional co-regulation in the brain, 533 

and for the coordination of the different responses initiated in our two groups of mice. Consistently 534 

with the homeostatic role of the hypothalamus, we found that the majority of the regulated TADs 535 

containing hypothalamic genes, contained genes correlating with body weight. Similarly, the frontal 536 

cortex or striatum genes contained in regulated TADs were correlated with inflexibility, in agreement 537 

with the role of these brain regions in the hedonic responses to food. 538 

We observed that the DE or correlating genes contained in regulated TADs tended to have 539 

expression changes of the same sign, supporting the idea that TADs provide the epigenetic 540 

environment for co-expression of groups of genes (Tanay and Cavalli, 2013). Interestingly, many 541 

regulated TADs show a different direction of regulation depending on the brain area (the same TAD 542 

could contain for example genes mainly upregulated in one brain area, and mainly downregulated in 543 

another).  544 

The fact that the same TADs contain genes co-regulated within a brain area and regulated in different 545 

directions across brain areas, might be surprising at first, but is consistent with the “epigenetic 546 

plasticity” model, for which a permissive or “plastic” chromatin state activate regulatory programs 547 

(Flavahan et al., 2017). Based on our findings, we could speculate that these regulated TADs are thus 548 

the genome regions of highest epigenetic plasticity. 549 



Conclusions, limitations and future direction 550 

Our results support the hypothesis that the homeostatic and hedonic control of eating behaviour could 551 

be coordinated thanks to TADs inducing a specific and coordinated transcriptional changes both intra- 552 

and inter- brain areas (Fig 5). Of course, we cannot discard that the test battery itself affects the 553 

transcriptional profile; nonetheless the changes should affect similarly the CM group and the SC 554 

group.  555 

Also, we cannot rule out the possibility that our experimental design could affect the TAD structure, 556 

but given the fact that the domain structure is mainly stable (Barutcu et al., 2015), we assumed that 557 

the TAD boundaries remained intact. Expectedly, permuting those borders just slightly increased the 558 

p-values associated with the Kruskal-Wallis test (but statistical significance was preserved). Finally, 559 

brain regions contain different cell types and we observe only the “final” averaged effect. Single-cell 560 

RNA sequencing or separation tagged cell populations could be used to assess which are the main 561 

cell subtype which are responding to the energy-dense diet. Our findings warrant future studies 562 

directly aimed to detect changes in the 3D genome organization upon energy-dense diet.  563 

564 
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 650 
Figures and figure legends 651 

 652 
Fig 1. Free-access to a chocolate mixture leads to body weight gain 653 
(A) Experimental schedule showing the age of mice along the experiment. Note that during the test 654 
battery animals continued receiving the same diet as during the weight gain phase (6 to 15 weeks of 655 
age). (B) Detail of the standardized testing battery used and the days of administration of each test.  656 
(C) Body weight (in g) changes with time in SC (white circles) and CM (grey squares) mice along the 657 
10 weeks of the experiment. (D) Biplot of principal component analysis on SC and CM mice using 658 
bodyweight and eating-related behavioral variables indicated by colored arrows (left panel). Barplot 659 
showing the contribution of the variables to principal component 1 (right panel). Obesity was defined 660
by the variables final body weight and percentage of body weight gain; compulsivity was evaluated by 661 
the CM intake during the 3 days of limited CM access, nest building behavior and grooming; 662 
inflexibility was explained by the amount of CM consumed in the quinine test.  663 
 664 



