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Implementing goal-directed foraging decisions 

 of a simpler nervous system in simulation 1 
 2 
 3 
 4 
 5 
Abstract 6 

Economic decisions arise from evaluation of alternative actions in contexts of motivation 7 
and memory. In the predatory sea-slug Pleurobranchaea the economic decisions of foraging are 8 
found to occur by the workings of a simple, affectively controlled homeostat with learning 9 
abilities. Here, the neuronal circuit relations for approach-avoidance choice of Pleurobranchaea 10 
are expressed and tested in the foraging simulation Cyberslug™. Choice is organized around 11 
appetitive state as a moment-to-moment integration of sensation, motivation (satiation/hunger), 12 
and memory. Appetitive state controls a switch for approach vs. avoidance turn responses to 13 
sensation. Sensory stimuli are separately integrated for incentive value into appetitive state, and 14 
for prey location (stimulus place) into mapping motor response. Learning interacts with satiation 15 
to regulate prey choice affectively. The virtual predator realistically reproduces the decisions of 16 
the real one in varying circumstances and satisfies optimal foraging criteria. The basic relations 17 
are open to experimental embellishment toward enhanced neural and behavioral complexity in 18 
simulation, as was the ancestral bilaterian nervous system in evolution. 19 
 20 
  21 
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Significance Statement:  22 
Contemporary artificial intelligence lacks the attributes of natural intelligence, in 23 

particular the abilities to relate information affectively. Accordingly, it is notable that the most 24 
complex animal behaviors serve primitive homeostatic goals, and emerge from the primitive 25 
mechanisms generating motivation and reward learning. Here is shown in simulation the 26 
function of a basic neuronal circuit for cost-benefit decision, derived from studies of a predatory 27 
generalist, the sea-slug Pleurobranchaea, and based on affective integration of information. Its 28 
simplicity may reflect distant ancestral qualities on which complexities in economic, cognitive, 29 
and social behaviors were built. The simulation validates experimental data and provides a basic 30 
module on which complexity in economic, cognitive, and social behaviors could be built.  31 
  32 
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Introduction 33 
Foraging behavior in tracking and consuming resources is a series of economic decisions 34 

guided by stimulus characters predictive of risk and resource value. The basic behavioral choice 35 
is between an approach or avoidance of salient stimuli, a cost-benefit calculation done through 36 
integrating stimulus properties with motivation and memory. However, the natural intelligence 37 
displayed by even the simplest foraging animals has remained to be captured fully in artificial 38 
intelligence constructs in terms of actual neural computations made by real animal foragers.  39 

We undertook to implement and test a model of foraging decision derived from the 40 
neuronal circuitry underlying approach-avoidance decisions in the predatory sea-slug 41 
Pleurobranchaea. The neuronal circuitry of decision has been characterized down to the single-42 
neuron level (Gillette et al., 1982; London and Gillette, 1986; Jing and Gillette, 2000, 2003; 43 
Hirayama and Gillette, 2012; Hirayama et al., 2012; Hirayama et al., 2014). In particular, a key 44 
decision mechanism was found to lie in regulation of the turn motor network by the feeding 45 
network, whose excitation state depends on sensory input, memory, and satiation. Sufficient 46 
excitation in the feeding network converts default avoidance responses to sensory stimuli to 47 
approaching turns (Hirayama and Gillette, 2012). These findings localized motivation, appetitive 48 
state, and control of motor decision to the feeding network. They also account for behavior in 49 
which 1) quite hungry specimens not only orient to and bite at weak appetitive stimuli, but will 50 
also attack moderately noxious stimuli, 2) appetitive thresholds for approaching turns rise 51 
proportionately with satiation, and 3) as satiation increases, the animals avoid increasingly strong 52 
appetitive stimuli (Gillette et al., 2000; Noboa and Gillette 2013). Further, motor choice in 53 
Pleurobranchaea’s learned discrimination of odors paired with unconditioned stimuli is also 54 
mediated at the feeding motor network level (Davis et al., 1980; Mpitsos and Cohan, 1986; 55 
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Noboa and Gillette, 2013). These relations indicate a simple neural model for cost-benefit based 56 
decision in the animal’s foraging (Gillette et al., 2000; Hirayama et al., 2012).   57 

