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Abstract 24 

Behaviorally, it is well-established that human observers integrate signals near-optimally 25 

weighted in proportion to their reliabilities as predicted by maximum likelihood estimation. Yet, 26 

despite abundant behavioral evidence, it is unclear how the human brain accomplishes this feat. 27 

In a spatial ventriloquist paradigm, participants were presented with auditory, visual and 28 

audiovisual signals and reported the location of the auditory or the visual signal. Combining 29 

psychophysics, multivariate fMRI decoding and models of maximum likelihood estimation 30 

(MLE), we characterized the computational operations underlying audiovisual integration at 31 

distinct cortical levels. We estimated observers’ behavioral weights by fitting psychometric 32 

functions to participants’ localization responses. Likewise, we estimated the neural weights by 33 

fitting ‘neurometric’ functions to spatial locations decoded from regional fMRI activation 34 

patterns. Our results demonstrate that low-level auditory and visual areas encode predominantly 35 

the spatial location of the signal component of a region’s preferred auditory (resp. visual) 36 

modality. By contrast, intraparietal sulcus forms spatial representations by integrating auditory 37 

and visual signals weighted by their reliabilities. Critically, the neural and behavioral weights 38 

and the variance of the spatial representations depended not only on the sensory reliabilities as 39 

predicted by the MLE model but also on participants’ modality-specific attention and report (i.e., 40 

visual vs. auditory). These results suggest that audiovisual integration is not exclusively 41 

determined by bottom-up sensory reliabilities. Instead, modality-specific attention and report can 42 

flexibly modulate how intraparietal sulcus integrates sensory signals into spatial representations 43 

to guide behavioral responses (e.g., localization and orienting). 44 

 45 

 46 
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Significance statement 47 

To obtain an accurate representation of the environment, the brain should integrate noisy sensory 48 

signals by weighting them in proportion to their relative reliabilities. This strategy is optimal by 49 

providing the most reliable, i.e., least variable percept. The extent to which the brain top-down 50 

controls the sensory weights in the integration process remains controversial. The current study 51 

shows that the parietal cortex weighs audiovisual signals by their reliabilities. Yet, the sensory 52 

weights and the variance of the multisensory representations were also influenced by modality-53 

specific attention and report. These results suggest that audiovisual integration can be flexibly 54 

modulated by top-down control. 55 

  56 
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Introduction 57 

In our natural environment our senses are continuously exposed to noisy sensory signals that 58 

provide uncertain information about the world. To construct a veridical representation of the 59 

environment, the brain is challenged to integrate sensory signals if they pertain to common 60 

events. Numerous psychophysics studies have demonstrated that human observers combine 61 

signals within and across the senses by weighting them in proportion to their reliabilities with 62 

greater weights assigned to the more reliable signal (i.e., the inverse of a signal’s variance) 63 

(Jacobs, 1999; Ernst and Banks, 2002; Knill and Saunders, 2003; Alais and Burr, 2004). If two 64 

signals provide redundant information about the same event (i.e., common-source assumption), 65 

this reliability-weighted multisensory integration provides the most precise, i.e., statistically 66 

optimal, perceptual estimate (i.e., maximum likelihood estimate, MLE) leading to better 67 

performance on a range of tasks such as depth (Ban et al., 2012), shape (Ernst and Banks, 2002), 68 

motion (Fetsch et al., 2012) or spatial (Alais and Burr, 2004) discrimination. However, 69 

reliability-weighted integration is statistically optimal only for the special case where a single 70 

cause elicited the signals, i.e., the common-source assumptions are met. In our natural 71 

environment, two signals can arise either from common or separate sources leading to some 72 

uncertainty about the causal structure underlying the sensory signals. Mandatory integration of 73 

sensory signals would in many instances effectively misattribute information (Roach et al., 74 

2006). In this more natural context, the observer has to infer the causal structure from sensory 75 

correspondences such as spatial co-location (Wallace et al., 2004) or temporal correlation (Parise 76 

and Ernst, 2016). The observer should then integrate signals in case of a common cause, but 77 

segregate them in case of independent causes (Kording et al., 2007). In other words, reliability-78 
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weighted integration is no longer statistically optimal in more general situations where the causal 79 

structure of the sensory signals is unknown or the assumption of a common source is violated. 80 

Despite abundant behavioral evidence for near-optimal reliability-weighted integration 81 

under experimental conditions which foster the assumption of a common signal cause, the 82 

underlying neural mechanisms remain unexplored in the human brain for multisensory signals. 83 

For cue combination within a single sensory modality, higher-order visual regions have recently 84 

been implicated in reliability-weighted integration of visual-depth cues (Ban et al., 2012). Only 85 

recently, elegant neurophysiological studies in non-human primates have started to characterize 86 

the neural mechanisms of visual-vestibular integration for heading discrimination. They 87 

demonstrated that single neurons (Morgan et al., 2008) and neuronal populations (Fetsch et al., 88 

2012) in the dorsal medial superior temporal area (dMST) integrated visual and vestibular 89 

motion near-optimally weighted by their reliabilities. Moreover, the neural weights derived from 90 

neural population responses in dMST corresponded closely to the weights governing monkey’s 91 

behavioral choices.  92 

Over the past decade, accumulating evidence has shown that multisensory integration is 93 

not deferred until later processing stages in higher-order association cortices (Beauchamp et al., 94 

2004; Sadaghiani et al., 2009), but starts already at the primary cortical level (Foxe et al., 2000; 95 

Ghazanfar and Schroeder, 2006; Kayser et al., 2007; Lakatos et al., 2007; Lewis and Noppeney, 96 

2010; Werner and Noppeney, 2010; Lee and Noppeney, 2014). Previous functional imaging 97 

research indicated in a qualitative fashion that sensory reliability modulates regional BOLD 98 

responses (Helbig et al., 2012), functional connection strengths (Nath and Beauchamp, 2011) or 99 

activation patterns (Ban et al., 2012; Rohe and Noppeney, 2016). For instance, during speech 100 

recognition the superior temporal sulcus coupled more strongly with the auditory cortex when 101 
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auditory reliability was high but with visual cortex when visual reliability was high (Nath and 102 

Beauchamp, 2011). Likewise, using fMRI multivariate pattern decoding a recent study showed 103 

that parietal cortices integrated spatial signals depending on their spatial disparity and sensory 104 

reliability (Rohe and Noppeney, 2016). However, to our knowledge no previous study has 105 

evaluated whether multisensory integration in the human brain follows the quantitative 106 

predictions of the MLE model.  107 

Computational models of probabilistic population coding (Ma et al., 2006) suggest that 108 

reliability-weighted integration may be obtained by averaging the inputs with fixed weights from 109 

upstream populations of neurons that encode the reliability of the sensory input in terms of the 110 

sensory gain. By contrast, the recently proposed normalization model of multisensory integration 111 

(Ohshiro et al., 2011, 2017) suggests that normalization over a pool of neurons as a canonical 112 

computational operation can implement multisensory integration with weights that flexibly 113 

adjust to the reliability of the sensory inputs. Critically, in both models reliability-weighted 114 

integration depends on a region to have access to inputs from upstream regions that are 115 

responsive to auditory and visual inputs. While accumulating evidence suggests that 116 

multisensory integration starts already at the primary cortical level (Foxe et al., 2000; Bonath et 117 

al., 2007; Kayser et al., 2007; Lakatos et al., 2007; Lewis and Noppeney, 2010; Werner and 118 

Noppeney, 2010; Bonath et al., 2014; Lee and Noppeney, 2014), the fraction of multisensory 119 

neurons that are influenced by inputs from multiple sensory modalities increases across the 120 

cortical hierarchy (Bizley et al., 2007; Dahl et al., 2009). Thus, even if low-level sensory areas 121 

are susceptible to limited influence from other sensory modalities, this activity may be less 122 

informative (i.e., more unreliable) than that of the preferred sensory modality. As a result, 123 
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reliability-weighted integration via normalization may be more prominent in higher-order 124 

association cortices than in low-level sensory areas.     125 

Besides the assumption of a common signal cause, a second assumption of the classical 126 

MLE model is that the sensory weights and the variance reduction obtained from multisensory 127 

integration depend solely on the bottom-up reliabilities of the sensory inputs irrespective of 128 

cognitive influences (i.e., the unisensory reliabilities are not influenced by observers’ attentional 129 

focus, e.g. selective vs. divided attention). In line with this conjecture, initial psychophysics 130 

studies suggested that the sensory weights are immune to attentional influences (Helbig and 131 

Ernst, 2008). Yet, more recent psychophysics studies have demonstrated that the sensory weights 132 

are modulated by attentional top-down effects (Vercillo and Gori, 2015). Moreover, EEG and 133 

fMRI studies revealed profound attentional effects on the neural processes underlying 134 

multisensory integration (Talsma et al., 2010; Donohue et al., 2011). The controversial results 135 

raise the questions whether the task-relevance of sensory signals influences reliability-weighted 136 

integration at the neural level even if the signals’ small disparity suggests a common cause.  137 

The present study combined psychophysics and fMRI multivariate decoding to 138 

characterize the neural processes underlying multisensory integration in a quantitative fashion 139 

and to investigate potential top-down effects of modality-specific report and associated 140 

attentional effects. We presented participants with auditory, visual and audiovisual signals that 141 

were spatially congruent or in a small spatial conflict. On each trial, participants were presented 142 

with an auditory and a visual spatial signal from four possible horizontal locations. They located 143 

either the visual or the auditory signal by pushing one of four response buttons that corresponded 144 

to the four locations. To compute psychometric functions, participants’ responses were binarized 145 

into left-vs.-right responses. To assess top-down effects of modality-specific report on the 146 
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behavioral and neural weights, we manipulated whether participants reported the auditory or 147 

visual locations. In a model-based analysis, we first investigated whether the sensory weights 148 

and variances obtained from psychometric and ‘neurometric’ functions were in line with the 149 

predictions of the MLE model. In a model-free analysis, we next examined whether the sensory 150 

weights and variances were influenced by visual signal reliability and/or report of the auditory 151 

(or visual) modality.   152 
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Materials and Methods 153 

Participants 154 

After giving written informed consent, six healthy volunteers (two females, mean age 28.8 years, 155 

range 22-36 years) participated in the fMRI study. All participants had normal or corrected-to 156 

normal vision and reported normal hearing. One participant was excluded due to excessive head 157 

motion (4.21 / 3.52 STD above the mean of the translational/rotational volume-wise head motion 158 

based on the included 5 participants). The study was approved by the human research review 159 

committee of the University of Tübingen. A subset of the data (i.e., the audiovisual conditions) 160 

have been reported in Rohe and Noppeney (2015a, 2016).  161 

 162 

Stimuli 163 

The visual stimulus was a cloud of 20 white dots (diameter: 0.43° visual angle) sampled from a 164 

bivariate Gaussian with a vertical standard deviation of 2.5° and a horizontal standard deviation 165 

of 2° or 14° (high and low visual reliability). The visual stimulus was presented on a black 166 

background (i.e., 100% contrast). The auditory stimulus was a burst of white noise with a 5ms 167 

on/off ramp. To create a virtual auditory spatial signal, the noise was convolved with spatially 168 

specific head-related transfer functions (HRTFs). The HRTFs were pseudo-individualized by 169 

matching participants’ head width, heights, depth and circumference to the anthropometry of 170 

participants in the CIPIC database (Algazi et al., 2001) and were interpolated to the desired 171 

location of the auditory signal.  172 

 173 

- Figure 1 about here - 174 

 175 
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Experimental design and procedure 176 

In the unisensory conditions participants were presented either with auditory or with visual 177 

signals of low or high reliability. The signals were sampled from four possible locations along 178 

the azimuth (i.e., -10°, -3.3°, 3.3° or 10°). This yielded 4 auditory conditions (i.e., 4 auditory 179 

locations) and 4 visual locations x 2 visual reliability (high vs. low) = 8 visual conditions. On 180 

each trial participants located either the visual or the auditory signal. 181 

In the audiovisual conditions, participants were presented with synchronous auditory and 182 

visual signals of high or low visual reliabilities (Fig. 1A). They attended and reported the 183 

location either of the visual or auditory signal component. The locations of the auditory and 184 

visual signal components were sampled independently from four possible locations. This yielded 185 

