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Abstract 9 

 10 

Uncovering the neural dynamics of facial identity processing along with its representational basis 11 

outlines a major endeavor in the study of visual processing. To this end, here we record human 12 

electroencephalography (EEG) data associated with viewing face stimuli; then, we exploit spatiotemporal 13 

EEG information to determine the neural correlates of facial identity representations and to reconstruct the 14 

appearance of the corresponding stimuli. Our findings indicate that multiple temporal intervals support: 15 

facial identity classification, face space estimation, visual feature extraction and image reconstruction. In 16 

particular, we note that both classification and reconstruction accuracy peak in the proximity of the N170 17 

component. Further, aggregate data from a larger interval (50-650 ms after stimulus onset) support robust 18 

reconstruction results, consistent with the availability of distinct visual information over time. Thus, 19 

theoretically, our findings shed light on the time course of face processing while, methodologically, they 20 

demonstrate the feasibility of EEG-based image reconstruction. 21 

 22 

Keywords ERP, face space, pattern analysis, N170, spatiotemporal dynamics, image 23 

reconstruction  24 
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Significance statement 25 

 26 

Identifying a face is achieved through fast and efficient processing of visual information. Here, we 27 

investigate the nature of this information, its specific content and its availability at a fine-grained temporal 28 

scale. Notably, we provide a way to extract, to assess and to visualize such information from neural data 29 

associated with individual face processing. Thus, the present work accounts for the time course of face 30 

individuation through appeal to its underlying visual representations while, also, it provides a first 31 

demonstration regarding the ability to reconstruct the appearance of stimulus images from 32 

electroencephalography data. 33 

  34 
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Introduction 35 

Elucidating the dynamics of visual face processing is essential to understanding its underlying 36 

mechanisms. To this end, considerable efforts have been devoted to characterizing the time course of face 37 

processing especially through the use of electroencephalography (EEG) and magnetoencephalography 38 

(MEG) given the temporal resolution of these methods. Accordingly, much is known about the temporal 39 

profile of face processing as reflected by either traditional event-related potentials (ERP) (Bentin & 40 

Deouell, 2000; Itier & Taylor, 2002; Huddy, Schweinberger, Jentzsch, & Burton, 2003; Tanaka, Curran, 41 

Porterfield, & Collins, 2006; Rossion & Caharel, 2011; Zheng, Mondloch, & Segalowitz, 2012), or by 42 

spatiotemporal patterns (Liu, Agam, Madsen, & Kreiman, 2009; Cichy, Pantazis, & Oliva, 2014; Vida, 43 

Nestor, Plaut, & Behrmann, 2017). Comparatively less is known about the visual representations 44 

underlying the dynamics of face processing, especially as related to facial identity. To shed light on this 45 

issue, the present work employs an image-reconstruction paradigm (Miyawaki et al., 2008; Naselaris, 46 

Prenger et al., 2009; Nishimoto et al., 2011; Cowen et al., 2014; Chang & Tsao, 2017) seeking to 47 

approximate the visual appearance of individual faces from spatiotemporal EEG patterns. Concretely, this 48 

work aims to answer whether the visual information involved in face identification can be recovered from 49 

EEG signals and, further, whether such information can support the characterization of neural-based face 50 

space along with the reconstruction of individual face images. 51 

Recent applications of pattern analysis have focused on the temporal profile of face discrimination 52 

at the category (Carlson, Tovar, Alink, & Kriegeskorte, 2013; Van de Nieuwenhuijzen et al., 2013; 53 

Cauchoix, Barragan-Jason, Serre, & Barbeau, 2014; Cichy, Pantazis, & Oliva, 2014; Kaneshiro et al., 54 

2015) and the exemplar level (Davidesco et al., 2014; Ghuman, et al., 2014). For instance, expression-55 

invariant identity discrimination has been carried out using MEG (Vida, Nestor, Plaut, & Behrmann, 56 

2017), electrocorticography (Ghuman et al., 2014) and EEG (Nemrodov, Niemeier, Mok, & Nestor, 57 
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2016). These studies found multiple, distinct temporal windows sensitive to facial information and, 58 

consistent with results from monkey neurophysiology (Hung, Kreiman, Poggio, & DiCarlo, 2005; 59 

Freiwald, Tsao, & Livingstone, 2009) and human psychophysics (Lehky, 2000; Tanaka & Curran, 2001; 60 

Crouzet, Kirchner, & Thorpe, 2010), have estimated an early onset for such sensitivity (Ghuman et al., 61 

2014; Nemrodov et al., 2016). Further, the cortical source of this information was attributed primarily to 62 

the fusiform gyrus (FG) in line with homologous investigations of face identification using functional 63 

magnetic resonance imaging (fMRI) (Nestor, Plaut, & Behrmann, 2011; Goesaert & Op de Beeck, 2013; 64 

Anzellotti, Fairhall, & Caramazza, 2014). 65 

Yet, the representational basis of facial identity that allows successful discrimination from neural 66 

data remains to be elucidated. Arguably, neural patterns elicited by face perception speak to the properties 67 

of a representational face space (Valentine, 1991), or, more generally, of a representational similarity 68 

space (Kriegeskorte, Mur, & Bandettini, 2008). In an effort to clarify the nature of such representations, 69 

recent fMRI work (Nestor, Plaut, & Behrmann, 2016) has combined the study of face space and neural-70 

based image reconstruction. Specifically, this work has derived visual features from the structure of FG-71 

based face space and, then, used such features for facial image reconstruction. However, this work did not 72 

consider the temporal aspects of face processing, neither did it assess the invariant structure of a facial 73 

identity space – surprisingly, we note that face space invariance over common image transformations 74 