The simulation Cyberslug™ implements the integrated model in an autonomous agent 58 
with behavior designed from neurophysiological and behavioral data.  To our knowledge no 59 
other such empirically driven neuroeconomic simulation has yet been devised. The success and 60 
utility of Cyberslug are supported through its accurate and dynamic reproduction of functional 61 
relations in Pleurobranchaea’s nervous system and behavioral repertory, its ability to maintain 62 
the fitness (here, nutritional state) of a virtual predator through plausible choices of differently 63 
valued prey based on hunger state, sensation, and memory; and its capacity to weigh risk against 64 
resource value to optimize foraging decisions.   65 
 66 
Methods 67 
Software Accessibility 68 
 Cyberslug™ is freely available as extended data online at 69 
https://github.com/Entience/Cyberslug. 70 
 71 
General design of biological relations 72 

Sigmoidal relations are used as constructive approximations to simulate biological 73 
processes that accelerate from small beginnings to saturate at high values. They or their 74 
influential values appear in Equations 3.0, 5.1, 6.0, 7.1, and 7.2 to compute virtual place codes 75 
for sensory stimuli, appetitive stimulus affect, satiation, appetitive state, a behavioral switch 76 
based on appetitive state, and the amplitude of a turning response, respectively. Centers and 77 
asymptotes may be graphed for the interested reader from the values given in the source code.  78 
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Learning 79 
Reward and punishment associations are formed with the prey sensory signatures, 80 

odor_hermi and odor_flab, using the Rescorla-Wagner algorithm for classical conditioning 81 
(Rasmussen et al., 2015): 82 
 83 
 V V  .  (1)             84 

On a given trial the change ΔV in the predictive value of a stimulus V (the amount of 85 
learning) depends on the difference between the value of what actually happens, λ, and what is 86 
expected (or already learned), V. The α term is the salience constant (the attention-getting 87 
capacity) of the conditioned stimulus (CS; ranging from 0 to 1, and set here at 0.5 for both 88 
odor_hermi and odor_flab). The β term is a rate parameter for the associative capacity of the 89 
unconditioned stimulus (US) with the CS (ranging from 0 to 1; here a maximum of 1). The  90 
term is the maximum associative value of the US (set at 1 for odor_hermi and odor_flab). The 91 
Rescorla-Wagner algorithm was selected for its intuitive layout, simplicity, and robustness in a 92 
range of learning applications (Danks, 2003; Rasmussen et al., 2015). It is a useful 93 
approximation of learning from insects to mammals (Miller et al., 1995).  94 
 95 
Sensory transduction and integration 96 

The Cyberslug agent uses bilaterally paired, anterior odor sensors, simplifying the real 97 
animal’s chemotactile oral veil’s function in prey tracking (Yafremava et al., 2007). The sensors 98 
report strengths of the three odors at slightly less than half a body length in front of the agent and 99 
at a roughly 40° angle with respect to its anteroposterior axis. For example, in the case of 100 
betaine, the averaged odor strength is 101 
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 102             103 
 

2
sns betaine left sns betaine rightsns betaine  ,  (2) 104 

 105 
where sns_betaine_left and sns_betaine_right are logarithmic functions of betaine virtual 106 
concentrations at each sensor. The sns_betaine variable integrates into the appetitive stimulus 107 
effect (Eq. 4.2). 108 

The Somatic_Map function transforms sensory input into a virtual place code of the 109 
estimated direction of the strongest odor. It includes a mechanism emphasizing the salience of 110 
the nearest prey, analogous to surround suppression mechanisms underlying attention (Boehler et 111 
al., 2008): when closer to one prey type, sensation of the other is decreased, which reduces 112 
consumption of the aversively learned Flab in the presence of the odor of Hermi. The output of 113 
Somatic_Map is a template for the turn amplitudes of resulting approach-avoidance responses: 114   115 

0 01 1k F k H
sns flab left sns flab right sns hermi left sns hermi rightSomatic Map

e e
  116 

 (3.1) 117 
where 118 

F sns flab sns hermi    119 
(3.2) 120 

and 121 
H sns hermi sns flab  . 122 

(3.3) 123 
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 124 
The Incentive variable (Incentive) integrates sensory information of positive and negative 125 

valences. It represents the incentive potential of a stimulus as modulated by learning and 126 
motivation:                        127 

   128 
Incentive R R   ,          (4.1)           129 

 130 
where R+ and R- represent appetitive and aversive stimulus affects, respectively: 131 
 132 
 133 
 3