 665 
Fig 2. Differential expression analysis reveals that different brain areas present different 666 
transcriptional profiles when comparing SC and CM mice 667 
(A) Multidimensional scaling plot with the top 500 most variable inter-group probes. HT, indicates the 668 
hypothalamic region (green dots); ST, the striatum region (red dots); FC the frontal cortex (blue dots); 669
SC mice are represented with light colours; CM mice are coloured in dark colours. (B) Venn diagram 670 
showing the overlap among DE genes used for the enrichment analysis in the three brain areas 671 
(absolute fold-change ≥ 1.5, adjusted p-value < 0.05 for hypothalamus, absolute fold-change ≥ 2 and 672 
adjusted p-value <0.01 for the frontal cortex and the striatum). Colours represent the same brain 673 
areas as in A. Circles’ areas are proportional to the gene counts. (C). Volcano plots for the three brain 674 
areas, on the x-axis log2 (fold changes), on the y-axis the significance (-log10 of the adjusted-p-value). 675 
Blue lines mark fold changes thresholds, red lines significance threshold. Each dot corresponds to a 676 
probe. Significant probes are marked in red. 677 

678 



 679 
Fig 3. A subset of moderately expressed genes highly correlates with phenotypical changes 680 
(A) Bar plot showing the number of genes correlating for each of the phenotypic variables that were detected with a false discovery rate 681 
< 5%. (B) Bar plot showing the average number of genes with an absolute rho higher than 0.9 for a given bin of log2 fold change 682 
(log2FC). The averages were calculated across all brain areas and variables. The majority of correlating genes have log2FC within 0.2 - 683 
0.4 ranges (positive correlation marked in red and negative in blue). (C) Heatmap showing the Szymkiewicz−Simpson overlap 684 
coefficient between differentially expressed genes and genes correlating with eating-related variables. DE: differentially expressed 685 
genes. Brain region acronyms are the same as in Fig 2. Colour code according to the coefficient. Extended information related to the 686 
correlation between transcriptional changes with the physical/behavioural alterations could be found in Fig 3-1;Fig 3-2; Fig 3-3; Fig 3-4; 687 
Fig 3-5; Fig 3-6 and Fig 3-7. 688 
 689 



 690 

 691 
Fig 4. Co-regulation of genes within TADs (A) Venn diagram showing the overlap among TADs containing at least one DE or correlating gene 692 
in the three brain areas. Colours represent the same brain areas as in Fig 2A. Circles’ areas are proportional to the gene counts. DE: differentially 693 
expressed genes. (B) Histogram showing the number of regulated genes per regulated TADs. The dashed red line demarks the 5% area of the 694 
distribution with TADs containing high number of regulated genes. Bars corresponding to these regulated TADs are on the right of the dashed 695 
line. (C) Bar plot showing the Szymkiewicz−Simpson overlap coefficient between regulated TADs with region specific or co-regulated TADs. Brain 696 
region acronyms are the same as in Fig 2. (D) Heatmap showing the Szymkiewicz−Simpson overlap coefficient between regulated TADs and 697 
TADs containing any of the DE or genes correlating with phenotypical variables (rows) in the three examined regions (columns). Brain region 698 
acronyms are the same as in Fig 2. Colour code according to the coefficient (E) For each group of DE or correlating genes we considered the 699 
subset of the 37 TADs on which the respective genes were mapping. The heatmap shows the overlap among those regulated TADs for each DE 700 
gene list, phenotypical variable, and brain region. The color-coded is proportional to the Szymkiewicz−Simpson overlap coefficient, which is also 701 
printed in cyan on the cells. (F) Hi-C map of TAD 624–example of a regulated TAD. TAD 624 is located on the chromosome 7: 109600000 - 702 
113000000 bp. Three heatmaps at the bottom of the TAD represent expression of the genes localised within this TAD. Red colour depicts up- and 703 
blue colour down-regulation of the particular gene. Extended information related to the differential gene expression and correlating genes 704 
conformed within the TADs structure could be found in Fig 4-1 and Fig4-2. 705 
 706 



 707 
Fig 5. TADs orchestrate the transcriptional response both within and across brain areas. 708 
Cartoon depicting the response at the TADs level upon free choice chocolate mixture (CM) diet, in the 709 
nucleus of frontal cortex, striatum, or hypothalamus neurons. Differentially co-regulated TADs is 710 
simplified as a black box, with yellow arrows standing for upregulated genes, and purple ones 711 
downregulated genes. 712 