4 auditory locations x 4 visual locations = 16 audiovisual location combinations that varied in 186 

their audiovisual spatial disparities. In the current study, we focused selectively on the 187 

audiovisually congruent (A-V = AV = 0°) and slightly conflicting conditions ( AV = 6° and = 188 

-6°). These small, so-called non-noticeable, spatial conflicts have previously been introduced to 189 

test the predictions of the maximum likelihood estimation (MLE) model (e.g., Alais & Burr, 190 

2004; Battaglia et al., 2003) as they are assumed to ensure that observers fuse sensory signals 191 

into one unified percept. Note that results of the audiovisual conditions with larger disparity 192 

( AV > 6°) have been reported in Rohe and Noppeney (2015a, 2016). 193 

In total, this MLE study included 52 conditions (Fig. 1B): 4 unisensory auditory 194 

conditions, 4 unisensory visual conditions of high visual reliability, 4 unisensory visual 195 

conditions of low visual reliability and 40 audiovisual conditions: i.e., (4 audiovisually congruent 196 

+ 6 audiovisually incongruent conditions with a small spatial disparity) x 2 visual reliability 197 

levels (high vs. low) x 2 modality-specific reports (i.e., visual vs. auditory). For the latter model-198 
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free analysis, we obtained variances and sensory weights by fitting psychometric and 199 

neurometric functions separately to the perceived and decoded spatial locations (i.e., % 200 

perceived right as a function of spatial location) separately for the four conditions in a 2 (visual 201 

reliability: high vs. low) x 2 (modality-specific report: auditory vs. visual) factorial design. 202 

On each trial, audiovisual signals were presented for 50 ms duration with a variable inter-203 

stimulus fixation interval of 1.75-2.75 s (Fig. 1A). Participants reported their auditory perceived 204 

location in the unisensory auditory and the audiovisual sessions with auditory report. They 205 

reported their visual perceived location in the unisensory visual and the audiovisual sessions with 206 

visual report. Participants indicated their perceived location by pushing one of four buttons that 207 

spatially corresponded to the four signal locations (i.e., -10°, -3.3°, 3.3° or 10° along the 208 

azimuth) using their right hand. To compute psychometric functions, participants’ responses 209 

were binarized into left-vs.-right responses for all analyses. Throughout the experiment, 210 

participants fixated a central cross (1.6° diameter). 211 

Unisensory and audiovisual stimuli were presented in separate sessions. Subjects 212 

participated in 3-4 unisensory auditory, 3-4 unisensory visual and 20 audiovisual sessions (10 213 

auditory and 10 visual report; apart from one participant who performed 9 auditory and 11 visual 214 

report sessions). In the respective sessions we presented the 4 unisensory auditory conditions in 215 

88 trials each, the 8 unisensory visual conditions in 44 trials each and the 32 audiovisual 216 

conditions (4 visual stimulus locations x 4 auditory stimulus locations x 2 visual reliability 217 

levels) in 11 trials each. Further, 5.9 % null-events (i.e., ‘pseudo-events’ without a stimulation) 218 

were interspersed in the sequence of 352 stimuli per session to estimate stimulus-evoked 219 

responses relative to the fixation baseline. To maximize design efficiency, trial types were 220 

presented in a pseudorandomized order. We manipulated the modality-specific report (visual vs. 221 
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auditory) over sessions in a counterbalanced order within each participant and we presented 222 

unisensory and audiovisual runs in a counterbalanced order across participants. 223 

 224 

Experimental setup 225 

Audiovisual signals were presented using Psychtoolbox 3.09 (www.psychtoolbox.org) (Brainard, 226 

1997; Kleiner et al., 2007) running under MATLAB R2010a (MathWorks). Auditory stimuli 227 

were presented at ~75 dB SPL using MR-compatible headphones (MR Confon). Visual stimuli 228 

were back-projected onto a Plexiglas screen using an LCoS projector (JVC DLA-SX21). 229 

Participants viewed the screen through an extra-wide mirror mounted on the MR head coil 230 

resulting in a horizontal visual field of approx. 76° at a viewing distance of 26 cm. Participants 231 

indicated their response using an MR-compatible custom-built button device. Participants’ eye 232 

movements and fixation were monitored by recording participants’ pupil location using an MR-233 

compatible custom-built infrared camera (sampling rate 50 Hz) mounted in front of the 234 

participants’ right eye and iView software 2.2.4 (SensoMotoric Instruments).  235 

 236 

Key predictions of the Maximum Likelihood Estimation model 237 

The majority of multisensory research today has focused on the so-called ‘forced fusion case’, 238 

where observers a priori assume that two signals come from a common source and should hence 239 

be integrated. These ‘forced fusion criteria’ are generally assumed to be met when observers are 240 

instructed to locate a single source that emits audiovisual signals (i.e., bi-sensory attention) and 241 

the two signals are presented without any conflict or with a small cue conflict such as a spatial 242 

disparity of 6° visual angle as employed in our experiment (e.g., Alais and Burr, 2004). Under 243 

these classical forced fusion assumptions, the Maximum Likelihood Estimation model makes 244 
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two key quantitative predictions for participants’ estimates (e.g., spatial estimates) that are 245 

formed by integrating auditory and visual signals. The first prediction pertains to the sensory 246 

weights applied during the integration process and the second prediction to the variance of the 247 

integrated perceived signal location: 248 

Sensory weights: The most reliable unbiased estimate of an object’s location ( ) is 249 

obtained by combining the auditory ( ) and visual ( ) perceived locations in proportion to 250 

their relative reliabilities ( ; i.e., the inverse of the variance, ).  251 

 

 252 

 253 

The variances obtained from the cumulative Gaussians that were fitted to the unisensory visual 254 

and auditory conditions were used to determine the ‘optimal’ weights that participants should 255 

apply to the visual and auditory signals in the audiovisual conditions as predicted by the MLE 256 

model (equation 1). The empirical weights were computed from the point of subjective equality 257 

(PSE) of the psychometric functions of the audiovisual conditions where a small audiovisual 258 

spatial disparity of 6º was introduced according to the following equation (Helbig and Ernst, 259 

2008; Fetsch et al., 2012):  260 

 261 
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Note that the equation assumes that the psychometric functions plot ‘% perceived right’ as a 262 

function of the average of the true auditory and visual locations (Fig. 2 and 3). 263 

Variance of the integrated perceived signal location: Multisensory integration reduces the 264 

variance of the audiovisual estimate ( AV
2) in particular for congruent audiovisual trials as 265 

compared to the unisensory variances ( ): 266 

 

 267 

To generate MLE predictions for the audiovisual variance, the unisensory variances were 268 

obtained from the psychometric functions (i.e., cumulative Gaussians) for the auditory and visual 269 

signals. The empirical variance of the combined audiovisual estimate was obtained from the 270 

psychometric function for the audiovisual conditions. 271 

 272 

Behavioral data 273 

Participants’ spatial location responses (i.e., four buttons) were categorized as left or right 274 

responses. For the unisensory auditory and visual conditions, we plotted the fraction of right 275 

responses as a function of the unisensory signal location (Fig. 2E).  For the audiovisual spatially 276 

congruent and conflicting conditions we plotted the fraction of right responses as a function of 277 

the mean signal location of the true auditory and true visual signal locations (separately for the 278 

four conditions in our 2 (auditory vs. visual report) x 2 (high vs. low visual reliability) factorial 279 

design, Fig. 2A-D).  280 

For the behavioral analysis, we fitted cumulative Gaussian functions  individually to the 281 

data of each participant (again separately for the four conditions in our 2 (auditory vs. visual 282 

report) x 2 (high vs. low visual reliability) factorial design using maximum likelihood estimation 283 
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methods as implemented in Palamedes toolbox 1.5.0 (Prins and Kingdom, 2009). To enable 284 

reliable parameter estimation for each participant, we employed the following constraints: i) The 285 

Gaussians’ means (i.e., point of subjective equality, PSE) were constrained to be equal across 286 

unisensory and audiovisual congruent conditions (i.e., identical spatial biases were assumed 287 

across unisensory and audiovisual congruent conditions). ii) The Gaussians variances (i.e., 288 

perceptual thresholds or slopes of the psychometric functions) were constrained to be equal for 289 

the congruent and the two conflicting conditions within each combination of visual reliability 290 

and modality-specific report. Please note that this is based on the fundamental forced-fusion 291 

assumption implicitly adopted in previous research (Ernst and Banks, 2002; Alais and Burr, 292 

2004) whereby the conditions with small non-noticeable cue conflict are considered to be 293 

equivalent to congruent conditions. iii) Guess and lapse rate parameters were set to be equal (i.e., 294 

guess = lapse rate) and constrained to be equal across all conditions. In other words, we assumed 295 

that observers possibly made false responses (e.g., a ‘right’ response for a signal at -10º) for non-296 

specific reasons such as blinking, inattention etc. with equal probability in their outer left and 297 

right hemifields. Based on those constraints we fitted 17 parameters to the 52 data points 298 

individually for each participant. More specifically, we fitted one PSE parameter commonly for 299 

the unisensory visual, auditory and audiovisual congruent conditions, one PSE parameter each 300 

for the eight conflict conditions (i.e., 2 visual reliability X 2 modality-specific report X 2 spatial 301 

conflict, ΔAV = -6 or +6; i.e., in total: 9 parameters for PSE). Further, we fitted one slope 302 

parameter each for i. the unisensory auditory, ii. low reliable visual, iii. high reliable visual 303 

conditions and iv. for each audiovisual condition of the 2 visual reliability X 2 modality-specific 304 

report (i.e., 7 slope parameters). Finally, as the conditions were presented in a randomized order 305 
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we fitted one single guess = lapse rate parameter across all conditions (i.e., one single 306 

parameter). 307 

The Gaussians’ means and variances ( ) of the unisensory conditions were used to 308 

compute the maximum likelihood predictions for the visual weights (wV in equation (1)) and the 309 

variance of the perceived signal location ( AV
2 in equation (3)).  The empirical visual weights 310 

(wV,emp in equation (2)) were computed from the audiovisual conditions with a small spatial cue 311 

conflict (i.e., AV = 6° and = -6°). In the main analysis the empirical audiovisual variances were 312 

computed jointly from the small cue conflict and congruent audiovisual conditions (cf. modeling 313 

constraints above). 314 

In a follow-up analysis, we also obtained audiovisual variances selectively for the 315 

audiovisual congruent conditions by adding four independent slope parameters for the 316 

audiovisual congruent conditions (i.e., 21 parameters in total). As the small disparity trials were 317 

not included in the estimation of variance, this follow-up analysis allowed us to investigate 318 

whether modality-specific report can influence the integration process even for audiovisual 319 

congruent trials. In particular, we asked whether the audiovisual variance for the congruent 320 

conditions was immune to modality-specific report as predicted by the classical MLE model or 321 

depended on modality-specific report. 322 

We evaluated the MLE predictions using classical statistics and a Bayesian model 323 

comparison: 324 

Classical statistics: 325 

In a model-based analysis we compared the empirical visual weights and audiovisual 326 

variances with the MLE predictions and unisensory auditory and unisensory visual variances at 327 

the second (i.e., between subject) random-effects level (Tab. 1). We used non-parametric 328 
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Wilcoxon signed rank test to account for the small sample size (n = 5) and potential violations of 329 

normality assumptions. 330 

In a model-free analysis, participant-specific visual weights and audiovisual variances 331 

were entered into second (i.e., between-subject) level analyses. At the random-effects level, we 332 

tested for the effects of visual reliability (high vs. low) and modality-specific report (visual vs. 333 

auditory) on the empirical visual weights and audiovisual variances using 2 x 2 repeated 334 

measures ANOVAs (Tab. 2). To account for the small sample size we used a non-parametric 335 

procedure by computing the ANOVAs on rank-transformed empirical weights and variances 336 