(e.g., viewpoint, expression) has rarely been explicitly investigated (but see (Newell, Chiroro, & 75 

Valentine, 1999; Blank & Yovel, 2011)).  76 

To address the issues above, the current work aims to derive face space constructs from the EEG 77 

signal associated with consecutive time windows separately for different facial expressions (i.e., neutral 78 

and happy). Then, it reconstructs the appearance of one set of faces (e.g., happy) based on the structure of 79 

the face space derived for the other faces (e.g., neutral). This demonstration provides evidence that the 80 
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spatiotemporal information of EEG patterns is rich enough to support: (i) identity-level face 81 

discrimination; (ii) neural-based face space estimation; (iii) visual feature synthesis, and (iv) facial image 82 

reconstruction. Further, this work characterizes the neural dynamics of expression-invariant face 83 

processing while, more generally, it provides proof of concept for the possibility of EEG-based image 84 

reconstruction. 85 

Materials and Methods 86 

Participants 87 

Thirteen healthy adults (6 males, 7 females; age range: 18–27 years) with normal or corrected-to-88 

normal vision were recruited from the (Author University) community to participate in the study in 89 

exchange for monetary compensation. All participants provided informed consent and all experimental 90 

procedures were approved by the Research Ethics Board at (Author University). The data of all 91 

participants were included in the analyses reported below. 92 

Stimuli 93 

A total of 140 face images of 70 individuals, each displaying a neutral and a happy expression 94 

were used as experimental stimuli. Out of these, 108 images of 54 unfamiliar males were selected from 95 

three databases: AR (Martinez & Benavente, 1998), Radboud (Langner, Dotsch, Bijlstra, Wigboldus, 96 

Hawk, & van Knippenberg, 2010) and FEI (Thomaz & Giraldi, 2010). The remaining 32 images 97 

displayed faces of 6 famous male and 10 female individuals selected from open access sources. To be 98 

clear, unfamiliar male face stimuli are the focus of the present investigation while female faces were used 99 

as go trials in a go/no-go gender recognition task (see Experimental design) and additional famous male 00 

faces were included to promote alertness (however, no results are reported for them below due to the 01 

smaller stimulus set that precluded a separate examination of famous face recognition).  02 
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All images featured young adult Caucasian individuals with frontal view, gaze and illumination. 03 

The stimuli were selected so that no facial accessories, hair or makeup obscured the internal features of 04 

the face and so that all happy expressions displayed an open-mouth smile. These images were: (a) scaled 05 

uniformly and aligned with roughly the same position of the eyes and the nose; (b) cropped to eliminate 06 

background; (c) normalized with the same mean and root mean square (RMS) contrast values separately 07 

for each color channel in CIEL*a*b* color space, and (d) reduced to the same size (95 X 64 pixels). 08 

Experimental design  09 

Prior to EEG testing participants were administered the Cambridge Face Memory Test (CFMT), 10 

(Duchaine & Nakayama, 2006) to confirm that their face processing abilities fall within the range of 11 

normal performance for young adults (Bowles et al., 2009). Participants also completed the Vividness of 12 

Visual Imagery Questionnaire 2 (VVIQ-2) (Marks, 1995) along with a custom familiarity-rating famous 13 

face questionnaire. 14 

During EEG sessions participants were seated in a dimly lit room at a viewing distance of 80 cm 15 

from an LCD monitor (resolution: 1920 X 1080, refresh rate: 60Hz). The participants were instructed to 16 

perform a go/no-go gender recognition task by pressing a designated key every time they saw a female 17 

face, irrespective of expression. The experiment consisted of 32 blocks of stimulus presentation divided 18 

into 2 sessions carried out on different days. In each session, experimental blocks were preceded by one 19 

training block, subsequently discarded from all analyses. The blocks were separated by self-paced breaks. 20 

Over the course of any given block, each image of a male face was presented twice and each image 21 

of a female face was presented once, for a total of 260 trials. Images were presented in a pseudorandom 22 

order under the constraint that no facial identity would appear consecutively. Each stimulus was presented 23 

in the center of the screen against a black background and subtended a visual angle of 3.2 x 4.9. A 24 

stimulus display lasted for 300 ms and it was followed by a fixation cross for a duration ranging randomly 25 
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between 925–1075 ms. Each session, including participant and equipment setup, lasted around 2.5 hours. 26 

Stimulus presentation and response recording relied on Matlab 9.0 (Mathworks, Natick, MA) and 27 

Psychtoolbox 3.0.8 (Brainard, 1997; Pelli, 1997). 28 

EEG acquisition and preprocessing 29 

EEG data were recorded using a 64-electrode Biosemi ActiveTwo EEG recording system (Biosemi 30 

B.V., Amsterdam, Netherlands). The electrodes were arranged according to the International 10/20 31 

System. The electrode offset was kept below 40 mV. The EEG and EOG were low-pass filtered using a 32 

fifth order sinc filter with a half-power cutoff at 204.8 Hz and then digitized at 512 Hz with 24 bits of 33 

resolution. All data were digitally filtered offline (zero-phase 24 dB/octave Butterworth filter) with a 34 

bandpass of 0.1–40 Hz. 35 

Next, data were separated into epochs, from 100 ms prior to stimulus presentation until 900 ms 36 

later, and baseline-corrected. Epochs corresponding to go trials (i.e., female face stimuli) and epochs 37 

containing false alarms were discarded from further analysis. Further, noisy electrodes were interpolated 38 

if necessary (no more than 2 electrodes per subject) and epochs were re-referenced to the average 39 

reference. In addition, prior to univariate ERP analysis, data were cleaned of ocular artifacts using 40 

Infomax ICA (Delorme, Sejnowski, & Makeig, 2007).  41 

After removing trials containing artifacts and/or false alarms, an average of 96% of trials (range: 42 