713 



 714 

Extended data 715 

 716 
 717 
Fig 3-1. Correlation of transcriptional with behavioral analysis 718 
(A) Biplot of principal component analysis on SC and CM mice using body weight variables indicated 719 
by colored arrows (top) showing the clear separation between CM and SC mice. Barplot showing the 720 
contribution of the body weight variables to the principal component 1 (bottom). (B) Biplot of principal 721 
component analysis on SC and CM mice using behavioral variables indicated by colored arrows (top). 722 
Barplot showing the contribution of behavioral variables to the principal component 1 (bottom). C-E 723 
show the individual values of the variables used for gene expression correlation in SC mice (red) and 724 
CM mice (black). Note that eating rate and total intake values were only available for three of the four 725 
individuals used for the transcriptome analysis. (C) Barplot showing the differences in CM energy 726 
intake of SC and CM mice in the quinine adulteration test. (D) Barplot showing the differences in total 727 
energy intake of standard chow and chocolate mixture (CM mice). Data from one of the mice in the 728 
CM group were missing. (E) Barplot showing the differences in eating rate of standard chow (SC 729 
mice) and chocolate mixture (CM mice). 730 
 731 



 732 
Fig 3-2. Genes correlating with inflexibility 733 
(A) Dot plot showing the rho score for inflexibility (x-axis) and the log2FC (y-axis) in frontal cortex. 734 
Each dot is a microarray probe. (B) Barplot showing how many genes with an absolute rho higher 735 
than 0.9 for a given bin of log2 Fold change. (C) Same as in B normalized for the total number of 736 
genes present in a given bin of log2 Fold change. (D, E, F) Same as in A, B and C for striatum. (G, H, 737 
I) Same as in A, B and C for hypothalamus 738 



 739 
Fig3-3 . Genes correlating with compulsivity 740 
(A) Dot plot showing the rho score for compulsivity (x-axis) and the log2FC (y-axis) in frontal cortex. 741 
Each dot is a microarray probe. (B) Barplot showing how many genes with an absolute rho higher 742 
than 0.9 for a given bin of log2 Fold change. (C) Same as in B normalized for the total number of 743 
genes present in a given bin of log2 Fold change. (D, E, F) Same as in A, B and C for striatum. (G, H, 744 
I) Same as in A, B and C for hypothalamus 745 
 746 



 747 
Fig 3-4. Genes correlating with body weight 748 
(A) Dot plot showing the rho score for body weight (x-axis) and the log2FC (y-axis) in frontal cortex. 749 
Each dot is a microarray probe. (B) Barplot showing how many genes with an absolute rho higher 750 
than 0.9 for a given bin of log2 Fold change. (C) Same as in B normalized for the total number of 751 
genes present in a given bin of log2 Fold change. (D, E, F) Same as in A, B and C for striatum. (G, H, 752 
I) Same as in A, B and C for hypothalamus 753 
 754 



 755 
Fig 3-5. Genes correlating with eating rate 756 
(A) Dot plot showing the rho score for eating rate (x-axis) and the log2FC (y-axis) in frontal cortex. 757 
Each dot is a microarray probe. (B) Barplot showing how many genes with an absolute rho higher 758 
than 0.9 for a given bin of log2 Fold change. (C) Same as in B normalized for the total number of 759 
genes present in a given bin of log2 Fold change. (D, E, F) Same in A, B and C for striatum. (G, H, I) 760 
The same in A, B and C for hypothalamus 761 
 762 