(Conover and Iman, 1981). Further, we analyzed whether auditory signals biased visual reports 337 

and whether visual signals biased auditory reports by testing whether the visual weight was 338 

smaller than one or larger than zero, respectively, while pooling over visual reliability. For these 339 

comparisons we used one-sided Wilcoxon signed rank tests. 340 

As we employed a fixed-effects approach for the fMRI data to increase signal to noise 341 

ratio, in a follow-up analysis we applied the same fixed-effects approach to the behavioral data to 342 

ensure that differences between behavioral and fMRI results did not result from methodological 343 

differences.  344 

 Unless otherwise stated, results are reported at p < 0.05.  345 

 346 

Bayesian model comparison: 347 

Using Bayesian model comparison analysis, we compared four models that manipulated whether 348 

visual reliability and modality-specific report could affect the PSEs and slopes of the audiovisual 349 

psychometric functions and whether their influence was predicted by the MLE model (Tab. 3):  350 
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i) Model 1 - Null-model: Visual reliability and modality-specific report were not able to 351 

alter PSEs or slopes (i.e., integration of audiovisual signals with constant sensory weights 352 

irrespective of modality-specific report or reliability).  353 

ii) Model 2 - MLE model: Visual reliability affected PSEs and slopes as predicted by 354 

MLE. Modality-specific report did not influence PSEs or slopes (again as predicted by MLE). 355 

Hence, we set the audiovisual PSEs and slopes to the MLE predictions based on the unisensory 356 

conditions as described in equation (1) and (3).  357 

iii) Model 3 – Reliability-weighted integration model: Visual reliability influenced PSEs 358 

and slopes of the audiovisual conditions, yet not according to the MLE predictions.  Hence, we 359 

allowed the PSEs and the slopes of the audiovisual conditions to differ across different reliability 360 

levels unconstrained by the MLE predictions. Yet, we did not allow top-down influences of 361 

modality-specific report to influence audiovisual PSEs or slopes. 362 

iv) Model 4 - Full model: Visual reliability and modality-specific report influenced both 363 

PSEs and slopes (i.e., the full model comparable to the analyses using classical statistics above).  364 

For all four models, psychometric functions were individually fitted to participants’ 365 

behavioral responses as described above. From the models’ log likelihood we computed the 366 

Bayesian Information Criterion (BICs) as an approximation to the model evidence (Raftery, 367 

1995). Bayesian model comparison (Stephan et al., 2009; Rigoux et al., 2014) was performed at 368 

the group level as implemented in SPM12 (Friston et al., 1994) based on the expected posterior 369 

probability (i.e., the probability that a given model generated the data for a randomly selected 370 

subject), the exceedance probability (i.e., the probability that a given model is more likely than 371 

any other model) (Stephan et al., 2009) and the protected exceedance probability (additionally 372 

accounting for differences in model frequencies due to chance) (Rigoux et al., 2014). 373 
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 374 

MRI data acquisition 375 

A 3T Siemens Magnetom Trio MR scanner was used to acquire both T1-weighted anatomical 376 

images and T2*-weighted axial echoplanar images (EPI) with BOLD contrast (gradient echo, 377 

parallel imaging using GRAPPA with an acceleration factor of 2, TR = 2480ms, TE = 40ms, flip 378 

angle=90°, FOV=192 mm×192 mm, image matrix 78×78, 42 transversal slices acquired 379 

interleaved in ascending direction, voxel size=2.5×2.5×2.5 mm + 0.25 mm inter-slice gap). In 380 

total, we acquired 353 volumes times 20 sessions for the audiovisual conditions, 353 volumes 381 

times 6-8 sessions for the unisensory conditions, 161 volumes times 2-4 sessions for the auditory 382 

localizer and 159 volumes times 10-16 sessions for the visual retinotopic localizer (see below). 383 

This resulted in approximately 18 hours of scanning per participant assigned over 7-11 days. The 384 

first three volumes of each session were discarded to allow for T1 equilibration effects. 385 

 386 

fMRI data analysis 387 

Spatial ventriloquist paradigm 388 

The fMRI data were analyzed with SPM8 (www.fil.ion.ucl.ac.uk/spm) (Friston et al., 1994). 389 

Scans from each participant were corrected for slice timing, realigned and unwarped to correct 390 

for head motion and spatially smoothed with a Gaussian kernel of 3 mm FWHM (de Beeck, 391 

2010). The time series in each voxel was high-pass filtered to 1/128 Hz. All data were analyzed 392 

in native subject space. The fMRI experiment was modeled in an event-related fashion with 393 

regressors entered into the design matrix after convolving each event-related unit impulse with a 394 

canonical hemodynamic response function and its first temporal derivative. In addition to 395 

modeling the 4 unisensory auditory, the 8 unisensory visual or the 32 audiovisual conditions in a 396 
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session, the general linear models (GLM) included the realignment parameters as nuisance 397 

covariates to account for residual motion artefacts. The factor modality-specific report (visual vs. 398 

auditory) was modeled across sessions. The session-specific parameter estimates pertaining to 399 

the canonical hemodynamic response function (HRF) defined the magnitude of the BOLD 400 

response to the unisensory or the audiovisual stimuli in each voxel. 401 

To apply the MLE analysis approach to spatial representations at the neural level, we first 402 

extracted the parameter estimates pertaining to the HRF magnitude for each condition and 403 

session from voxels of regions defined in separate auditory and retinotopic localizer experiments 404 

(see below). This yielded activation patterns from the unisensory auditory and visual conditions 405 

and the audiovisual congruent ( AV = 0°) and small spatial cue conflict ( AV ± 6°) conditions. 406 

All activation patterns (i.e., from each condition in each session) were z normalized across all 407 

voxels of a region of interest to avoid the effects of region-wide activation differences between 408 

conditions. We then trained a linear support vector classification model (as implemented in 409 

LIBSVM 3.14 (Chang and Lin, 2011)) to learn the mapping from activation patterns from the 410 

audiovisual congruent conditions to the categorical left vs. right location of the audiovisual 411 

signal in a subject-specific fashion. Importantly, we selectively used activation patterns from 412 

audiovisual congruent conditions from all but one audiovisual session for support vector 413 

classification training (i.e., training was done across sessions of auditory and visual report). The 414 

trained support vector classification model was then used to decode the signal location (left vs. 415 

right) from the activation patterns of the spatially congruent and conflicting audiovisual 416 

conditions of the remaining audiovisual session. Hence, given the learnt mapping from 417 

audiovisual activation patterns of the congruent conditions to true left vs. right stimulus location 418 

class the support vector classifier decoded the stimulus location for activation patterns elicited by 419 
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the audiovisual spatially small conflict trials. In a leave-one-out cross-validation scheme, the 420 

training-test procedure was repeated for all audiovisual sessions. Finally, the support vector 421 

classification model was trained on audiovisual congruent conditions from all audiovisual 422 

sessions and then decoded the categorical signal location ‘left vs. right’ from activation patterns 423 

of the separate unisensory auditory and visual sessions.  424 

In line with our behavioral analysis, we plotted the fraction of decoded ‘right’ as a 425 

function of the unisensory signal location for the unisensory auditory and visual conditions (Fig. 426 

3E).  For the audiovisual spatially congruent and small cue conflict conditions we plotted the 427 

fraction of decoded ‘right’ as a function of the mean signal location of the true auditory and 428 

visual signal locations (separately for auditory/visual report x visual reliability levels; Fig. 3A-429 

D). Because of the lower signal-to-noise ratio of fMRI data, we fitted cumulative Gaussians as 430 

neurometric functions to the fraction decoded ‘right’ pooled (i.e., averaged) across all 431 

participants (i.e., fixed-effects analysis). To obtain empirical and MLE predicted weights and 432 

variances we employed the same procedure and equations as explained in the section of the 433 

behavioral analysis. Confidence intervals for empirical and predicted weights and variances were 434 

computed using Palamedes’ parametric bootstrap procedure (1000 bootstraps).  435 

In the model-based analysis, we used two-tailed bootstrap tests (5000 bootstrap samples) 436 

(Efron and Tibshirani, 1994) to investigate whether empirical sensory weights and variances for 437 

audiovisual conditions were significantly different from the MLE predictions. Further, we 438 

assessed whether variances for audiovisual conditions were significantly different from variances 439 

for unisensory conditions (Tab. 1). For these model-based analyses we parametrically 440 

bootstrapped the fraction of decoded ‘right’ and in turn fitted neurometric functions to the 441 

bootstrapped data. From the bootstrapped auditory, visual and audiovisual psychometric 442 
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functions we generated bootstrap distributions of MLE predictions for the sensory weights and 443 

variances and their empirical counterparts. Bootstrapped null-distributions for a specific 444 

parameter comparison (e.g., predicted weight vs. empirical weight) were generated by computing 445 

the difference between predicted and empirical parameters (e.g., predicted weight vs. empirical 446 

weight) for each bootstrap and subtracting the observed original difference (Efron and 447 

Tibshirani, 1994). From this bootstrapped null-distribution the two-tailed significance of a 448 

parameter comparison was computed as the fraction of bootstrapped absolute values that were 449 

greater or equal to the observed original absolute difference (e.g., violation of MLE prediction: 450 

abs[wV,predicted,original – wV,empirical,original]). Absolute values were used to implement a two-tailed test 451 

(Efron and Tibshirani, 1994). Violations of MLE predictions were tested across modality-452 

specific report because the MLE model does not predict a report modulation (i.e., mean and 453 

variance parameters of the psychometric functions were held constant across levels of modality-454 

specific report).  455 

Similarly, in the model-free analysis we used two-tailed bootstrap tests (5000 bootstrap 456 

samples) to analyze the effects of visual reliability (high vs. low), modality-specific report 457 

(visual vs. auditory) and their interaction on the empirical visual weights and audiovisual 458 

variances (Tab. 2). Bootstrapped null-distributions of weights and audiovisual variances for each 459 

of the four conditions in our modality-specific report (visual vs. auditory) x visual reliability 460 

(high vs. low) design were generated by computing the contrast value of interest (e.g., high 461 

minus low visual reliability) for the sensory weights or variances for each bootstrap and 462 

subtracting the corresponding contrast value obtained from the original data (Efron and 463 

Tibshirani, 1994). From this bootstrapped null-distribution the two-tailed significance (against 464 

zero) of the effects of interest (e.g., high vs. low reliability) was computed as the fraction of 465 
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bootstrapped absolute contrast values that were greater or equal to the observed original absolute 466 

contrast value. Mean and variance parameters of the psychometric functions were set to be equal 467 

across the levels of modality-specific report in order to test selectively for the main effect of 468 

visual reliability. Conversely, mean and variance parameters of the neurometric functions were 469 

set to be equal across levels of visual reliability in order to test selectively for the main effect of 470 

modality-specific report. By contrast, mean and variance parameters of the neurometric functions 471 

varied across levels of visual reliability and modality-specific report in order to test for the 472 

interaction effect of modality-specific report and visual reliability. For all analyses reported in 473 

Table 1 and 2 we report p values corrected for multiple comparisons across the three regions of 474 

interest using a Bonferroni correction.  475 

Finally, we investigated whether multisensory influences can be observed already at the 476 

primary cortical level during (i) audiovisual or (ii) even unisensory (i.e., auditory or visual) 477 

stimulation. (i) To assess crossmodal influences during audiovisual stimulation, we computed a 478 

one-sided bootstrap test (5000 bootstrap samples) by fitting neurometric functions to 479 

bootstrapped data (see above) averaged across visual reliability and modality-specific report. 480 

Specifically, we tested whether the empirical weight pertaining to the visual signal was smaller 481 

than one (i.e., indicating auditory influence) in visual regions and whether it was larger than zero 482 

(i.e., indicating visual influence) in auditory regions. (ii) To assess cross-modal influences during 483 

unisensory stimulation, we tested whether the slope (i.e., the perceptual threshold 1/  of the 484 

neurometric functions was significantly greater than zero in unisensory conditions. As we were 485 

only interested in whether the slope was significantly greater than zero (rather than the exact 486 

size), we used a constrained approach by fitting neurometric functions to auditory stimulation 487 

data in visual cortex and to visual stimulation data (pooled over visual reliability levels) in 488 
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auditory cortex with lapse and guess rates set to zero. We determined whether a slope parameter 489 

was significantly larger than zero using a one-tailed bootstrap test (5000 bootstrap samples). 490 