1 1 h
h

sns betaineR k V sns hermi
k V sns hermi

    .              (4.2) 134 
 135 
R+ encodes the odor intensity of the primary resource indicator, betaine, in the first term. The 136 
positive association of Hermi odor becomes prominent with learning in the second term, and 137 
betaine values become less prominent. The variable R- represents the learned negative 138 
association of Flab odor. This variable might also encode negative effects of pain pathways, but 139 
in the present formulation it omits explicit pain and simply treats its consequences on aversive 140 
learning. 141 
    142 
                3 fR k V sns flab                                                          (4.3) 143 
 144 
 145 
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Satiation and appetitive state 146 
Hunger state is represented through the function Satiation, which reflects Nutrition in a 147 

sigmoid relation with a lower bound near 0 and an upper asymptote at 1: 148 
 149 
 24 2

1

1 4 Nutrition
Satiation

k e
 ,  (5.1) 150 

 151 
where Nutrition, without prey consumption, decreases recursively with each time step:  152 
 153 
 1 0.0005t t tNutrition Nutrition Nutrition  .                     (5.2) 154 
 155 
When feeding occurs, Nutrition is increased by a value of 0.3. The simulation initializes with 156 
Nutrition set at 0.8. 157 
 Appetitive state (App_State) is a function of Incentive and Satiation. It defines the 158 
thresholds for decisions to approach or avoid given prey items. It parallels expression of 159 
appetitive state in the excitation of Pleurobranchaea’s feeding network (Hirayama and Gillette, 160 
2012). The sigmoidal element increases App_State as Incentive increases, and decreases it as 161 
Satiation increases. As in the real animal, App_State is transiently suppressed during avoidance 162 
turning (Brown, Noboa and Gillette, in preparation). This acts to further bias decision away from 163 
approach during the avoidance turn when some appetitive sensory input is present: 164 
 165 

5 6
10.01 7 ( 1)

1 k Incentive k SatiationApp State k App State Switch
e

,      (6.0) 166 
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 167 
where the expression (App_State_Switch  – 1), defined and discussed later, causes a transient 168 
suppression of App_State during avoidance turns. It may be noted that satiation state is a variable 169 
in both Incentive and App_State, which reflects findings that satiation state is expressed in the 170 
basal excitation state of the feeding network, and that satiation may modulate sensory gain in the 171 
periphery (unpublished). 172 

The Satiation term dominates App_State values at its extreme ranges (0 and 1). Incentive 173 
is significant in the mid-range, as in Pleurobranchaea (Gillette et al., 2000). When Satiation is 174 
either very low or high, it dominates over the Incentive term. When very low, the Cyberslug 175 
agent chooses to consume the previously learned, noxious Flab. When very high, it actively 176 
avoids otherwise appetitive Hermis. These choices reproduce those made by very satiated or 177 
hungry Pleurobranchaea (Gillette et al., 2000; Noboa and Gillette, 2013).    178 
 179 
Turning and locomotion 180 

The function App_State_Switch switches the turn motor network from avoidance to 181 
approach, representing the ASw1,2 actions of Figure 2. It acts like the corollary outputs from 182 
Pleurobranchaea’s feeding network that toggle the turn motor network polarity (Brown, 2014). 183 
The function converges steeply to either 1 or -1 depending on the value of App_State: 184 
 185 
                         186 
 

8 0.245
2 1

1
k App State

App State Switch
e

 ,               (7.1) 187 
 188 
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In particular, when App_State goes below or above a threshold, set here as 0.245, 189 
App_State_Switch approaches 1 or -1, respectively, to govern turn direction. This threshold 190 
might well be a variable influenced by reproductive state, health, or neuromodulatory inputs 191 
from other neuronal networks (cf. Hirayama and Gillette, 2014), but is set as a simple constant 192 
here.  193 
 194 

The turn is computed in degrees as: 195 
 196 

 3
9

1 Somatic Map
k App State SwitchTurn Angle App State Switch

e
 ,           (7.2) 197 

 198 
where positive or negative values of App_State_Switch cause avoidance or approach turns, 199 
respectively. Sufficient excitation in the Feeding Network (when App_State is greater than 200 
0.245) switches the polarity of an elicited turn from avoidance to approaching, while 201 
Somatic_Map determines turn magnitude by supplying somatotopic information on stimulus 202 
location.  203 