 763 
Fig 3-6. Genes correlating with total intake 764 
(A) Dot plot showing the rho score for total intake (x-axis) and the log2FC (y-axis) in frontal cortex. 765 
Each dot is a microarray probe. (B) Barplot showing how many genes with an absolute rho higher 766 
than 0.9 for a given bin of log2 Fold change. (C) Same as in B normalized for the total number of 767 
genes present in a given bin of log2 Fold change. (D, E, F) Same as in A, B and C for striatum. (G, H, 768 
I) Same as in A, B and C for hypothalamus 769 
 770 



 771 
Fig 3-7. DE and correlating genes are enriched in region specific molecular pathways (A) 772 
REACTOME enrichment analysis for DE and correlating genes in the three brain areas. The color-773 
gradient indicates the adjusted p-value for the enrichment. Number in parentheses indicates the 774 
number of identified genes in each category. Dot size corresponds to (gene count for each 775 
group)/(total gene count for each category). In case of overlapping categories, only the most 776 
significant one is shown (see Methods). (B) KEGG enrichment analysis for DE and correlating genes 777 
in the three brain areas. The color-gradient indicates the adjusted p-value for the enrichment. 778 
Numbers in parentheses indicate the number of identified genes in each category. Dot size 779 
corresponds to (gene count for each group)/(total gene count for each category). In case of 780 
overlapping categories, only the most significant one is shown (see Methods). (C) GO enrichment 781 
analysis for DE and correlating genes in the three brain areas. The color-gradient indicates the 782 
adjusted p-value for the enrichment. Numbers in parentheses indicate the number of identified genes 783 
in each category. Dot size corresponds to (gene count for each group)/(total gene count for each 784 
category). In case of overlapping categories, only the most significant one is shown (see Methods). 785 
Only pathways with an FDR < 5% are shown. 786 



 787 
Fig. 4-1. DE and correlating genes conformed within the TADs structure 788 
A) Kruskal-Wallis tests H-statistics illustrating distribution of variance of gene expression fold changes 789 
among TADs (red dots) and the permuted gene expressions in the frontal cortex (FC), hypothalamus 790 
(HT) and striatum (ST). B) Kruskal-Wallis tests H-statistics illustrating distribution of variance of gene 791 
expression fold changes among TADs (red dots) and correlations of gene expressions with 792 
phenotypical variables (other colors) in the frontal cortex (FC), hypothalamus (HT) and striatum (ST).  793 
 794 
 795 



 796 
Fig 4-2. (A). Heatmap showing the percentages of counts of the genes contained in the TADs set 797 
from Fig 4A over the DE gene and phenotypical variables for each brain area. Actual gene numbers 798 
are printed in cyan. (B) Left side. Heatmap where each row corresponds to a regulated TAD, each 799 
column to a brain region. The color code indicates the difference between upregulated and 800 
downregulated genes number (considering only DE and correlating genes), from yellow (more up-801 
regulated genes), to violet (more downregulated genes), passing for white (equal number). Gray 802 
boxes are TADs without any regulated genes for that specific region. Right side. Heatmap where each 803 
column corresponds to DE and correlating genes for each brain region, and each row to a regulated 804 
TADs. The color code indicates the actual number of genes per each TADs in a given category. 805 
 806 
 807 



EXTENDED DATA 808 
 809 
Extended data 1. Zip file containing the R mark Down file with the code to reproduce all the 810 
analyses performed in R. 811 
 812 
Extended data 1-1. Table with the behavioral and physical data collected. 813 
 814 
Extended data 2-1. Differential expression analysis for the frontal cortex. 815 
 816 
Extended data 2-2. Differential expression analysis for the striatum. 817 
 818 
Extended data 2-3. Differential expression analysis for the hypothalamus. 819 
 820 
Extended data 3-1. Results for the REACTOME enrichment analysis. 821 
 822 
Extended data 3-2. Results for the KEGG enrichment analysis. 823 
 824 
Extended data 3-3. Results for the Gene Ontology enrichment analysis. 825 
 826 
Extended data 4-1. Mapping between the probes of the microarray and the TAD analyzed in 827 
our study. Only uniquely mapping probes were considered. 828 