Across all analyses we confirmed the validity of the bootstrap tests in simulations 491 

showing that simulated p values converged to a nominal alpha-level of 0.05 under the null 492 

hypothesis. 493 

 494 

Control analyses to account for motor preparation and global activation differences between 495 

hemispheres 496 

To account for activations related to motor planning (Andersen and Buneo, 2002), a first control 497 

analysis included the trial-wise button responses as a nuisance covariate into the first-level GLM 498 

(i.e., one regressor for each of the four response buttons). We then repeated the multivariate 499 

decoding analysis using activation patterns from intraparietal sulcus (IPS0-4, see below for the 500 

definition) where motor responses were explicitly controlled (Fig. 3-1).  501 

Given the contralateral encoding of space in visual (Wandell et al., 2007) and auditory 502 

regions (Ortiz-Rios et al., 2017), a second control analysis evaluated the impact of global 503 

activation differences between hemispheres on the classifier’s performance. In this control 504 

analysis, we z normalized the activation patterns separately for voxels of the left and right 505 

hemisphere in each condition prior to multivariate decoding (Fig. 3-2, Fig. 4-1). In other words, 506 

multivariate decoding was applied to activation patterns where global activation differences 507 

between hemispheres were removed. 508 

 509 

Effective Connectivity Analyses 510 
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Using Dynamic Causal Modelling (DCM) we investigated the modulatory effects of visual 511 

reliability on the effective connectivity from early visual regions to IPS and modality-specific 512 

report on the connectivity from prefrontal cortex (PFC) to IPS. For each subject we constructed 513 

four bilinear DCMs (Friston et al., 2003). Each DCM included four regions: low-level visual 514 

regions (V1-3), low-level auditory regions, IPS0-4 and PFC. Low-level visual and auditory 515 

regions and IPS0-4 were defined functionally as described in the section ‘auditory and visual 516 

retinotopic localizer’. PFC was defined anatomically for each individual as the middle frontal 517 

gyrus based on the anatomical cortical parcellation of the Desikan-Killiany atlas (Desikan et al., 518 

2006) implemented in Freesurfer 5.1.0 (Dale et al., 1999). Region-specific time series comprised 519 

the first eigenvariate of activations across all voxels within each region that were significant at p 520 

< 0.001 in the effects-of-interest contrast across all conditions in the first-level within-subject 521 

GLMs (F test, uncorrected).  522 

In all DCM models, V1-3, IPS0-4 and low-level auditory regions were bidirectionally 523 

connected and PFC was bidirectionally connected to IPS0-4 (i.e., intrinsic connectivity structure; 524 

Fig. 5). Synchronous audiovisual signals entered as extrinsic input into V1-3 and low-level 525 

auditory regions. Holding intrinsic and extrinsic connectivity structure constant, the 2 x 2 526 

candidate DCMs factorially manipulated the presence/absence of the following modulatory 527 

effects: a) visual reliability on  V1-3  IPS0-4 (on vs. off) and b) modality-specific report on 528 

PFC  IPS0-4 (on vs. off). After fitting the full model, which included both modulatory effects, 529 

to the fMRI data of each subject, we used Bayesian model reduction to estimate the model 530 

evidences and parameters of the reduced models (Friston et al., 2016). To determine the most 531 

likely of the 4 DCMs given the observed data from all subjects, we implemented a fixed- (Penny 532 

et al., 2004) and a random-effects group analysis (Stephan et al., 2009). The fixed-effects group 533 
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analysis was implemented by taking the product of the subject-specific Bayes factors over 534 

subjects (this is equivalent to the exponentiated sum of the log model evidences of each subject-535 

specific DCM) (Penny et al., 2004). The model evidence as approximated by the free energy 536 

does not only depend on model fit but also model complexity. Because the fixed-effects group 537 

analysis can be distorted by outlier subjects, Bayesian model comparison was also implemented 538 

in a random-effects group analysis. At the random-effects level, we report the expected posterior 539 

probability, the exceedance probability and the protected exceedance probability (Stephan et al., 540 

2009; Rigoux et al., 2014) (Tab. 4). 541 

 542 

Auditory and visual retinotopic localizer 543 

Regions of interest along the auditory and visual processing hierarchies were defined in a 544 

subject-specific fashion based on auditory and visual retinotopic localizers. In the auditory 545 

localizer, participants were presented with brief bursts of white noise at -10° or 10° angle 546 

(duration 500 ms, stimulus onset asynchrony 1 s). In a one-back task, participants indicated via a 547 

key press when the spatial location of the current trial was different from the previous trial. 20 s 548 

blocks of auditory stimulation (i.e., 20 trials) alternated with 13 s of fixation periods. The 549 

auditory locations were presented in a pseudorandomized fashion to optimize design efficiency. 550 

Similar to the main experiment, the auditory localizer sessions were modeled in an event-related 551 

fashion. Auditory-responsive regions were defined as voxels in superior temporal and Heschl’s 552 

gyrus showing significant activations for auditory stimulation relative to fixation (t test, p < 0.05, 553 

family-wise error corrected). Within these regions, we defined primary auditory cortex (A1) 554 

based on cytoarchitectonic probability maps (Eickhoff et al., 2005) and referred to the remainder 555 
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(i.e., planum temporale and posterior superior temporal gyrus) as higher order auditory cortex 556 

(hA). 557 

Visual regions of interest were defined using standard phase-encoded retinotopic 558 

mapping (Sereno et al., 1995). Participants viewed a checkerboard background flickering at 7.5 559 

Hz through a rotating wedge aperture of 70° width (polar angle mapping) or an 560 

expanding/contracting ring (eccentricity mapping). The periodicity of the apertures was 42 s. 561 

Visual responses were modeled by entering a sine and cosine convolved with the hemodynamic 562 

response function as regressors into the design matrix of the general linear model. The preferred 563 

polar angle (or eccentricity, respectively) was determined as the phase lag for each voxel by 564 

computing the angle between the parameter estimates for the sine and the cosine. The phase lags 565 

for each voxel were projected on the reconstructed, inflated cortical surface using Freesurfer 566 

5.1.0 (Dale et al., 1999). Visual regions V1-V3 and IPS0-4 were defined as phase reversal in 567 

angular retinotopic maps. IPS0-4 were defined as phase reversal along the anatomical IPS 568 

resulting in contiguous, approximately rectangular regions (Swisher et al., 2007).  569 

For the decoding analyses, the auditory and visual regions were combined from the left 570 

and right hemisphere. Support vector classification training was then applied separately to 571 

activation patterns from each region. To improve the signal-to-noise ratio when fitting 572 

neurometric functions (cf. Fig. 3 and 4), the decoded signal sides (‘right’ vs. ‘left’) from low-573 

level visual regions (V1-3), intraparietal sulcus (IPS0-4) and low-level auditory regions (A1, hA) 574 

regions were pooled. Additional analyses showed similar audiovisual spatial integration within 575 

these three regions (Rohe and Noppeney, 2015a, 2016). 576 

  577 
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 578 

Results 579 

Spatial ventriloquist paradigm 580 

In the fMRI study, participants were presented with auditory, visual and audiovisual signals 581 

sampled randomly from four possible spatial locations along the azimuth (i.e., -10°, -3.3°, 3.3° or 582 

10°) (Fig. 1). Audiovisual signals included in this study were either spatially congruent ( AV = 583 

0°) or incongruent with a small spatial conflict ( AV = ±6°). The reliability of the visual signal 584 

was either high or low. Modality-specific report was manipulated by instructing participants to 585 

report the location either of the visual or the auditory signal component during the audiovisual 586 

conditions.  587 

Figures 2 and 3 present the psychometric functions estimated from the behavioral button 588 

responses after categorization into ‘left’ or ‘right’ responses and the ‘neurometric’ functions 589 

estimated from spatial locations (‘left’ vs. ‘right’) decoded from fMRI responses. The 590 

psychometric (resp. neurometric) functions show the fraction of ‘right’ responses as a function of 591 

the mean signal location for each condition. If the visual reliability is greater than the auditory 592 

reliability (i.e., visual weight > 0.5), we would expect the function to be shifted toward the right 593 

for a positive spatial conflict (A-V = AV = +6°, i.e., the visual signal is presented 6° to the left 594 

of the auditory signal) and to the left for a negative spatial conflict ( AV = -6°, i.e., the visual 595 

signal is presented 6° to the right of the auditory signal). As a consequence, the point of 596 

subjective equality (PSE, defined by the abscissa’s value for 50% proportion ‘right’ responses) 597 

of the psychometric functions for the spatial conflict conditions can be employed to compute the 598 

empirical sensory weights for the different conditions (for further details see (Ernst and Banks, 599 

2002; Fetsch et al., 2012)). 600 
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In short, we (i) fitted psychometric or neurometric functions to unisensory, audiovisual 601 

congruent and small spatial conflict conditions, (ii) derived the sensory weights from the 602 

psychometric/neurometric functions (i.e., shift in PSE) of the conflict conditions and derived the 603 

variances from the psychometric/neurometric functions of the spatial conflict and congruent 604 

conditions (Fig. 2A-D; 3A-D). In the model-based analysis we compared the sensory weights 605 

(Fig. 2F, 3F, 4 A/C) and variances (Fig. 2G, 3G, 4B/D) with MLE predictions that were derived 606 

from the unisensory conditions (Fig. 2E, 3E). Because MLE predictions do not depend on 607 

modality-specific report, we compared the MLE predictions with the empirical sensory weights 608 

and variances while pooling over visual and auditory report.  609 

For both behavioral and neural data, we addressed two questions: First, in a model-based 610 

analysis using classical statistics, we investigated whether the MLE predictions that were derived 611 

from the unisensory conditions were in line with the empirical sensory weights computed from 612 

the audiovisual spatial conflict conditions and the variances computed either from the 613 

audiovisual conflict and congruent conditions or from the congruent conditions alone. Second, in 614 

a model-free analysis using classical statistics we investigated whether the empirical sensory 615 

weights and variances were influenced by visual reliability or modality-specific report. For the 616 

psychophysics data we also addressed these two questions using Bayesian model comparison to 617 

formally compare the MLE model to alternative models that do or do not allow visual reliability 618 

and modality-specific report to influence the PSEs (i.e., Gaussian means) and/or slopes (i.e., 619 

Gaussian variances) of the audiovisual conditions. 620 

 621 

- Figure 2 about here – 622 

 623 
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Psychophysics results – Classical statistics  624 

Model-based MLE analysis: The slopes of the psychometric functions for the unisensory 625 

conditions indicated that for high visual reliability the visual representations were more reliable 626 

than the auditory representations (Fig. 2E). By contrast, for low visual reliability conditions, the 627 

variances obtained from the auditory and visual psychometric functions were comparable.  628 

The visual weights obtained from the audiovisual conflict conditions were approximately 629 

in line with the MLE predictions derived from those unisensory psychometric functions - though 630 

there was a non-significant difference between predicted and empirical visual weights for high 631 

visual reliability (Fig. 2F; Tab. 1). Moreover, even though the variance of the perceived signal 632 

location was significantly reduced relative to the unisensory auditory condition in case of high 633 

visual reliability (Fig. 2G; Tab. 1), it was not reduced relative to the variances obtained for the 634 

most reliable unisensory condition. In particular for the low visual reliability conditions where 635 

auditory and visual reliabilities were approximately matched, we did not observe a substantial 636 

variance reduction as predicted by MLE (Fig. 2G, i.e., a marginally significant difference 637 

between MLE predictions and empirical audiovisual variances for low visual reliability, Tab. 1).  638 

 639 

Model-free analysis: The visual weights were marginally greater for high relative to low visual 640 

reliability (Tab. 2). Yet, contrary to the MLE predictions we also observed a significant effect of 641 

modality-specific report on the visual weights. Visual weights were greater for visual relative to 642 

auditory report. For visual report, the visual weight was not significantly smaller than one (p =  643 

0.219, one-sided Wilcoxon signed rank test pooling across visual reliability) indicating that the 644 

auditory signal did not significantly influence visual location reports. For auditory report, the 645 

visual weight was significantly larger than zero (p = 0.032) indicating that the visual signal 646 



 

31 
 

‘attracted’ auditory location reports, known as ventriloquist effect (Radeau and Bertelson, 1977).  647 