When not actively engaged in prey approach or avoidance, the Cyberslug agent pursues a 204 
wandering trajectory, given as 205 
        206 
 1 (2)Turn Angle random float    (7.3) 207 
 208 
The random_float function generates a floating-point number between 0 and 2. In this case it 209 
causes random changes in heading ranging from -1 to 1 degree on each time step.  210 
 211 
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 212 
Results 213 
The core model 214 

Cyberslug is based on neuronal relations of approach-avoidance decision in 215 
Pleurobranchaea’s responses to odors of potential prey (Gillette et al., 2000; Hirayama and 216 
Gillette, 2012). Figure 1 shows the flow of information, from initial feature extraction of 217 
different sensory inputs to their evaluation in terms of estimated total resource value (Incentive), 218 
based on nutritional need and memory; these processes then direct motor output for approach or 219 
avoidance turns. Figure 2 shows the logic of the model’s implementation into Cyberslug. The 220 
relations are represented in simple equations that drive the agent. Values of the constants (Kn) in 221 
the equations were optimized over numerous trials and are found in the NetLogo code available 222 
as extended data. Altering the values in the code may lend appreciation for the role of natural 223 
selection in adaptively tuning neural circuitry.  224 
 225 

Foraging decision is controlled by appetitive state. The animal’s feeding motor network 226 
is at the core of the decision module. Its excitation state directs choice between approach and 227 
avoidance turns (Hirayama and Gillette, 2012). The excitation state manifests the appetitive state 228 
of the animal; i.e., the disposition to engage in goal-directed appetitive behavior. Appetitive state 229 
integrates the animal’s satiation state, sensation, and memory of experience (Davis and Gillette, 230 
1978; Davis et al., 1980; London and Gillette, 1986; Gillette et al., 2000; Hirayama and Gillette, 231 
2012). Satiation determines the baseline excitation state of the feeding network. Incoming 232 
sensory inputs are integrated with memory into incentive. Incentive sums with satiation in the 233 
feeding network, either increasing or decreasing appetitive state.  234 
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By default, when appetitive state is low, the animal’s nervous system is organized so that 235 
the turn response to any sensory stimulus is avoidance. During the aversive turn appetitive state 236 
is decreased by inhibitory inputs in the feeding network [Davis and Gillette, 1978; London and 237 
Gillette, 1986; Hirayama and Gillette, 2012; Brown, 2014). Increasing appetitive state inverts the 238 
turn response direction to one of approach. Thus, appetitive state determines the sensory 239 
thresholds for the approach turn toward a prey and subsequent feeding responses. When high 240 
enough, corollary outputs from the feeding network appear to switch the excitatory sensory 241 
input-encoding stimulus site from one side of the turn network to the other, resulting in a turn 242 
towards the stimulus (Brown, 2014).  243 

Sensory inputs here are of four kinds: 1) a resource odor signal predicting nutritional 244 
content to Pleurobranchaea, the amino acid betaine (Gillette et al., 2000); 2) a specific odor 245 
signature for a particular prey species (Noboa and Gillette, 2013); 3) a place code for the 246 
averaged site of sensory input to the sensors Yafremava et al., 2007; (Yafremava and Gillette, 247 
2011); and 4) nociception (pain). (1) and (2) are summed as Incentive for resource and learned 248 
positive and negative values of prey odors (R+ and R-, respectively), which is then integrated 249 
with motivation (Satiation) as Appetitive State in the Feeding Network. The Somatic Map 250 
variable embeds (3) as a template for turn response amplitude. Positive or negative classical 251 
learning are assumed consequences of feedback from the feeding network operating in feeding or 252 
avoidance modes, respectively.  253 

The Cyberslug simulation preserves the basic interactions of feeding and turn networks in 254 
the control of the turn by appetitive state and aversive suppression of the feeding network. 255 
Simplifications include: 1) for learning, explicit pain mechanisms are omitted in favor of 256 
arbitrary consequences; 2) exploratory locomotion is the default action in absence of active 257 
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avoidance or approach; and 3) the switch mechanism for turn direction is rendered as a sigmoidal 258 
equation.  259 
 260 
Cyberslug environment 261 

Cyberslug is implemented in the graphic modeling, agent-based programming language 262 
NetLogo 5.3.1. (Wilensky, 1999). Agent actions and odor diffusion are executed in discrete 263 time steps by underlying code, where agents run commands in a turn-taking mechanism to 264 simulate concurrence. At each time step the agent positions, orientations, speeds, and odor 265 
intensities in individual patches are updated with the variables that control them.  266 