75%-100% across participants) were selected for further analysis. In particular, we note that relatively few 43 

trials contained false alarms as participants performed the go/no-go recognition task at ceiling (accuracy 44 

range: 98.1% - 100% across participants). 45 

All analyses were carried out using Letswave 6 (http://nocions.webnode.com/letswave) (Mouraux 46 

& Iannetti, 2008), MATLAB 9.0 and the G*Power toolbox (Faul, et al., 2007). 47 
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Univariate ERP analyses 48 

Twelve electrodes situated over homologue occipitotemporal areas (P5, P7, P9, PO3, PO7, O1 on 49 

the left and P6, P8, P10, PO4, PO8, O2 on the right) were selected for ERP analysis. Their selection was 50 

motivated by the relevance of these electrodes for face processing as revealed by ERP analysis (e.g., 51 

robust N170 amplitudes). Data from electrodes over the left and right sites were then averaged separately 52 

creating two sets of signals, one for each hemisphere.  53 

For the purpose of univariate tests, the data was averaged for each unfamiliar face identity across 54 

expressions. Then, P1, N170 and N250 components were visually identified on a grand-average plot and a 55 

two-way repeated measures ANOVA over facial identities and hemispheres was conducted on maximum 56 

amplitudes in the 70-180 ms range for P1, and on minimum amplitudes in the 160-250 and 260-350 ms 57 

ranges for N170 and N250, respectively. Greenhouse-Geisser correction was applied in case of violation 58 

of the sphericity assumption. 59 

Pattern classification analysis 60 

Epochs were linearly detrended, z-scored across time and electrodes, and corrected for outliers 61 

(i.e., values exceeding 3SD from the mean were thresholded at ±3 to minimize the deleterious effect of 62 

extreme values on SVM-based pattern classification). Then, all epochs were normalized to the same range 63 

(0–1) and mean (i.e., 0.5). In order to boost the signal-to-noise ratio (SNR) of spatiotemporal patterns 64 

(Grootswagers, Wardle, & Carlson, 2016) multiple epochs pertaining to the same condition were averaged 65 

into ERP traces. Specifically, all epochs corresponding to the same image stimulus across two consecutive 66 

blocks, for a maximum of 4 epochs, were averaged together resulting in 16 separate traces per stimulus. 67 

Further, this procedure was also instrumental in handling missing data following trial removal and in 68 

balancing the number of observations for pattern classification. Specifically, since it is possible that both 69 

trials associated with a given stimulus in a given block be removed (e.g., due to artifacts), averaging data 70 
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across single blocks can lead to different numbers of observations for different stimuli. However, 71 

averaging data across pairs of consecutive blocks (i.e., 1-4 trials per stimulus following data removal) 72 

ensured that equal numbers of observations can be constructed for each pair of stimuli undergoing pattern 73 

classification. 74 

Next, to increase the robustness of pattern analyses epochs were divided into temporal windows 75 

containing 5 consecutive bins (5 bins*1.95 ms≈10 ms)(Blankertz et al., 2011). For each window, data 76 

were concatenated into observations – for instance, data across selected occipitotemporal electrodes (see 77 

Univariate ERP analyses) were concatenated into 60-dimension observations (5 time bins X 12 78 

electrodes). These observations were constructed for the purpose of pattern analyses in time, window by 79 

window. In addition, we constructed more inclusive observations that contain all time bins between 50 ms 80 

and 650 ms after stimulus presentation (3684-dimension vectors: 307 bins x 12 electrodes), and, thus, 81 

both early and late information relevant for face processing (Ghuman et al., 2014; Vida et al., 2017). 82 

These higher-dimensional observations were constructed for the purpose of temporally cumulative 83 

analyses able to exploit more extensive information over time. 84 

Pairwise discrimination of facial identity was conducted with the aid of linear Support Vector 85 

Machine (SVM) classification (c=1) (SVMLIB 3.22, Chang & Lin, 2011) and leave-one-out cross-86 

validation (i.e., one out of 16 pairs of observations was systematically left out for testing while the 87 

remaining 15 were used for training). Concretely, 1431 pairs of stimuli were classified across 16 leave-88 

one-out cross-validation iterations and then classification accuracy was obtained for each pair by 89 

averaging across these iterations. Classification was conducted for all pairs of facial identities in two 90 

ways: (a) within expression - the classifier was trained separately on one expression, happy or neutral, and 91 

tested on the same expression; and (b) across expression - the classifier was trained on one expression and 92 

tested on the other. Significance of classification accuracy was assessed via a permutation test, by 93 
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randomly shuffling identity labels 103 times, and correcting for multiple comparisons across temporal 94 

windows using the false discovery rate (FDR).  95 

The analyses above were conducted for data averaged across all participants (i.e., observations 96 

were constructed from averaged ERP traces). In addition, similar discrimination analyses were performed 97 

for data from individual participants. The significance of the overall classification accuracy for this 98 

analysis was assessed using one-sample two-tailed t-tests against chance across participants separately for 99 

within- and across-expression discrimination. 00 

Further, given that the three face databases used here for the purpose of stimulus selection and 01 

design sample different populations (i.e., individuals of different nationalities) we anticipated a possible 02 

effect of database. However, it is important to establish that any effects found here are not solely due to 03 

such differences. To assess this possibility we also examined pairwise classification results for faces 04 

extracted from the same databases and, separately, for faces extracted from different databases – that is, 05 

each face is classified only relative to faces from the same database, for a total of 472 pairs, or only 06 

relative to faces from different databases, for a total of 1918 pairs. 07 

Relationship with behavioral performance 08 

Average pairwise face discrimination, as indexed by temporally cumulative analysis, was 09 

correlated with behavioral markers of performance (from CFMT and VVIQ2 tests) for each participant. 10 