Most importantly, we observed a significant interaction between reliability and modality-specific 648 

report (Tab. 2). The interaction arose from the fact that the top-down influences of modality-649 

specific report were more pronounced for the low visual reliability conditions when the auditory 650 

and visual reliabilities were approximately matched. Indeed, for low visual reliability conditions 651 

the psychometric functions of the cue conflict conditions are shifted towards the true visual 652 

location for visual report (Fig. 2 D) but towards the true auditory location during auditory report 653 

(Fig. 2 B). By contrast, for high visual reliability conditions, the psychometric functions of the 654 

cue conflict conditions are shifted towards the true visual location for both auditory and visual 655 

report (Fig. 2 A, C).  656 

The variance of the perceived signal location was significantly influenced by visual 657 

reliability (Tab. 2), but not by modality-specific report. Critically, we observed a significant 658 

interaction between both factors. The significant interaction resulted from the fact that the effect 659 

of modality-specific report was revealed predominantly for high visual reliability, but not for low 660 

visual reliability, when the auditory and visual reliabilities were approximately matched. The 661 

results suggest that the variance of the perceived signal location was influenced predominantly 662 

by the sensory modality that needed to be attended and reported. In other words, participants did 663 

not fuse sensory signals into one unified percept. Instead, modality-specific report increased the 664 

influence of the reported signal in the final percept. Importantly, the interaction effect was also 665 

observed when we estimated the audiovisual variance selectively from the audiovisual congruent 666 

conditions (interaction of visual reliability and modality-specific report: F1,4 = 34.507, p = 0.004; 667 

effect of visual reliability: F1,4 = 23.721, p = 0.008). The results confirm that modality-specific 668 

report can selectively increase the influence of the reported sensory signal on the perceived 669 
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signal location under classical forced-fusion conditions where sensory signals co-occur in space 670 

and time. If observers report the auditory location, the variance is determined predominantly by 671 

the variance of the auditory signals (and vice versa for visual report).  672 

 673 

Psychophysics results – Bayesian model comparison  674 

In line with the results from classical statistics, the formal Bayesian model comparison 675 

demonstrated that the MLE model was not the best model of our data. Instead, the strongest 676 

model evidence was observed for a model where visual reliability and modality-specific report 677 

influenced the PSE and slope parameters unconstrained by MLE predictions (i.e., protected 678 

exceedance probability = 0.916; Tab. 3). Critically, the model evidence combines an accuracy 679 

(i.e., model fit) and a complexity term that penalizes complex models with more free parameters. 680 

For instance, the MLE model is very parsimonious with only 5 parameters, while the winning 681 

model includes 17 free parameters. Our results thus suggest that modeling effects of reliability 682 

and modality-specific report are critical to account for observer’s localization responses.  683 

 684 

Psychophysics results - summary 685 

Collectively, our psychophysics results suggest that auditory and visual signals were 686 

integrated approximately weighted by their relative reliabilities. However, the weights were not 687 

assigned solely in proportion to the relative bottom-up sensory reliabilities as predicted by the 688 

MLE model but were also modulated by modality-specific report and potentially associated 689 

attentional processes. The visual weight was greater when the location of the visual signal was 690 

attended and reported. Likewise, the variance of the perceived signal location depended on 691 

modality-specific report. Hence, irrespective of whether the audiovisual signals were congruent 692 
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or in small spatial conflict, participants did not integrate them into one unified percept as 693 

predicted by MLE. Instead, they were able to selectively control the influence of auditory or 694 

visual signal components depending on task instructions. As a result, observers did not 695 

significantly benefit from audiovisual stimulation: there was no reduction in variance of the 696 

perceived signal location relative to the most reliable unisensory percept as predicted by MLE 697 

optimal integration. 698 

 699 

fMRI results 700 

To investigate the neural processes by which human observers integrate sensory signals into 701 

spatial representations, we decoded spatial information from fMRI activation patterns. The 702 

patterns were extracted from low-level visual regions (V1-V3), low-level auditory regions 703 

(primary auditory cortex and planum temporale) and intraparietal sulcus (IPS0-4). We trained a 704 

support-vector classification model on fMRI activation patterns selectively from audiovisual 705 

congruent conditions ( AV = 0°) to learn the mapping from activation patterns to the signal 706 

location label (i.e., left vs. right). The trained model then decoded the signal location class (i.e., 707 

left vs. right) from activation patterns in audiovisual spatial conflict conditions (i.e., AV = ±6°) 708 

as well as unisensory auditory and visual conditions. The decoded signal location class, i.e., the 709 

‘left/right location response’ given by a particular brain area, was then analyzed using the same 710 

procedures that were applied to the categorized (i.e., left vs. right) behavioral location responses 711 

(see above).  712 

 713 

- Figure 3 about here - 714 

 715 
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Visual regions 716 

Auditory influences under unisensory auditory stimulation: In line with previous reports of 717 

multisensory influences at the primary cortical level (Meyer et al., 2010; Liang et al., 2013; 718 

Vetter et al., 2014) we observed a significant positive slope of the psychometric function 719 

estimated for the unisensory auditory conditions in low-level visual areas (p < 0.001, one-sided 720 

bootstrap test). These results indicate that auditory signals (when presented in isolation) elicit 721 

spatial representations in low-level visual regions (V1-3). Yet, going beyond previous studies 722 

(Meyer et al., 2010; Liang et al., 2013; Vetter et al., 2014) our results demonstrate that these 723 

auditory influences on visual cortex (in the absence of concurrent visual signals) are rather 724 

limited and induce only unreliable representations when compared to the spatial representations 725 

decoded under unisensory visual stimulation (cf. visual and auditory variance obtained for the 726 

neurometric functions under unisensory stimulation in low-level visual areas, Fig. 4 B).  727 

Model-based MLE analysis: Based on those unisensory visual and auditory neurometric 728 

functions, MLE predicted negligible auditory influences on spatial representations during 729 

audiovisual stimulation (Fig. 4A). Indeed, in line with those MLE predictions, the 730 

representations formed from audiovisual signals relied predominantly on visual input as 731 

indicated by a visual weight which did not significantly deviate from one (p = 0.818, one-sided 732 

bootstrap test pooling the visual weight across conditions). Moreover, in line with MLE 733 

predictions, the variance of the audiovisual representations was comparable to unisensory visual 734 

variances (Fig 4B, Tab. 1).  735 

Model-free analysis: The sensory weights were not significantly modulated by visual 736 

reliability or modality-specific report (Tab. 2). Yet, the audiovisual variance was smaller for high 737 

as compared to low visual reliability indicating that the representations under audiovisual 738 



 

35 
 

stimulation are predominantly determined by the visual signals and hence depend solely on the 739 

reliability of the visual signal. 740 

 741 

- Figure 4 about here – 742 

 743 

Auditory regions  744 

Visual influences under unisensory visual stimulation: In parallel to our findings in visual 745 

regions, the slope of the neurometric functions estimated from the unisensory visual conditions 746 

was again significantly positive indicating that visual signals alone elicit spatial representations 747 

in auditory areas (p = 0.004, one-sided bootstrap test pooling across visual reliability). Yet, when 748 

compared to the spatial representations decoded under unisensory auditory stimulation, these 749 

visual influences on auditory cortex (in the absence of concurrent auditory signals) were rather 750 

limited and induced only unreliable representations (cf. visual and auditory variance obtained 751 

from the neurometric functions under unisensory stimulation in low-level auditory areas, Fig. 4 752 

D). 753 

Model-based MLE analysis: Based on those unisensory variances, the MLE model 754 

predicted a visual weight close to zero (Fig. 4C) and an audiovisual variance approximately 755 

identical to the auditory variance for the audiovisual conditions irrespective of visual reliability 756 

or modality-specific report (Fig. 4D). While we did not observe any significant deviations from 757 

the MLE predictions, the empirical visual weight was greater than predicted by MLE. This was 758 

particularly pronounced for high visual reliability conditions. Figure 4C reveals that this 759 

deviation emerged predominantly for conditions when the visual signal needs to be attended and 760 

reported. These findings may be explained by crossmodal attentional top-down effects operating 761 
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from vision to audition. Indeed, the visual weight was significantly greater than zero (p = 0.004; 762 

one-sided bootstrap test pooling the visual weight across conditions) indicating that visual 763 

signals exerted a stronger influence on auditory areas during audiovisual stimulation than vice 764 

versa (see above: the visual weight was not significantly lower than one in visual regions). 765 

Model-free analysis: We did not observe an effect of visual signal reliability, modality-766 

specific report or an interaction between the two factors on the visual weight or variance 767 

estimated from the audiovisual conditions in auditory regions (Tab. 2).   768 

 769 

Parietal areas 770 

Model-based MLE analysis: In IPS0-4 the neurometric functions for the unisensory conditions 771 

indicated that the neural representations for unisensory visual signals were more reliable than 772 

those for unisensory auditory signals at both levels of signal reliability (Fig. 3E). This greater 773 

reliability of visual IPS representations is consistent with the well-established visual dominance 774 

of IPS (Swisher et al., 2007; Wandell et al., 2007). Based on these unisensory variances MLE 775 

predicted a visual weight that was close to one for high visual reliability and decreased for low 776 

visual reliability. Indeed, the visual weights estimated from the audiovisual conditions were 777 

approximately in accordance with these MLE predictions (Fig. 3F, Tab. 1).  By contrast, the 778 

empirical audiovisual variance was only in line with the MLE predictions for low visual 779 

reliability conditions, but significantly smaller than MLE predictions for high visual reliability 780 

conditions (Fig. 3G; Tab. 1). This surprising result needs to be further investigated and replicated 781 

in future studies. 782 

Model-free analysis: In IPS0-4, the visual weight and the audiovisual variance were 783 

modulated by visual reliability and modality-specific report (Tab. 2). IPS0-4 integrated 784 
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audiovisual signals depending on bottom-up visual reliability and top-down effects of modality-785 

specific report approximately in line with the profile of the behavioral weights (Fig. 3F). 786 

Likewise, the audiovisual variance was reduced for high relative to low visual reliability 787 

conditions. Moreover, modality-specific report also marginally influenced the variance of the 788 

spatial representation obtained from the audiovisual conditions. The variance for the audiovisual 789 

conditions was smaller for auditory than visual report (n.b., this marginally significant 790 

modulation of variance by modality-specific report was also observed when the analysis focused 791 

selectively on the audiovisual spatially congruent conditions, p = 0.096). The smaller variance 792 

for auditory relative to visual report in IPS contrasts with the variance reduction under visual 793 

report observed at the behavioral level (n.b., this difference cannot be explained by 794 

methodological differences, because we observed comparable results when applying a fixed-795 

effects analysis at the behavioral level). Potentially this neurobehavioral dissociation can be 796 

explained by the fact that the auditory report conditions were more difficult and engaged more 797 

attentional resources thereby leading to an increase in reliability of BOLD-activation patterns. 798 

Most importantly, however, both behavioral and neural data provide convergent evidence that 799 

the sensory weights and to some extent the variances -even for audiovisually congruent trials- 800 

depend on both bottom-up visual reliability and top-down effects of modality-specific report. 801 

 802 

Control analyses: Eye movements, motor planning, interhemispheric activation differences 803 

No significant differences in eye movement indices (% saccades, % eye blinks, post-stimulus 804 

mean horizontal eye position) were observed across any audiovisual conditions (see the 805 

supplemental results reported in (Rohe and Noppeney, 2016)). For the unisensory visual 806 

conditions, we observed only a small significant effect of the visual signal location on the post-807 
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stimulus mean horizontal eye position (F3,9 = 4.9, p = 0.028). However, this effect did not depend 808 

on the reliability of the visual signal. 809 

Further, a control analysis that decoded IPS activation patterns from a GLM that 810 

accounted for participants’ trial-wise button responses revealed highly similar results for sensory 811 

weights and audiovisual variances (Fig. 3-1) as our initial analysis. These results suggest that IPS 812 

represents audiovisual spatial representations that cannot be completely attributed to motor 813 

planning and response selection. 814 

Finally, given the predominantly contralateral representations of the peri-personal space 815 

in visual (Wandell et al., 2007) and auditory regions (Ortiz-Rios et al., 2017) we investigated the 816 

impact of global activation differences between the left and right hemispheres on classification 817 

performance. When we removed interhemispheric activation differences from activation patterns 818 

prior to decoding, we found comparable results for sensory weights and audiovisual variances 819 