The interface screen (Fig. 3) displays current values of agent-associated variables and 267 
statistics. Users may override automatic agent navigation by manually controlling these agents 268 
with the mouse, specify the number of prey objects in the environment, and switch on or off a 269 
function that traces the agent’s path. When the simulation is initialized, a single Cyberslug agent 270 
and the different prey are generated at random positions in the environment. 271 
 272 
Prey  273 

The Cyberslug agent encounters two virtual prey, “Hermi” and “Flab”, after the sea-slugs 274 
Hermissenda crassicornis and Flabellina iodinea which Pleurobranchaea can encounter in the 275 
wild (Noboa and Gillette, 2013). These are shown as small orbs, colored green for Hermi and red 276 
for Flab. Each prey secretes two odors: the resource signal betaine, a predictor of nutritional 277 
resource (Gillette et al., 2000), and either of “odor_hermi” or “odor_flab.” Odors diffuse over 278 
time and space as for actual diffusion. Prey move in a simple random walk. Prey numbers remain 279 
constant; when consumed, replacements appear at random positions. 280 
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The specific odors of Hermi and Flab become associated with preference and avoidance, 281 
respectively, through reward learning. These effects are analogous to the ready consumption of 282 
Hermissenda by Pleurobranchaea, and the rejection and aversive learning of Flabellina (Noboa 283 
and Gillette, 2013). A Batesian mimic, “Faux-Flab”, is included as an option. In Nature, Batesian 284 
mimics receive protection from predation by mimicking appearance or odor of noxious species, 285 
and by their presence may increase attempted predation on the noxious species. Thus, Faux-Flab 286 
has the odor of Flab and the positive rewarding qualities of Hermi. The mimic is included for the 287 
user to test its effects on predator choices. 288 

 289 
The Cyberslug agent 290 

Reward and punishment associations are formed with the prey sensory signatures using 291 
the Rescorla-Wagner algorithm for classical conditioning (Rescorla and Wagner, 1972), allowing 292 
the predator to learn through experience. Bilaterally paired, anterior odor sensors simplify the 293 
real animal’s chemotactile oral veil’s function in prey tracking (Yafremava and Gillette, 2011) to 294 
report the strengths of odors for betaine, a predictor of nutritional value, and the prey signature 295 
odors for Hermissenda and Flabellina. The sensors also transform sensory input into a virtual 296 
place code, giving the estimated direction of the source of the strongest odor, on which motor 297 
response is patterned. The incentive of an odor is calculated as summed positive and negative 298 
valences, which are determined by the intrinsic appetitive nature (for betaine) and learning 299 
experiences for the signature odors.  300 

Appetitive state is the final regulator of behavioral choice. It summates incentive with 301 
satiation, and thus integrates sensory stimulus qualities with learning and motivation. Satiation is 302 
a simple function of nutritional state, which declines over time following prey consumption. 303 
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Satiation dominates appetitive state at its extreme ranges (quite hungry or not); whereas stimulus 304 
incentive is significant in the mid-range. At a threshold value, appetitive state causes a 305 
directional switch between approach or avoidance in the turn response to an odor. The choices 306 
made reproduce those seen across the spectra of learning and hunger state by Pleurobranchaea 307 
(Gillette et al., 2000; Noboa and Gillette, 2013).  308 
 309 
Testing the simulation 310 

Cyberslug was tested for prey selectivity as modified by learning, motivational state, and 311 
their interactions. Four sets of six tests were run under conditions assessing effects of learning 312 
and satiation mechanisms on prey selection. Effects of satiation and learning on selectivity were 313 
tested in arenas containing 1) 10 Flabs and 3 Hermis, 2) 13 Flabs alone, and 3) 13 Hermis alone. 314 
Tests ran for 150,000 software time steps.  315 