For a finer-grained analysis in the temporal domain, pairwise face discrimination was correlated, 11 

window by window, with behavioral data from a previous study (Nestor, Plaut, & Behrmann, 2013, 12 

Experiment 1) in which participants rated the visual similarity of pairs of faces. Specifically, in this study 13 

participants viewed a larger set of faces, including the 108 unfamiliar face images used here, and rated the 14 

similarity of each face with every other face on a 5-point scale across a change in expression (i.e., one 15 
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face in a pair displayed a neutral expression and the other a happy expression). Ratings from 22 healthy 16 

adult participants were then averaged to deliver an estimate of behavioral face similarity. Here, this 17 

estimate was compared to its neural counterpart from across-expression classification carried out on 18 

group-averaged ERP traces. Concretely, behavioral and neural-based estimates were related via Pearson 19 

correlation and tested for significance via a permutation test (103 permutations for each temporal window; 20 

FDR correction across windows). 21 

Estimation of EEG-based face space 22 

Face space constructs were derived by applying multidimensional scaling (MDS) to EEG-based 23 

estimates of face discrimination. Specifically, classification accuracies for pairs of facial identities were 24 

organized into a dissimilarity matrix in which each cell estimates the discriminability of a pair of faces; 25 

then, all values were linearly scaled between 0-1 and metric MDS was applied to approximate a 26 

corresponding space. The dimensionality of such spaces was restricted to 20 since that was found 27 

sufficient to account for most variance in the data (e.g., over 90% for temporally cumulative analyses). 28 

This procedure was conducted on within-expression estimates of discrimination, separately for each 29 

expression, resulting in separate spaces for faces with neutral and happy expressions.  30 

Next, we examined face space invariance to image changes introduced by emotional expression. 31 

To this end, the fit between neutral and happy face spaces was estimated by aligning one space to the 32 

other, via Procrustes transformation, and measuring the badness of fit as the sum of squared errors (SSE) 33 

between the two spaces. Significance testing was then conducted through a permutation test for 34 

multidimensional spaces (Jackson, 1995): the labels of each point in one of the two spaces was randomly 35 

shuffled and the resulting space was fit to the intact one as above. This procedure was carried out for a 36 

total of 103 permutations, by leaving intact each of the two spaces half of the time while permuting the 37 

other space, and permutation-based SSE estimates were computed each time. 38 
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Reconstruction approach 39 

The current procedure broadly follows a recently developed approach to facial image 40 

reconstruction designed to exploit spatial information in fMRI patterns (Nestor, Plaut, & Behrmann, 41 

2016). This procedure capitalizes on the structure of neural-based face space for the purpose of feature 42 

derivation and image reconstruction. Here, we deployed this procedure to capture spatiotemporal 43 

information in EEG patterns and, further, to examine the ability of expression-invariant visual information 44 

to support image reconstructions of facial identity. This procedure was conducted in a sequence of steps 45 

as follows. 46 

First, visual features accounting for face space topography were separately derived for each 47 

dimension of EEG-based face space. These features were computed as weighted sums of image stimuli 48 

following a strategy similar to reverse correlation / image classification – see (Murray, 2011) for a review 49 

and (Smith, Gosselin & Schyns, 2012) for applications to EEG data. Hence, here they are referred to as 50 

‘classification images’ (CIM). Briefly, face stimuli, following their color conversion to CIEL*a*b*, were 51 

summed proportionally to their z-scored coordinates on a given dimension of face space. The resulting 52 

CIM (i.e., a triplet of images corresponding to L*, a* and b* channels) amounts to a linear approximation 53 

of the visual information responsible for organizing faces along that specific dimension. Thus, for each 54 

expression this procedure delivered a total of 20 different CIMs, one for each corresponding dimension of 55 

face space. 56 

Second, since not all dimensions may encode systematic visual information, feature/dimension 57 

selection was used to identify subspaces relevant for reconstruction purposes. To this end, CIMs 58 

corresponding to each dimension were assessed regarding the inclusion of significant information. 59 

Specifically, for each dimension, permutation-based CIMs were generated after randomly shuffling the 60 

coefficients associated with stimulus images. Then, pixel intensities in the true CIM were compared to the 61 
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corresponding intensities of pixels in permutation-based CIMs 103 permutations; FDR correction across 62 

pixels and color channels) and only CIMs that contained pixel values significantly different from chance 63 

were considered for reconstruction purposes.  64 

Third, the coordinates of a target face were estimated in an expression-specific face space. To be 65 

clear, the estimation of face space and its CIMs were carried out using all facial identities but one. Then, 66 

the left-out face was projected in this space based on its similarity with the other faces. Thus, the 67 

procedure ensured that features were not generated from the reconstruction target guarding against 68 

circularity.  69 

Last, the target face was constructed through a linear combination of significant CIMs. That is, 70 

relevant CIMs, as identified through feature selection above, were summed proportionally with the 71 

target’s coordinates in face space and, then, added to an average face obtained from all remaining non-72 

target faces and playing the role of a face prior. However, in contrast to previous work (Nestor, Plaut, & 73 

Behrmann, 2016), the current procedure capitalized on face space invariance for reconstruction purposes. 74 