(Fig. 3-2 and 4-1). Thus, audiovisual spatial representations are encoded in hemisphere-specific 820 

activation patterns that go beyond differences in global signal across hemispheres in visual and 821 

auditory regions. 822 

 823 

- Figure 5 about here – 824 

 825 

Dynamic Causal Modelling  826 

Our multivariate pattern analysis showed that visual reliability and modality-specific report 827 

influenced visual weights and audiovisual variances in IPS0-4. Using DCM and Bayesian model 828 

comparison we next investigated whether these influences were mediated by modulatory effects 829 

of reliability on effective connectivity from V1-3 to IPS0-4 and modality-specific report on 830 
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connectivity from PFC to IPS0-4 (Fig. 5). PFC potentially mediates the effect of modality-831 

specific report because PFC exerts top-down control on sensory processing (Noudoost et al., 832 

2010; Zanto et al., 2011) by changing the connectivity to parietal regions (Buschman and Miller, 833 

2007). Indeed, in the winning model visual reliability modulated the connection from V1-3 to 834 

IPS0-4 and modality-specific report modulated the connection from PFC to IPS0-4 (i.e., 835 

protected exceedance probability = 0.699; Tab. 4).  836 

 837 

  838 
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Discussion 839 

The classical MLE model assumes that auditory and visual signals that arise from a common 840 

source are integrated weighted by their sensory reliabilities into one unified representation. 841 

Critically, the sensory weights are thought to be determined solely by the reliabilities of the 842 

sensory signals and immune to task-dependent top-down control. Indeed, abundant evidence 843 

suggests that human observers can combine signals within and across the senses near-optimally 844 

as predicted by the MLE model (Jacobs, 1999; Ernst and Banks, 2002; van Beers et al., 2002; 845 

Knill and Saunders, 2003; Alais and Burr, 2004; Hillis et al., 2004; Saunders and Knill, 2004; 846 

Rosas et al., 2005); but see Battaglia et al., 2003). While the forced-fusion assumption of a 847 

common signal cause usually holds for integration within a sensory modality (Hillis et al., 2002), 848 

it is often violated when integrating signals across sensory modalities (Gepshtein et al., 2005; 849 

Parise et al., 2012). For example, it remains controversial whether or not multisensory 850 

integration and more specifically the sensory weights can be modulated by top-down control 851 

(Helbig and Ernst, 2008; Talsma et al., 2010; Vercillo and Gori, 2015).  852 

The present study investigated the extent to which audiovisual spatial signals are 853 

integrated in line with the quantitative predictions of the MLE model at the behavioral and neural 854 

levels. Importantly, while many previous MLE studies (Battaglia et al., 2003; Alais and Burr, 855 

2004) presented only signals with a small conflict and asked participants to report the location of 856 

the ‘audiovisual stimulus’ thereby encouraging integration of signals into one unified percept, we 857 

instructed participants to attend and report either the visual or the auditory signals (cf. (Stein et 858 

al., 1989; Wallace et al., 2004; Kording et al., 2007)). Thus, our task-instructions instructed 859 

observers to focus selectively on one signal component rather than treating the two signals as 860 

originating necessarily from one common object.  861 
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At the behavioral level, our results demonstrate that observers did not integrate signals 862 

into one unified percept as predicted by MLE. The visual weight increased not only when the 863 

visual signal was more reliable but also when it needed to be reported. Most importantly, even 864 

when auditory and visual signals were spatially congruent, i.e., likely to originate from one 865 

single object, observers were able to focus selectively on one sensory modality as indicated by 866 

differences in variance for the spatial representations obtained from auditory and visual report 867 

conditions. In other words, modality-specific attention and report modulated not only the sensory 868 

weights during the spatial conflict conditions but also during the congruent conditions. Yet, the 869 

advantage of being able to selectively control the relative sensory contributions to the final 870 

percept came at the price of not obtaining the multisensory benefit (i.e., a reduction in variance 871 

for the perceived signal location) that is afforded by reliability-weighted integration according to 872 

MLE principles (Ernst and Banks, 2002; Alais and Burr, 2004). 873 

Next, we investigated how auditory and visual signals were integrated into spatial 874 

representations at the neural level focusing on low-level visual areas (V1-3), low-level auditory 875 

areas (primary auditory areas and planum temporale) and parietal areas (IPS0-4). Combining 876 

fMRI multivariate decoding with classical MLE analysis (as in our psychophysics analysis), we 877 

obtained neural weights and variances of spatial representations from neurometric functions that 878 

were computed based on spatial locations decoded from regional BOLD-response patterns.  879 

Consistent with previous reports of multisensory influences and interactions in primary 880 

sensory areas (Foxe et al., 2000; Bonath et al., 2007; Kayser et al., 2007; Lakatos et al., 2007; 881 

Lewis and Noppeney, 2010; Werner and Noppeney, 2010; Bonath et al., 2014; Lee and 882 

Noppeney, 2014), unisensory auditory signals elicited spatial representations in visual cortex and 883 

visual signals in auditory cortex. In other words, unisensory signals from non-preferred sensory 884 
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modalities can be decoded from low-level sensory areas (Meyer et al., 2010; Liang et al., 2013; 885 

Vetter et al., 2014). Yet, the unisensory neurometric functions demonstrated that the spatial 886 

representation decoded from low-level visual (resp. auditory) areas were far more reliable for 887 

signals from the preferred than non-preferred sensory modality. As a result and in line with MLE 888 

predictions, the sensory weights applied during multisensory integration to the signals from the 889 

auditory modality were negligibly small in low-level visual areas. In auditory areas the visual 890 

weight was also small at least during auditory report but significantly different from zero. 891 

Further, neither the sensory weights nor the variance depended significantly on the reported 892 

sensory modality. Instead the variance of the spatial representation decoded from audiovisual 893 

signals was comparable to the unisensory visual variance in visual regions and comparable to 894 

unisensory auditory variance in auditory regions. Hence, our quantitative analysis based on 895 

neurometric functions moves significantly beyond previous research that demonstrated better 896 

than chance decoding performance for auditory signals from visual areas and vice versa (Meyer 897 

et al., 2010; Liang et al., 2013; Vetter et al., 2014). It demonstrates that signals from the non-898 

preferred sensory modality elicit representations that are far less reliable than those evoked by 899 

signals from the preferred sensory modality. Likewise, non-preferred signals exert only limited 900 

influences on spatial representations in low-level sensory areas during audiovisual stimulation. 901 

Surprisingly, visual signals exerted stronger influences on auditory areas than vice versa 902 

potentially reflecting the importance of visual inputs for spatial perception (Welch and Warren, 903 

1980). 904 

In higher-order areas IPS0-4, unisensory auditory and visual signals elicited spatial 905 

representations that were more comparable in their reliabilities. Yet, consistent with the well-906 

known visual response properties of IPS0-4 (Swisher et al., 2007; Wandell et al., 2007) visual 907 
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stimulation elicited more reliable representations. Hence, as predicted by MLE, IPS0-4 gave a 908 

stronger weight to the visual signal during multisensory integration. Potentially, IPS could 909 

implement reliability-weighted integration via probabilistic population codes (Ma et al., 2006) or 910 

normalization over the pool of neurons within a region (Ohshiro et al., 2011, 2017). Because we 911 

used a linear SVM classifier as decoder, it remains unclear which encoding scheme IPS used to 912 

represent audiovisual space. To investigate the potential neural implementations, future studies 913 

may use explicit encoding models (e.g., estimating voxels’ tuning function for space using 914 

population receptive fields methods)  (Dumoulin and Wandell, 2008) to characterize the effects 915 

of reliability-weighted multisensory integration on voxel-response tuning functions.  916 

However, in contrast to the MLE predictions the sensory weights in IPS were not only 917 

modulated by visual reliability, but also by the sensory modality that needed to be reported. The 918 

visual signal had a stronger influence on the decoded spatial representation during visual than 919 

auditory report thereby reflecting the sensory weight profile observed at the behavioral level. 920 

Likewise, the variance of the spatial representation for audiovisual stimuli in IPS0-4 was 921 

marginally influenced by the modality of the reported signal suggesting that the formation of 922 

audiovisual representations in IPS0-4 may be susceptible to top-down control. Dynamic Causal 923 

Modelling and Bayesian model comparison suggested that these changes in audiovisual spatial 924 

representations in IPS0-4 were mediated by modulatory effects: Visual reliability modulated the 925 

bottom-up connections from V1-3 to IPS0-4 and modality-specific report modulated the top-926 

down connections from PFC to IPS0-4. 927 

Our results demonstrate that observers do not fully integrate auditory and visual signals 928 

into unified spatial representations at the behavioral level and neural level in higher-order 929 

association areas IPS0-4. Even when auditory and visual signals were spatiotemporally 930 
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congruent and hence likely to originate from a common source, the sensory signal that needed to 931 

be reported had a stronger influence on the spatial representations than the one that was to be 932 

ignored. An important aim for future studies is to determine how a change in reported sensory 933 

modality modulates audiovisual integration and to dissociate between two main mechanisms: 934 

First, modality-specific report may influence the sensory weights via attentional mechanisms. 935 

Attention is known to increase the signal-to-noise ratio or reliability of the signal in the attended 936 

sensory modality (Desimone and Duncan, 1995; Martinez-Trujillo and Treue, 2004; Briggs et al., 937 

2013; Sprague et al., 2015). Thereby, attention mediates a greater weight in the multisensory 938 

integration process (Alsius et al., 2005; Busse et al., 2005; Talsma and Woldorff, 2005; Alsius et 939 

al., 2007; Talsma et al., 2007; Talsma et al., 2010; Zimmer et al., 2010a; Zimmer et al., 2010b; 940 

Donohue et al., 2011; Vercillo and Gori, 2015; Macaluso et al., 2016); but see Helbig and Ernst, 941 

2008). In this model, auditory and visual signals are integrated weighted by their sensory 942 

reliabilities. Yet, in contrast to the MLE model the reliability of each sensory input can be 943 

modified prior to audiovisual integration by top-down attention as manipulated by modality-944 

specific report. Second, modality-specific report instructs participants not to fuse signals into one 945 

unified percept but to form a spatial estimate selectively for one of the two signals. These 946 

instructions may attenuate the integration process even for signals that are collocated in space 947 

thereby enabling participants to compute a final spatial estimate that is more strongly based on 948 

the reported sensory modality. In this second case, MLE analyses compute a stronger weight for 949 

the reported signal because of its task-relevance rather than attentionally increased sensory 950 

reliability. Yet, human behavior in this second case is better accommodated by recent Bayesian 951 

causal inference models that explicitly model the potential causal structures of the multisensory 952 

signals, that is whether they have been caused by common or independent causes  (Kording et 953 
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al., 2007; Shams and Beierholm, 2010; Wozny et al., 2010; Rohe and Noppeney, 2015a, 2016). 954 

In Bayesian causal inference, a final estimate of the spatial location under auditory or visual 955 

report is obtained by combining the estimates under the two causal structure, i.e., the MLE 956 

reliability-weighted estimate under the assumption of a common source and the estimate of the 957 

sensory signals that needs to be reported under the assumption of independent causes. Because 958 

the underlying causal structure is uncertain and modality-specific report instructions may further 959 

lower the observers’ belief that signals are caused by a common source, the reported spatial 960 

estimates differ for auditory and visual reports, thereby modelling effects of modality-specific 961 

report. Further, because in the course of our experiment the audiovisual signals were spatially 962 

uncorrelated across all conditions (i.e., the auditory and the visual signal locations were 963 

independently sampled from the four locations, see Fig. 1B), participants might have implicitly 964 

learnt a low prior probability of a common cause. Thus, even in conditions in which the 965 

audiovisual signals only had a small spatial disparity (which we selectively used in our analyses), 966 

participants might have computed a low posterior belief that signals arose from a common cause. 967 