Results in Figure 4 show that in the 10 Flab/3 Hermi arena satiation acted to limit the 316 
numbers of prey consumed between the two satiation and two no-satiation scenarios), while 317 
enhancement of prey selectivity depended on learning and satiation acting together. Thus, in tests 318 
where both learning and satiation mechanisms were inactivated, average total prey taken was 701 319 
(SEM 6.22), of which 21.2% (SEM 0.6%) were Hermis, slightly less than their 23.1% frequency 320 
in the population. This yielded a selectivity value (total Hermis taken/total Flabs taken) of 0.27 321 
(SEM 0.01), less than the 0.30 ratio of Hermis to Flabs in the population. This effect appeared 322 
due to a greater frequency of random clustering in the denser Flab population, leading to more 323 
frequent multiple consumptions of Flabs than Hermis. When learning was activated without 324 
satiation, average total prey taken was still high at 707.8 (SEM 5.5), of which 21.2% (SEM 325 
0.6%) again were Hermis with still a low selectivity of 0.27 (SEM 0.01). Without learning, 326 
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satiation alone reduced average prey consumed to 119 (SEM 0.52) with 24.1% (SEM 1.2%) 327 
Hermi, and with low selectivity of 0.32 (SEM 0.02). 328 

 329 
Acting together, learning and satiation mechanisms led to an averaged total of 91.7 (1.43 330 

SEM) prey taken, where 82.5% (SEM 1.5%) were Hermi. The selectivity coefficient of 4.96 (0.6 331 
SEM) was a more than 18-fold increase over the values obtained without learning and/or 332 
satiation.   333 

When tests were made in a field of 13 Flabs alone, with both learning and satiation intact, 334 
the averaged total prey taken was 53.3 (0.33 SEM). This low but nontrivial value reflected 335 
decisions to take noxious prey in a condition of extreme hunger, and also demonstrated 336 
combined effects of learning and satiation in reducing consumption of noxious prey (not shown). 337 
When similar runs were made in a field of 13 Hermis alone, the averaged total prey taken was 338 
143.5 (0.81 SEM). The contrast of this value with the all Flab condition highlighted effects of 339 
positive vs. negative learning in prey selection, as well as effects of satiation in limiting 340 
consumption. There were significant differences in number of prey consumed across all three 341 
arenas (p < 0.0001 in a one-way ANOVA; Tukey-Kramer, p < 0.001, between all three pairs). 342 
 343 
 344 
Discussion 345 

The Cyberslug autonomous entity bases behavioral choice and perception on interactions 346 
of motivational state and learning, like the real animal. The algorithmic integration of sensation, 347 
motivational state, and memory reproduces adaptive action selection in behavioral choice. At 348 
intermediate values of satiation, the experienced Cyberslug agent selectively prefers or avoids 349 
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the cues of benign or noxious prey, respectively. Otherwise, at lower levels of satiation (greater 350 
hunger) the predator is attracted to and consumes previously learned noxious prey. Accordingly, 351 
to forestall starvation it is economically realistic and in agreement with optimal foraging models 352 
for selectivity to decline with decreasing satiation (Houston and McNamara, 1985). At higher 353 
satiation it actively avoids even the stronger appetitive signals. In these behaviors the simulation 354 
agrees with the classic, inverted U-shaped function relating arousal state to performance (Hebb, 355 
1955), and reproduces major behavioral aspects of the real predator (Gillette et al, 2000; Noboa 356 
and Gillette, 2013).  357 

The individual contributions of satiation and learning are naturally significant. However, 358 
the importance of their interactions in prey choice is well illustrated (Fig. 4). Without either one 359 
of satiation and learning, the unrestrained virtual predator takes in great quantities of either prey. 360 
This can be maladaptive to a real predator, where taking more high-quality prey than safely 361 
handled by digestion is physiologically threatening. Satiation limits the number of prey taken, 362 
but without learning noxious prey species are taken indiscriminately. Learning prey values 363 
promotes specific exploitation of the benign species and reduces attempts on the noxious species 364 
to periods of near-starvation, when a potential small benefit could be important to survival. 365 

In Cyberslug, as in Pleurobranchaea, appetitive state is the continuous integration of 366 
sensation, internal state, and memory, and it sets the thresholds for expressing goal-directed 367 
behavior. Cyberslug summates the variables as appetitive state in the core Equation 6 to yield 368 
output that can switch avoidance responses to approach. Sensory integration in the model 369 
accomplishes two critical actions: evaluating the sensory stimuli as Incentive, and providing a 370 
spatial map of stimulus location. Thus, Incentive sums the primary odor nutritional signal 371 
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(betaine) with positive and negative qualities learned from previous encounters with the initially 372 
neutral, specific odor signatures of its prey (Eq. 4.1).  373 