Specifically, a happy version of face space was aligned to its neutral counterpart via Procrustes 75 

transformation using all but one face; then, the left-out face from the happy version of face space was 76 

projected into the neutral space using the parameters of the Procrustes mapping function found above. The 77 

resulting coordinates in neutral face space were next used to reconstruct the appearance of the target face, 78 

with a neutral expression, from neutral CIMs. Conversely, a happy version of the target face relied upon 79 

aligning neutral face space to its happy counterpart.  80 

Thus, reconstruction relied here on the presence of a robust visual-based structure shared by 81 

different face space estimates across expressions. More clearly, in the absence of a common space 82 

topography the target face would be projected to a non-informative location of face space and its 83 
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subsequent reconstruction would resemble the target stimulus no better than expected at chance level (per 84 

the evaluation described below). 85 

The procedure above, including face space estimation, was conducted for separate time windows 86 

of the ERP trace as well as for temporally cumulative data. 87 

Evaluation of reconstruction results 88 

Image reconstructions were compared to their target stimuli via two different methods. First, 89 

image-based accuracy was estimated as the percentage of instances for which a reconstructed image in 90 

CIEL*a*b* was more similar to its target, by a pixel-wise L2 metric, than to any other stimulus with the 91 

same expression. Average reconstruction accuracy was then compared against permutation-based chance 92 

estimates by shuffling reconstruction labels and by recomputing average accuracy across reconstructions 93 

each time (for a total of 103 permutations). This procedure was applied to all types of reconstruction (e.g., 94 

both window-based and temporally cumulative) separately for neutral and happy faces. 95 

Second, a single set of reconstructions, based on temporally cumulative group-based data, was 96 

subjected to experimental evaluation in a separate behavioral test. To this end, 14 new participants (six 97 

males and eight females, age range: 20-28) were requested to match image reconstructions to their targets 98 

in a two-alternative forced choice (2AFC) task. Specifically, each of 108 unfamiliar face reconstructions, 99 

including both expressions, was presented in the company of two stimuli, one of which was the actual 00 

target and the other was a foil (another face image). Thus, on each trial, a display was shown containing a 01 

reconstructed image, at the top, and two stimuli side by side, at the bottom, all of which had the same 02 

expression and the same size (as specified in Experimental Procedures). Each display was presented until 03 

participants made a response to decide which stimulus was more similar to the top image by pressing a 04 

designated left/right key. For each participant, any reconstructed image was presented 4 times in the 05 

company of different foils; thus, across participants, all 53 possible foils for a given reconstruction were 06 
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exhausted. Stimulus order was pseudorandomized so that different reconstructed images appeared on 07 

consecutive trials while target stimuli appeared equally often on the left/right side. Each experimental 08 

session was completed over the course of 30 minutes. 09 

Experimental-based estimates of reconstruction accuracy results were measured as the proportion 10 

of correct matches across participants and tested for significance tested against chance (50%) using a one-11 

sample two-tailed t-test. Last, experimental and homologous image-based estimates of reconstruction 12 

accuracy were compared to each other via Pearson correlation across images, separately for neutral and 13 

happy faces.  14 

Results 15 

Univariate ERP results 16 

Three ERP components relevant for face processing, P1, N170 and N250, were each identified 17 

across occipitotemporal electrodes (Fig 1) and examined by a two-way repeated measures analysis of 18 

variance (54 unfamiliar face identities x 2 hemispheres). The analysis of the P1 component a- c (see letter-19 

indexed rows of Table 1 for details of corresponding analyses) and N170d-f analyses found no significant 20 

effects. Last, N250 analysesg-i found a main effect of identity (F(53,636)=3.69, p=0.001, ηp
2= 0.235) and a 21 

marginally significant interaction (F(53,636)=1.32, p=0.07, ηp
2= 0.099) – both hemispheresj,k showed a 22 

significant effect of identity (F(53,636)=2.67, p=0.009, ηp
2= 0.182; F(53,636)=3.214, p=0.004, ηp

2= 0.21 23 

for the left and right hemispheres, respectively), but the effect was larger on the right side. 24 

--------------- 25 

Insert Figure 1 about here 26 

------------------- 27 
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Pattern classification of facial identity 28 

A total of 108 unfamiliar male faces (54 individuals x 2 emotional expressions) were classified 29 

based on ERP traces associated with their viewing. Specifically, spatiotemporal ERP patterns across 30 

bilateral occipitotemporal electrodes were averaged across participants and, then, evaluated for their 31 

ability to support facial identity discrimination. To assess the time course of individual face processing, 32 

classification was conducted across consecutive 10 ms temporal windows both within and across 33 

expression by training and testing the classifier on faces with the same or different expression.  34 

This analysis found significant levels of discrimination across extensive intervalsl (permutation 35 

test; q<0.01). Specifically, across-expression classification evinced above-chance accuracy from 152 ms 36 

after stimulus presentation until the end of the epoch, with two peaks at 170 ms and 295 ms (see Fig 2a 37 

for the group-based results). Within-expression classification yielded a similar time course but 38 

consistently higher levels of accuracy and an earlier onset, at 140 ms, in agreement with the reliance on 39 

additional, lower-level image cues for this type of discrimination (In addition, an earlier interval of 40 

significance was found for across-expression classification between 0-5 ms; however, given its very early 41 

occurrence, its reduced amplitude and the absence of its replication by within-expression classification we 42 

treat this data point as a false positive). Of note, for both types of classification we found that 43 

discrimination accuracy was maximized in the vicinity of the N170 component as identified by univariate 44 

analyses of ERP data (see Fig 1). 45 

--------------- 46 

Insert Figure 2 about here 47 

------------------- 48 
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Following the approach described above group-based analyses were complemented next by single-49 

participant analysesm. These analyses confirmed the feasibility of facial identity discrimination from the 50 

data of single participants (see Fig. 2b for the results of a representative participant). However, 51 

discrimination levels were lower than in the group-based analyses, likely due to the lower signal-to-noise 52 

ratio (SNR) of single-participant ERPs and its impact on classification (Grootswagers et al., 2017). 53 