In general,  previous research has shown that Bayesian causal inference outperforms the MLE 968 

model under conditions in which a common cause is unlikely, for example a large spatial 969 

discrepancy between the audiovisual signals (Kording et al., 2007; Rohe and Noppeney, 2015a, 970 

b).  To dissociate the effects of modality-specific attention and report, future studies may use 971 

attentional cuing paradigms that pre-cue participants prior to stimulus presentation to attend to 972 

the visual (resp. auditory) signal and post-cue them after stimulus presentation to report the 973 

location of the auditory (resp. visual) signal. 974 

 975 
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To conclude, the present study characterized how the brain integrates auditory and visual 976 

signals into spatial representations and how these integration processes are modulated by 977 

modality-specific report or attention. Combining psychophysics and multivariate fMRI-decoding 978 

we demonstrated that classical MLE models cannot fully account for participants’ behavioral and 979 

neural responses if the experimental context (i.e., modality-specific report and overall 980 

uncorrelated audiovisual signals) undermines observers’ perception of a common signal cause, 981 

thus violating the MLE model’s core assumption. While the behavioral and neural weights in 982 

parietal cortex depended on the relative sensory reliabilities in line with the quantitative 983 

predictions of the MLE model, they were also modulated by whether participants attended and 984 

reported the visual or the auditory signal location. Likewise, the variance of the spatial 985 

representations depended on task-context to some extent even for collocated audiovisual signals 986 

both at the neural and behavioral level. These results suggest that audiovisual integration can be 987 

modulated by top-down control. Even when the auditory and visual signals were spatially close 988 

(or collocated) and temporally synchronous, modality-specific report influenced how they were 989 

weighted and integrated into spatial representations.  990 

 991 
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Figure 4-1 1046 
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Tables 1052 

Table 1. Statistical comparison of empirical weights (wV,emp) 

and standard deviations (σAV,emp) obtained from the 

psychometric (behavior) and neurometric (fMRI) functions 

pertaining to the audiovisual conditions of high and low 

visual reliability with the MLE predictions (σAV,pred, wV,pred) 

and unisensory standard deviations (σuniV, σuniA). 

 
VR+ VR- 

 
 wV,emp – wV,pred 

Psychophysics  p 0.0629 0.129 

V1-V3 p 0.230 1 

IPS0-4 p 0.631 1 

Low-level auditory p 0.064 1 

 
 σAV,emp – σAV,pred 

Psychophysics  p 0.188 0.0629 

V1-V3 p 0.241 0.001 

IPS0-4 p 0.020 0.275 

Low-level auditory p 1 1 

 
 σAV,emp – σuniV 
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Psychophysics p  0.188 0.438 

V1-V3 p 0.241 0.001 

IPS0-4 p 0.022 1 

Low-level auditory p 0.883 0.963 

 
 σAV,emp – σuniA 

Psychophysics p 0.063 0.313 

V1-V3 p 0.104 0.169 

IPS0-4 p 0.002 0.086 

Low-level auditory p 1 1 
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Table 2. Effects of visual reliability (VR), modality-specific report (MR) and their interaction 

(VRxMR) on empirical weights (wV,emp) and standard deviations (σAV,emp) obtained from the 

psychometric (behavior) and neurometric (fMRI) functions. 

 wV,emp σAV,emp 

  VR MR VRxMA VR MR VRxMR 

Psychophysics  [F, p] 
5.149,0.0

86 

16.308, 

0.016 

8.605, 

0.043 

19.129, 

0.012 

2.172, 

0.215 

18.892, 

0.012 

V1-V3 p 0.346 0.131 0.957 < 0.001 0.142 1 

IPS0-4 p 0.022 0.001 1 <0.001 0.051 1 

Low-level auditory p 0.693 0.217 1 1 0.419 1 
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Table 3. Results of the Bayesian model comparison between five competing models 

of the psychometric data. 

Model: 
I: 

Null model 

II: 
MLE model 

III: 
Reliability-
weighting 

IV: 
 Full model 

# parameters 8 5 11 17 

R2 (mean) 0.656 0.658 0.687 0.722 

Relative BIC (sum) 0 59.662 1501.077 3202.034 

Exp. post. p. 0.111 
0.111 0.111 0.667 

Exceed. p. 0.014 
0.014 0.014 0.957 

Prot. exceed. p. 0.026 
0.026 0.026 0.921 
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Table 4. Results of the model comparison of the 2 x 2 Dynamical Causal Models in 

which visual reliability (VR) modulated the connection from V1-3 to IPS0-4 and 

modality-specific report (MR) modulated the connection from PFC to IPS0-4.  

 
Modulation 

VR & MR 

Modulation 

VR 

Modulation 

MR 
No Modulation 

Model evidence (FFX) 0 -52.947 -54.033 -90.45 

Posterior p. (FFX) 1 0 0 0 

Exp. posterior p. (RFX) 0.587 0.136 0.139 0.139 

Exceed. p. (RFX) 0.902 0.032 0.033 0.033 

Prot. exceed. p. (RFX) 0.699 0.1 0.101 0.101 
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Figure legends 1250 

Figure 1. Example trial and experimental design. (A) Participants were presented with 1251 

unisensory auditory, unisensory visual and synchronous audiovisual signals originating from 1252 

four possible locations along the azimuth. The visual signal was a cloud of white dots. The 1253 

auditory signal was a brief burst of white noise presented via headphones. Participants localized 1254 

either the auditory or the visual signal (n.b., for illustrational purposes the visual angles of the 1255 

cloud have been scaled in a non-uniform fashion in this scheme). (B) In the audiovisual 1256 

conditions, the experimental design manipulated (1) the location of the visual (V) signal (−10°, 1257 

−3.3°, 3.3°, 10°) (2) the location of the auditory (A) signal (−10°, −3.3°, 3.3°, 10°), (3) the 1258 

reliability of the visual signal (low versus high standard deviation of the visual cloud; VR+ vs. 1259 

VR-), and (4) modality-specific report (auditory versus visual). Only congruent ( AV = 0°; 1260 

AV = A - V) and slightly disparate conditions ( AV = ±6°) were used in this study. In 1261 

unisensory conditions, the experimental design manipulated the location of the auditory signal in 1262 

auditory conditions and the locations of the visual signals as well as visual reliability in visual 1263 

conditions. 1264 

 1265 

Figure 2. Psychophysics results: psychometric functions, visual weights and audiovisual 1266 

variances. In audiovisual (AV) conditions, psychometric functions were fitted to the fraction of 1267 

‘right’ location responses plotted as a function of the mean AV location. Data were fitted 1268 

separately for audiovisual spatially congruent ( AV = 0°) and slightly conflicting conditions 1269 

( AV = ±6° with AV = A - V). The empirical visual weight is computed from PSE locations 1270 

of the audiovisual spatially conflicting psychometric functions (see equation 2). If the visual 1271 

weight is greater than 0.5, the PSE for AV = -6° is left of the PSE for AV = 6°. If the visual 1272 
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weight is smaller than 0.5, the PSE for AV = -6° is right of the PSE for AV = 6°. If the visual 1273 

weight is equal to 0.5, the PSEs for AV = -6° and AV = 6° are identical. (A-D) Psychometric 1274 

functions for audiovisual spatially congruent and conflicting trials are plotted separately for the 1275 

four conditions in our 2 (visual reliability: high, VR+ vs. low, VR-) x 2 (modality-specific 1276 

report: auditory vs. visual) factorial design. (E) In unisensory conditions, psychometric functions 1277 

were fitted to the fraction of right location responses plotted as a function of the signal location 1278 

from unisensory auditory (A) and visual conditions of high (V, VR+) and low (V, VR-) visual 1279 

reliability. (F) Visual weights (mean ± SEM across participants): MLE predicted and empirical 1280 

weights for the four conditions in our 2 (visual reliability: high, VR+ vs. low, VR-) x 2 1281 

(modality-specific report: auditory vs. visual) factorial design. To facilitate the comparison with 1282 

the MLE predictions that do not depend on modality-specific report, the visual weights are also 1283 

plotted after pooling the data across both report conditions and re-fitting the neurometric 1284 

functions. (G) Standard deviations (σ, mean ± SEM across participants): Unisensory and 1285 

audiovisual MLE predicted and empirical standard deviations of the perceived spatial locations 1286 

for the same combination of conditions as in (F). For illustrational purposes standard deviations 1287 

were normalized by the auditory standard deviation (original auditory standard deviation = 5.39 1288 

± 1.25 (mean ± SEM)).  1289 

 1290 

Figure 3. fMRI results in the intraparietal sulcus: neurometric functions, visual weights 1291 

and audiovisual variances. In intraparietal sulcus (IPS0-4), neurometric functions were fitted to 1292 

the fraction of decoded ‘right’ location responses plotted as a function of the mean audiovisual 1293 

(AV) location (see figure 2 legend for additional information). (A-D) Neurometric functions are 1294 

plotted separately for the four conditions in our 2 (visual reliability: high, VR+ vs. low, VR-) x 2 1295 
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(modality-specific report: auditory vs. visual) factorial design. (E) In unisensory conditions, 1296 

psychometric functions were fitted to the fraction of right location responses plotted as a function 1297 

of the signal location from unisensory auditory (A) and visual conditions of high (V, VR+) and 1298 

low (V, VR-) visual reliability. (F) Visual weights (mean and 68% bootstrapped confidence 1299 

interval): MLE predicted and empirical visual weights for 2 (visual reliability: high, VR+ vs. 1300 

low, VR-) x 2 (modality-specific report: auditory vs. visual) AV conditions. To facilitate the 1301 

comparison with the MLE predictions that do not depend on modality-specific report, the visual 1302 

weights are also plotted after pooling the data across both report conditions and re-fitting the 1303 

neurometric functions. (G) Standard deviations (σ, mean and 68% bootstrapped confidence 1304 

interval): Unisensory and audiovisual MLE predicted and empirical standard deviations for the 1305 

same combination of conditions as in (F). For illustrational purposes standard deviations were 1306 

normalized by the auditory standard deviation (original auditory standard deviation = 21.54). For 1307 

extended analyses controlling motor responses and global interhemispheric activation differences 1308 

in IPS0-4 see Fig. 3-1 and 3-2. 1309 

 1310 

Figure 4. fMRI results in low-level visual and auditory regions: Visual weights and 1311 

audiovisual variances. (A) Visual weights (mean and 68% bootstrapped confidence interval): 1312 

MLE predicted and empirical visual weights for 2 (visual reliability: high, VR+ vs. low, VR-) x 1313 

2 (modality-specific report: auditory vs. visual) audiovisual conditions in low-level visual 1314 

regions (V1-3). To facilitate the comparison with the MLE predictions that do not depend on 1315 

modality-specific report, the visual weights are also plotted after pooling the data across both 1316 

report conditions and re-fitting the neurometric functions. (B) Standard deviations (σ, mean and 1317 

68% bootstrapped confidence interval): Unisensory and audiovisual MLE predicted and 1318 
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empirical standard deviations for the same combination of conditions as in (A). For illustrational 1319 

purposes standard deviations were normalized by the auditory standard deviation (original 1320 

auditory standard deviation = 61.68). (C) Visual weights (mean and 68% bootstrapped 1321 

confidence interval): MLE predicted and empirical visual weights in low-level auditory regions 1322 

(hA) as shown in (A). (D) Standard deviations (σ, mean and 68% bootstrapped confidence 1323 

interval): Unisensory and audiovisual MLE predicted and empirical standard deviations of 1324 

spatial representations in low-level auditory regions (hA) as shown in B; note that the upper 1325 

confidence interval for the visual variance is truncated for illustrational purposes. For 1326 

illustrational purposes, standard deviations were normalized by a combined visual standard 1327 

deviation for low and high visual reliability (original visual standard deviation = 38.75, averaged 1328 

across levels of visual reliability). For extended analyses controlling for global interhemispheric 1329 

activation differences in low-level visual and auditory regions see Fig. 4-1. 1330 