In the absence of incentive input to the feeding network, appetitive state is solely 374 
dependent on the motivational variable satiation. However, with incentivized sensory input 375 
appetitive state becomes equivalent to “incentive salience” as defined in rodents and primates 376 
(Berridge and Robinson, 2016), where goal-oriented desire becomes tightly linked to reward 377 
cues and is critical to establishing preferences. The fuller concept of “motivational salience” 378 
regulating the attraction or aversion to objects in mammals (Puglisi-Allegra and Ventura, 2016) 379 
emerges in the present model with regulation of the approach-avoidance switch by appetitive 380 
state. Thus the model illustrates how the salience of a stimulus may interact with motivational 381 
state and learning to determine its attractiveness or aversiveness.  382 

Stimulus mapping is analogous to that done in the peripheral nervous system of the 383 
animal’s oral veil (Yafremava and Gillette, 2011): a virtual place code represents the averaged 384 
location of an odor stimulus as Somatic_Map, and incorporates an analog of lateral inhibition as 385 
seen in the animal (Eq. 3.1). This provides a template to map the motor output of the turn angle 386 
response, much like functions of superior colliculus and cortex in vertebrates. 387 

Cyberslug implements essential elements of an affectively controlled, primitive type of 388 
immediate (or “anoetic”, unknowing) consciousness (Tulving, 1985) whose experience is largely 389 
a moment-to-moment event. It is a rudimentary form postulated as an evolutionary precursor to 390 
higher conscious functions of self-awareness in contexts of semantic and episodic memory 391 
(Tulving, 1985; Denton, 1999; Vandekerckhove and Panksepp, 2011; Vandekerckhove et al., 392 
2014). In more complex animals, the simple immediate consciousness persists in the subpallial 393 
mechanisms that generate motivation and reward to drive homeostatic behavior, and which 394 
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thereby sustain and direct the higher cognitive functions (Vandekerckhove and Panksepp, 2011). 395 
The rules governing choice in Pleurobranchaea and Cyberslug may resemble a core type of 396 
decision module present in ancestors of the major bilaterian lineages, before the evolution of the 397 
complex brains and behaviors that accompanied segmentation, articulated skeletons, and greater 398 
behavioral involvement in reproduction (Gillette and Brown, 2015). In the vertebrates, control of 399 
approach-avoidance decision is a basic function of the basal ganglia and hypothalamus. In 400 
arthropod nervous systems, these functions are performed by antennal lobes and mushroom 401 
bodies, which may conserve homologous structures as well as analogous functions (Strausfeld 402 
and Hirth, 2013). The feeding network in Pleurobranchaea combines functions of vertebrate 403 
hypothalamus and basal ganglia for motivation, incentive comparison, and selection of motor 404 
actions. The more complicated and modularized circuitries in vertebrates and arthropods reflect 405 
more complex bodies and lifestyles, but their brains were likely built onto a basic structure as 406 
shown here.  407 