Further, multiple intervals of discrimination emerged, as opposed to a single, uninterrupted one. 54 

Next, pattern classification was applied to temporally cumulative data by concatenating data points 55 

from all time bins between 50 ms – 650 ms after stimulus onsetn-q. The aim of this analysis was to 56 

maximize discrimination performance by concomitantly exploiting relevant information from all 57 

potentially relevant time points. Specifically, while the ~61-fold increase in pattern dimensionality (i.e., 58 

12 electrodes x 307 time bins) would, by itself, reduce the effectiveness of classification, we considered 59 

the possibility that any ensuing classification decrement may be offset by the use of complementary 60 

sources of information from different time points (Blankertz et al., 2011). 61 

Consistent with the hypothesis above, we found that this analysis yielded robust levels of 62 

discrimination for group-based data (Fig 3a): 64% and 71% for across and within-expression 63 

discrimination, respectively (permutation test; p=0.001 for both types of discrimination and both 64 

expressions). Of note, these results outperform peak performance obtained with window-based analyses in 65 

the proximity of the N170 component. Further, single-participant estimates of discrimination with 66 

temporally cumulative data were also computedr-u and, then, averaged across participants (Fig 3b). Again, 67 

performance was better than chance for both within-expression discrimination (two-tailed t-test across 68 

participants against 50% chance-level discrimination; t(12)= 9.89 and 7.27, Cohen’s d=2.1 and 2.86 for 69 

neutral and happy faces, respectively; p’s=0.001) and for across-expression discrimination (t(12)=6.84 70 

and 7; d=2.02 and 1.97 for neutral and happy faces, respectively; p’s<0.001). Further, a two-way repeated 71 
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measures analysis of variancev-x (2 discrimination types x 2 expressions) revealed a main effect of 72 

discrimination types (F(1,12) =50.05, p<0.001, p
2 =0.81), with higher accuracy for within than across-73 

expression discrimination, but no effect of expression and no interaction. 74 

--------------- 75 

Insert Figure 3 about here 76 

------------------- 77 

To examine possible effects of face database the analysis above was repeated while restricting 78 

pattern classification either to pairs of faces from the same database or from different databases. A two-79 

way repeated measures analysis of variancey-ab (2 discrimination types: within/across expression x 2 pair 80 

types: within/across database) was carried out to this end – classification estimates were collapsed across 81 

neutral and happy faces given the absence of any expression effects above. This analysis revealed a main 82 

effect of discrimination types (F(1,12) =45.92, p<0.001, p
2 =0.79), with higher accuracy for within than 83 

across-expression discrimination, as well as a main effect of pair types (F(1,12) =38.73, p<0.001, p
2 84 

=0.76), with higher accuracy for within than across-database classification. Critically though, all 85 

classification estimates were significantly above chance (two-tailed t-tests against 50% chance-level 86 

discrimination)ac-af; mean accuracy=56.3%, t(12)=8.36,p<0.001, Cohen’s d=2.32 for within-expression, 87 

within-database discrimination; mean accuracy=58.7%, t(12)=8.38, p<0.001, Cohen’s d=2.32 for within-88 

expression, across-database discrimination; mean accuracy=53.9%, t(12)=7.64 ,p<0.001, Cohen’s d=2.12 89 

for across-expression, within-database discrimination; mean accuracy=55.9%, t(12)=6.88,p<0.001, 90 

Cohen’s d=1.91 for across-expression, across-database discrimination).  91 

Last, for completeness, classification analyses including all face pairs within and across databases 92 

were repeated with all 64 electrodes, instead of the subset of 12 occipitotemporal electrodes noted above. 93 



 

 20 

However, no consistent boost in discrimination was found for any analysis in this case. Hence, for 94 

simplicity, the remainder of our analyses and results, as reported below, are based on occipitotemporal 95 

electrodes only. 96 

Neural-based discrimination and behavioral performance 97 

In order to assess and to quantify the relationship between behavioral and neural-based face 98 

similarity group-level estimates of EEG-based discrimination were related to behavioral estimates of 99 

pairwise face similarity. Specifically, across-expression discrimination accuracy was compared with its 00 

behavioral counterpart, across identity pairs, through Pearson correlationag. This comparison revealed, 01 

first, a significant correlation for discrimination estimates from the temporally cumulative analysis (r = 02 

0.245; p< 0.001). Then, behavioral estimates were correlated with their neural counterpart separately for 03 

each 10 ms temporal window (Fig 4)ah. This analysis found multiple intervals of significant correlation, 04 

between 137 -197 ms, 236 -335 ms and 340-385 ms, with peaks at 157 ms and 266 ms (q<0.01). 05 

--------------- 06 

Insert Figure 4 about here 07 

------------------- 08 

Next, we sought to assess whether the different levels of discrimination achieved with different 09 

participants were related to their overall face processing skills. To this end, individual estimates of 10 

discrimination from the temporally cumulative analysis, averaged across identity pairs, were correlated 11 

with CFMTai scores of the same individuals. No significant correlations were found with these scores or 12 

with any other behavioral measures considered such as average familiarity ratings with famous faces or 13 

VVIQ-2aj scores. 14 
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Neural-based face space and expression-invariance 15 

Face space estimates were derived through the application of MDS to within-expression face 16 

classification of temporally cumulative data. Specifically, MDS was applied to pairwise face 17 

discrimination values derived through pattern analysis of group-based data, separately for neutral and 18 

happy faces. Then, the resulting spaces were reduced to the first 20 dimensions and aligned with each 19 

other via Procrustes transformation. 20 

An examination of the resulting spaces for neutral and happy faces, following their alignment, 21 

seemed consistent with the presence of a common topography across expressions (Fig 5a). To assess their 22 

fit more rigorously a comparison with permutation-based alignment estimates (Fig 5b)ak was computed 23 

next. This comparison indicated that the fit between the two spaces was considerably better than chance 24 