 1331 

Figure 5. Dynamic causal modelling. In the optimal model (i.e., the model with the highest 1332 

exceedance probability), visual reliability modulated the connection from V1-3 to IPS0-4 and 1333 

modality-specific report modulated the connection from PFC to IPS0-4. Values are across-1334 

subjects means (± SEM) indicating the strength of extrinsic, intrinsic and modulatory 1335 

connections. The modulatory effects quantify how visual reliability and modality-specific report 1336 

change the values of intrinsic connections. 1337 

 1338 

 1339 

Figure 3-1. fMRI results in the intraparietal sulcus when controlling for motor responses: 1340 

neurometric functions, visual weights and audiovisual variances. In intraparietal sulcus 1341 

(IPS0-4), neurometric functions were fitted to the fraction of decoded ‘right’ location responses 1342 
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plotted as a function of the mean audiovisual (AV) location (see figure 2 legend for additional 1343 

information). To control for motor planning in IPS0-4, activation patterns were obtained from a 1344 

general linear model that modelled participants’ trial-wise button responses as a nuisance 1345 

variable (A-D) Neurometric functions are plotted separately for the four conditions in our 2 1346 

(visual reliability: high, VR+ vs. low, VR-) x 2 (modality-specific report: auditory vs. visual) 1347 

factorial design. (E) In unisensory conditions, psychometric functions were fitted to the fraction 1348 

of right location responses plotted as a function of the signal location from unisensory auditory 1349 

(A) and visual conditions of high (V, VR+) and low (V, VR-) visual reliability. (F) Visual 1350 

weights (mean and 68% bootstrapped confidence interval): MLE predicted and empirical visual 1351 

weights for 2 (visual reliability: high, VR+ vs. low, VR-) x 2 (modality-specific report: auditory 1352 

vs. visual) AV conditions. To facilitate the comparison with the MLE predictions that do not 1353 

depend on modality-specific report, the visual weights are also plotted after pooling the data 1354 

across both report conditions and re-fitting the neurometric functions. (G) Standard deviations 1355 

(σ, mean and 68% bootstrapped confidence interval): Unisensory and audiovisual MLE predicted 1356 

and empirical standard deviations for the same combination of conditions as in (F). For 1357 

illustrational purposes standard deviations were normalized by the auditory standard deviation. 1358 

 1359 

Figure 3-2. fMRI results in the intraparietal sulcus when controlling for global 1360 

interhemispheric activation differences: neurometric functions, visual weights and 1361 

audiovisual variances. In intraparietal sulcus (IPS0-4), neurometric functions were fitted to the 1362 

fraction of decoded ‘right’ location responses plotted as a function of the mean audiovisual (AV) 1363 

location (see figure 2 legend for additional information). To control for global interhemispheric 1364 

activation differences, activation patterns were z normalized separately for the left and right 1365 
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hemisphere within each condition prior to multivariate decoding. (A-D) Neurometric functions 1366 

are plotted separately for the four conditions in our 2 (visual reliability: high, VR+ vs. low, VR-) 1367 

x 2 (modality-specific report: auditory vs. visual) factorial design. (E) In unisensory conditions, 1368 

psychometric functions were fitted to the fraction of right location responses plotted as a function 1369 

of the signal location from unisensory auditory (A) and visual conditions of high (V, VR+) and 1370 

low (V, VR-) visual reliability. (F) Visual weights (mean and 68% bootstrapped confidence 1371 

interval): MLE predicted and empirical visual weights for 2 (visual reliability: high, VR+ vs. 1372 

low, VR-) x 2 (modality-specific report: auditory vs. visual) AV conditions. To facilitate the 1373 

comparison with the MLE predictions that do not depend on modality-specific report, the visual 1374 

weights are also plotted after pooling the data across both report conditions and re-fitting the 1375 

neurometric functions. (G) Standard deviations (σ, mean and 68% bootstrapped confidence 1376 

interval): Unisensory and audiovisual MLE predicted and empirical standard deviations for the 1377 

same combination of conditions as in (F). For illustrational purposes standard deviations were 1378 

normalized by the auditory standard deviation. 1379 

 1380 

 1381 

 1382 

Figure 4-1. fMRI results in low-level visual and auditory regions when controlling for 1383 

interhemispheric activation differences: Visual weights and audiovisual variances. To 1384 

control for interhemispheric activation differences, activation patterns were z normalized 1385 

separately in the left and right hemisphere within each condition prior to multivariate pattern 1386 

decoding. (A) Visual weights (mean and 68% bootstrapped confidence interval): MLE predicted 1387 

and empirical visual weights for 2 (visual reliability: high, VR+ vs. low, VR-) x 2 (modality-1388 
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specific report: auditory vs. visual) audiovisual conditions in low-level visual regions (V1-3). To 1389 

facilitate the comparison with the MLE predictions that do not depend on modality-specific 1390 

report, the visual weights are also plotted after pooling the data across both report conditions and 1391 

re-fitting the neurometric functions. (B) Standard deviations (σ, mean and 68% bootstrapped 1392 

confidence interval): Unisensory and audiovisual MLE predicted and empirical standard 1393 

deviations for the same combination of conditions as in (A). For illustrational purposes standard 1394 

deviations were normalized by the auditory standard deviation. (C) Visual weights (mean and 1395 

68% bootstrapped confidence interval): MLE predicted and empirical visual weights in low-level 1396 

auditory regions (hA) as shown in (A). (D) Standard deviations (σ, mean and 68% bootstrapped 1397 

confidence interval): Unisensory and audiovisual MLE predicted and empirical standard 1398 

deviations of spatial representations in low-level auditory regions (hA) as shown in B; note that 1399 

the upper confidence interval for the visual variance is truncated for illustrational purposes. For 1400 

illustrational purposes, standard deviations were normalized by a combined visual standard 1401 

deviation for low and high visual reliability. 1402 

  1403 
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Table legends 1404 

Table 1 1405 

Note: Numbers denote t and p values for psychophysics parameters and p values for neurometric 1406 

parameters. Psychophysics parameters were compared using two-tailed Wilcoxon signed rank 1407 

tests on individual parameters (random-effects analysis, df = 4). Neurometric parameters from 1408 

V1-V3, IPS0-4 and low-level auditory regions were compared using a two-tailed bootstrap test 1409 

(5000 bootstraps) on parameters computed across the sample (fixed-effects analysis). All 1410 

comparisons of neurometric parameters were Bonferroni corrected across the three regions of 1411 

interest. A = auditory, V = visual, VR+/- = High / low visual reliability. 1412 

 1413 

Table 2 1414 

Note: Numbers denote F and p values for psychophysics parameters and p values for neurometric 1415 

parameters. Effects on psychophysics parameters were computed using a repeated measures 1416 

ANOVA on rank-transformed weights and standard deviations (random-effects analysis, n = 5, 1417 

df1 = 1, df2 = 4). Effects on neurometric parameters were computed using two-tailed bootstrap 1418 

test (5000 bootstraps) on parameters computed across the sample (fixed-effects analysis). The 1419 

analyses for neurometric weights and standard deviations were Bonferroni corrected across the 1420 

three regions of interest. 1421 

 1422 

Table 3 1423 

Note: Model I: In the null model, neither PSEs nor slopes depended on visual reliability or modality-1424 

specific report. II: In the MLE model, audiovisual PSEs and slopes were predicted based on unisensory 1425 

variances as described in equation (1) and (3). III: In the reliability-weighted integration model, PSEs and 1426 

slopes depended on visual reliability unconstrained by MLE predictions. IV:  In the full model, PSEs and 1427 



 

73 
 

slopes depended on visual reliability unconstrained by MLE predictions and modality-specific report 1428 

(MR). R2, coefficient of determination, corrected for the binary response option (Nagelkerke, 1991). 1429 

Relative BIC = Bayesian Information Criterion (i.e., an approximation to the model evidence) at the 1430 

group level, i.e., subject-specific BICs summed over all subjects (BIC = LL − 0.5 M ln(N), LL = log 1431 

likelihood, M = number of parameters, N = number of data points) of a model relative to the null model 1432 

(n.b. a greater relative BIC indicates that a model provides a better explanation of our data). Exp. Post. p 1433 

= Expected posterior p. = probability that a given model generated the data for a randomly selected 1434 

subject. Exceed. p. = Exceedance p. = probability that a given model is more likely than any other model. 1435 

Prot. Exceed. p. = exceedance p. controlled for the fact that the observed variability in model evidences 1436 

occurred by chance, i.e., it quantifies the probability that one model is more frequent than any others 1437 

beyond chance. 1438 

 1439 

Table 4 1440 

Note: FFX = fixed-effects analysis. RFX = random-effects analysis. p. = probability. Model 1441 

evidence = Free energy (relative to full model) summed over participants (i.e., larger is better). 1442 

Exp. Post. p = Expected posterior p. = probability that a given model generated the data for a 1443 

randomly selected subject. Exceed. p. = Exceedance p. = probability that a given model is more 1444 

likely than any other model. Prot. exceed. p. = exceedance p. controlled for the fact that the observed 1445 

variability in model evidences occurred by chance, i.e., it quantifies the probability that one model is 1446 

more frequent than any others beyond chance.   1447 
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Table 1. Statistical comparison of empirical weights (wV,emp) 

and standard deviations (σAV,emp) obtained from the 

psychometric (behavior) and neurometric (fMRI) functions 

pertaining to the audiovisual conditions of high and low 

visual reliability with the MLE predictions (σAV,pred, wV,pred) 

and unisensory standard deviations (σuniV, σuniA). 

 
VR+ VR- 

 
 wV,emp – wV,pred 

Psychophysics  p 0.0629 0.129 

V1-V3 p 0.230 1 

IPS0-4 p 0.631 1 

Low-level auditory p 0.064 1 

 
 σAV,emp – σAV,pred 

Psychophysics  p 0.188 0.0629 

V1-V3 p 0.241 0.001 

IPS0-4 p 0.020 0.275 

Low-level auditory p 1 1 

 
 σAV,emp – σuniV 

Psychophysics p  0.188 0.438 

V1-V3 p 0.241 0.001 

IPS0-4 p 0.022 1 



 

 2 

Low-level auditory p 0.883 0.963 

 
 σAV,emp – σuniA 

Psychophysics p 0.063 0.313 

V1-V3 p 0.104 0.169 

IPS0-4 p 0.002 0.086 

Low-level auditory p 1 1 
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Table 2. Effects of visual reliability (VR), modality-specific report (MR) and their interaction 

(VRxMR) on empirical weights (wV,emp) and standard deviations (σAV,emp) obtained from the 

psychometric (behavior) and neurometric (fMRI) functions. 

 wV,emp σAV,emp 

  VR MR VRxMA VR MR VRxMR 

Psychophysics  [F, p] 
5.149,0.0

86 

16.308, 

0.016 

8.605, 

0.043 

19.129, 

0.012 

2.172, 

0.215 

18.892, 

0.012 

V1-V3 p 0.346 0.131 0.957 < 0.001 0.142 1 

IPS0-4 p 0.022 0.001 1 <0.001 0.051 1 

Low-level auditory p 0.693 0.217 1 1 0.419 1 
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Table 3. Results of the Bayesian model comparison between five competing models 

of the psychometric data. 

Model: 
I: 

Null model 

II: 

MLE model 

III: 

Reliability-
weighting 

IV: 

 Full model 

# parameters 8 5 11 17 

R2 (mean) 0.656 0.658 0.687 0.722 

Relative BIC (sum) 0 59.662 1501.077 3202.034 

Exp. post. p. 0.111 
0.111 0.111 0.667 

Exceed. p. 0.014 
0.014 0.014 0.957 

Prot. exceed. p. 0.026 
0.026 0.026 0.921 
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Table 4. Results of the model comparison of the 2 x 2 Dynamical Causal Models in 

which visual reliability (VR) modulated the connection from V1-3 to IPS0-4 and 

modality-specific report (MR) modulated the connection from PFC to IPS0-4.  

 
Modulation 

VR & MR 

Modulation 

VR 

Modulation 

MR 
No Modulation 

Model evidence (FFX) 0 -52.947 -54.033 -90.45 

Posterior p. (FFX) 1 0 0 0 

Exp. posterior p. (RFX) 0.587 0.136 0.139 0.139 

Exceed. p. (RFX) 0.902 0.032 0.033 0.033 

Prot. exceed. p. (RFX) 0.699 0.1 0.101 0.101 

 

 