Little previous evidence has been found for empirically driven neuroeconomic 408 
simulations such as this one. However, it is notable that the innovative 1996 videogame 409 
Creatures used a bottom-up approach to AI character development, combining basic concepts of 410 
motivation and drive with Hebbian-like learning mechanisms in large artificial neural networks 411 
to achieve interesting behavior. This simulation is designed for transparency and interactiveness. 412 
Users may discover diverse, and perhaps unexpected, emergent properties for forager decision 413 
and prey vulnerability by altering their densities, particularly with the Batesian mimic, and by 414 
altering properties in the code. 415 
 The simple relations on which Cyberslug runs are readily adaptable to faster-executing 416 
computer languages, fine graphics, artificial neural networks, and neuromorphic representations. 417 
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The present simple presentation of Cyberslug’s behavior in real-time is intended to offer ready 418 
accessibility to a broad audience. The core decision module is open to practical improvements in 419 
learning algorithms, including addition of mechanisms for behavioral habituation and 420 
sensitization. More potential is present; for instance, the model embodies an essential character 421 
of the addictive process in incentivization, and might with little modification reproduce the 422 
sequelae of addiction, withdrawal, and cravings. 423 
 The homeostatic circuit relations underlying hunger drive in Cyberslug and 424 
Pleurobranchaea are adaptable to acquiring other resource types, such as hydration, salt balance, 425 
shelter, play, and social interactions, to name a notable few common to vertebrates. Truly 426 
intelligent and sentient virtual entities, defined in terms of empathic communication and abstract 427 
thought, may not yet exist because they lack the constellation of autonomy, motivation, 428 
valuation, emotion, and social awareness (cf. also Minsky, 2006). Of these, Cyberslug supplies 429 
essential aspects of autonomy, biologically based motivation, and valence assignment. It is 430 
reasonable that cognitive and social features might be added in simple piecemeal fashion 431 
following an evolutionarily plausible course, guided by comparative reference to invertebrate 432 
and vertebrate species that vary incrementally in their cognitive and social expressions with 433 
complexity of lifestyle. Of necessity in evolution, most valuation and decision processes in the 434 
economies of complex social animals would have been elaborated onto pre-existing, simpler 435 
decision modules for homeostasis, like those of Pleurobranchaea and other simple invertebrate 436 
foragers. The present relations are similarly open to embellishment in simulation.    437 
 438 
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 512 
Figure Legends: 513 
Fig. 1. Approach-avoidance modeling in Pleurobranchaea. Appetitive State (excitation of the 514 
feeding network) summates intrinsic and learned stimulus values (Incentive) with satiety to 515 
regulate turn response direction. In parallel, a somatotopic map of a stimulus in the animal’s oral 516 
veil sets the turn trajectory. Incentive sums sensory inputs predicting intrinsic nutritional value 517 
(Resource Signal) and the learned positive and negative values of prey odor signatures (R+ and 518 
R-). The positive or negative consequences of attacking the different prey are learned through 519 
instructive feedback from the Feeding Network. In the absence of Incentive, basal Appetitive 520 
state simply represents the animal’s satiation state (a negative feedback from prey capture). At 521 
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some threshold, Feeding Network outputs change the turn motor response to a stimulus from 522 
default avoidance to an approach turn. A sensory place code (Somatic Map) for stimuli provides 523 
a template for turn response amplitude in both approach and avoidance. Negative feedback to the 524 
Feeding Network from the Turn Network during avoidance transiently suppresses feeding, while 525 
Feeding Network activity is reduced as Satiation increases. The model is modified from refs. 7 526 
and 8. 527 
 528 
Fig. 2. Logical flow in the Cyberslug model. Sensory inputs (SNS) for resource signal odor 529 
(Bet) and learned values of prey odor signatures (Flab and Hermi) are integrated into Incentive 530 
and summate with Satiation in appetitive state (App_State). Sensory somatotopic place 531 
information is encoded in Somatic Map, which acts as a template for the turn response 532 
amplitude. The turn motor network (TN) responds by default to sensory input with an avoidance 533 
turn response unless input from App_State is high enough to switch the turn to approach; this is 534 
mediated directly by a simple dyadic disinhibitory switch (ASw1,2). Successful predation 535 
increases satiation which in return reduces App_State. 536 
 537 
Fig. 3. Screenshots of the Cyberslug environment and interface. Frames are shown from 538 
early (upper) and later (lower) in a software run. The Cyberslug agent (orange) encounters Hermi 539 
(green orbs) and Flab (red orbs) in its environment and traces its path (orange contours). Users 540 
can select the number of prey in the environment, move Cyberslug manually, or toggle the path 541 
tracer. Various Cyberslug and environmental parameters are updated in real-time, as shown. In 542 
the early frame the Cyberslug is orienting toward prey (App_State = 0.545, high; 543 
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App_State_Switch = -1), and in the later frame it is in aversive mode (App_State = 0.029, low; 544 
App_State_Switch = +1). 545 
 546 
Fig. 4. Effects of learning and satiation, and their interactions, on prey selectivity and total 547 
prey consumed. Without either mechanism for learning or satiation, selectivity was low and 548 
prey were consumed as encountered in the 10 Flab/3 Hermi arena. Adding learning mechanisms 549 
did not alter either selectivity or number of prey consumed. When satiation was present without 550 
learning, prey consumed dropped but selectivity was unchanged. When both learning and 551 
satiation mechanisms operated, selectivity was high and total prey consumed dropped to even 552 
lower values (One-way ANOVA across the four behavioral scenarios, p < 0.0001.  *** p < 0.001 553 
relative to all other learning/satiation scenarios (Tukey-Kramer, n=6 trials in each)). Differences 554 
in selectively between the first three learning/satiation scenarios, or in prey consumption where 555 
satiation was inactivated, were not significant (p > 0.05) Error bars are standard errors of the 556 
mean. See text for further explanation. 557 
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