(p<0.001). Beyond its theoretical implications, this finding is relevant here in that it may allow exploiting 25 

the structure of visual information invariant across expression for reconstruction purposes, as detailed 26 

next. 27 

--------------- 28 

Insert Figure 5 about here 29 

------------------- 30 

Reconstruction results 31 

Visual features were derived from the structure of face space, dimension by dimension, through a 32 

procedure akin to reverse correlation/image classification (Sekuler, Gaspar, Gold, & Bennett, 2000; 33 

Gosselin & Schyns, 2003; Martin-Malivel, Mangini, Fagot, & Biederman, 2006). Such features, or 34 

classification images (CIMs), were then assessed through a permutation test for the presence of significant 35 

information pixel by pixel separately for each CIEL*a*b* color channel. 36 
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An examination of CIMs containing significantal-aw information revealed global contrast patterns 37 

across multiple color channels – examples of such features derived from group-based temporally 38 

cumulative data are shown in Fig 6. The emergence of these features confirmed that neural-based face 39 

space is, at least partly, organized by visual information (as opposed, for instance, to higher-level 40 

semantic information). More relevantly here, it points to the potential value of CIMs as reconstruction 41 

features. 42 

--------------- 43 

Insert Figure 6 about here 44 

------------------- 45 

Accordingly, significant CIMs were linearly combined to deliver an approximation of face 46 

appearance broadly following an image reconstruction approach recently used with fMRI data (Nestor et 47 

al., 2016). Specifically, image reconstruction was separately applied to neutral and happy expressions. As 48 

noted above, the common face space topography for the two expressions could, in theory, allow using the 49 

relative position of a given identity in one space to deliver a reconstruction of the same facial identity with 50 

the opposite expression.  51 

Consistent with the hypothesis above, this procedure, as performed for separate time windows with 52 

group-based data, found evidence for multiple intervals capable of supporting above-chance 53 

reconstruction (image-based permutation test; q<0.05) – reconstruction accuracy was assessed via a 54 

pixelwise image-matching test across reconstructed images and stimulus images. The earliest interval had 55 

an onset at 160 ms and 170 ms for neutralax and happy ay faces, respectively, while accuracy peaked at 187 56 

ms and 180 ms for the two expressions. Examples of reconstructions, converted from CIEL*a*b* back to 57 

RGB, are shown in Fig 7a for two different time points while average reconstruction accuracies are 58 
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plotted in Fig 7b. Further, a representative example of image reconstruction for a single face, interval by 59 

interval, is shown in Movie 1 along with the temporal profile of its reconstruction accuracy.  60 

--------------- 61 

Insert Figure 7 about here 62 

------------------- 63 

The application of the same procedure to temporally cumulative data led to more robust results: 64 

69.46% image-based accuracy for neutral facesaz and 63.91% for happy facesba (permutation test; 65 

p’s=0.001). Fig 8a shows examples of reconstructions and Fig 8b displays average accuracy estimates and 66 

their permutation-based assessment. Experimental-based estimates of accuracy, obtained with a new 67 

group of participants, led to more modest levels of accuracy (Fig 8c); however, both neutral and happy 68 

face reconstructions were still accurate above chance (two-tailed t-test across participants against 50% 69 

chance-level discrimination: t(13)=6.70, 4.38; Cohen’s d=1.86, 1.22, for neutralbb and happybc, 70 

respectively; p’s<0.001 for all), with no difference between neutral and happy faces. Further, 71 

reconstruction accuracies as estimated by the two tests, image-based and experimental-based, were 72 

compared with each other across facial identities and were found to significantly correlate with each other 73 

(r=0.43 and 0.42; p’s=0.001 and 0.002 for neutralbd and happybe faces, respectively), thus, mutually 74 

reinforcing their validity. 75 

--------------- 76 

Insert Figure 8 about here 77 

------------------- 78 

Next, across-expression classification estimates obtained with temporally cumulative data were 79 

compared with their corresponding reconstruction accuracies averaged across expressions. Specifically, 80 
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Pearson correlation across facial identities found a positive relationship between across-expression 81 

discrimination and image-based accuracybf (r=0.87, p<0.001). Thus, the more discriminable a facial 82 

identity is, the more accurately it can be reconstructed. 83 

Last, reconstruction was performed for single-participant data and evaluated with the aid of the 84 

image-based test. Accuracy levels were still above chance (two-tailed t-test across participants against 85 

50% chance-level discrimination; mean accuracy = 53.1%, t(12)=2.52, p=0.027, Cohen’s d=0.73 and 86 

mean accuracy = 53.3%, t(12)=2.24, p=0.045, Cohen’s d=0.65 for neutralbg and happybh face 87 

reconstructions, respectively) while Pearson correlations between classification accuracy and 88 

reconstruction accuracy across participants were also found significant (r=0.83 and r=0.84, for neutralbi 89 

and happybj faces, respectively; p’s<0.001). Thus, participants who provided data supporting higher levels 90 

of face classification also provided more accurate reconstruction results. 91 

Discussion 92 

The current work investigates the neural basis of individual face processing and its temporal 93 

dynamics through the application of pattern analysis and image reconstruction to EEG data. This 94 

investigation yields several notable outcomes as follows.  95 

First, we find that EEG data support facial identity discrimination. By and large, this finding 96 

confirms the possibility of EEG-based pattern classification of facial identity across changes in expression 97 

from EEG data (Nemrodov et al., 2016). Discrimination peaks were identified in the proximity of the 98 

N170 and N250 ERP components, consistent with univariate analyses pointing to the relevance of the 99 

former (Itier & Taylor, 2002; Heisz, Watter, & Shedden, 2006; Jacques, D’Arripe, & Rossion, 2007; 00 

Caharel et al., 2009) and the latter (Schweinberger et al., 2002; Huddy et al., 2003; Tanaka et al., 2006) 01 

for face processing. The onset of discrimination, around 150 ms, was intermediary to early estimates in 02 
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the vicinity of P1 (Nemrodov et al., 2016) and later estimates around 200 ms as reported with MEG (Vida 03 

et al., 2017). One possibility is that early estimates, along with higher levels of discrimination, can be 04 

triggered by the use of low-level image properties (Cauchoix et al., 2014; Ghuman et al., 2014). In line 05 

with this consideration, we found that within versus across-expression discrimination produced earlier and 06 

consistently higher levels of discrimination accuracy. Importantly though, across-expression 07 

classification, which aims to minimize reliance upon low-level cues, exhibited robust levels of 08 

discrimination across an extensive interval (i.e., from ~150 ms onwards) while its time course was also 09 

mirrored by that of neural-behavioral correlations in the context of pairwise face similarity.  10 

Second, temporally cumulative analyses targeted identity discrimination across a broad interval 11 

between 50-650 ms after stimulus onset. Despite the increase in dimensionality for the classification 12 

patterns, these data supported even more robust levels of accuracy for both within and across-expression 13 

discrimination, consistent with the presence of relevant information at multiple time points. Moreover, the 14 

superior levels of discrimination obtained with temporally cumulative data, as opposed to 10 ms windows, 15 

agrees with the presence of distinct sources of information at different time points. That is, we relate the 16 

boost in classification accuracy with the ability to exploit complementary information about facial identity 17 

at different times. Interestingly, this conclusion echoes that based on the lack of temporal generalization 18 

found with cross-temporal object decoding of MEG data (Carlson et al., 2013; Isik et al., 2014) – 19 

specifically, the lack of classification success with using training and testing data from distinct time 20 

intervals has been taken as evidence for the presence of different types of information over time 21 

(Grootswagers, Wardle, & Carlson, 2016). Further, the boost in classification noted above is important for 22 

practical purposes: it suggests that investigations that place less emphasis on clarifying the time course of 23 

discrimination can be better served by exploiting patterns across larger temporal intervals. Accordingly, 24 
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our subsequent investigations into face space structure and image reconstruction were carried out with 25 

both window-based and cumulative data. 26 

Third, a neural-based estimate of face space was constructed from EEG data and its organization 27 

was explained by the presence of visual information captured by CIMs. This result is significant in that it 28 

confirms that pattern discrimination relies, at least partly, on relevant visual information (e.g., as opposed 29 

to higher-level semantic cues). More importantly, we note that neural-based face space has been examined 30 

in the context of fMRI (Loffler et al., 2005; Rotshtein et al., 2005; Gao & Wilson, 2013) and monkey 31 

neurophysiology (Leopold, Bondar, & Giese, 2006; Freiwald, Tsao, & Livingstone, 2009). Yet, many of 32 

its properties, as related to facial identity representation, remain to be clarified. For instance, its invariant 33 

structure across different types of image transformation remains to be assessed and quantified. Behavioral 34 

research suggests that face space topography is largely invariant across viewpoint and lighting (Blank & 35 

Yovel, 2011). Here, we reach a similar conclusion regarding the expression invariance of neural-based 36 

face space as derived from EEG data. 37 

Fourth, image reconstruction was carried out with the aid of CIM features derived directly from the 38 

structure of EEG data (i.e., as opposed to predefined visual features selected due to their general 39 

biological plausibility). This endeavor builds upon pattern classification while, critically, it validates its 40 

results by showcasing its reliance on relevant visual information encoded in the EEG signal. We found 41 

that multiple temporal intervals supported better-than-chance reconstruction for both neutral and happy 42 

faces with a peak in the proximity of the N170 component. Also, reconstruction accuracy was further 43 

boosted by considering temporally cumulative information, as used for pattern classification. More 44 

importantly, these results are notable in that, unlike previous work with fMRI-based facial image 45 

reconstruction (Cowen, Chun, & Kuhl, 2014; Nestor, Plaut, & Behrmann, 2016), they exploit invariant 46 
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face space information for reconstruction purposes. Thus, arguably the current findings speak to the visual 47 

nature of facial identity representations rather than just to lower-level pictorial aspects of face perception.   48 

Further, the current work provides proof of principle for EEG-based image reconstruction. 49 

Importantly, not only does this demonstrate the applicability of image reconstruction to neuroimaging 50 

modalities other than fMRI but, critically, it shows that EEG-based reconstruction can compete in terms 51 

of overall accuracy with its fMRI counterpart (Nestor, Plaut, & Behrmann, 2016). 52 

Thus, here we build upon previous EEG investigations of face processing and on pattern analyses 53 

of neuroimaging data to address several theoretical and methodological issues. In particular, the current 54 

work capitalizes on previous attempts at clarifying the temporal profile of individual face processing via 55 

linear classification of spatiotemporal EEG patterns across facial expression (Nemrodov et al., 2016). In 56 

agreement with this previous work we find that individual faces can be discriminated from their 57 

corresponding EEG patterns, that their time course exhibits an extended interval of significant 58 

discrimination and that multiple discrimination peaks occur, including an early one in the vicinity of the 59 

N170 component. Unlike this previous work though, which only relied on a restricted set of eight male 60 

and female faces, we find that such discrimination can be performed even with a large, homogenous set of 61 

face images controlled for low and high-level face properties (e.g., through geometrical alignment and 62 

intensity normalization of 108 Caucasian male face images). Hence, differences in discrimination onset 63 

across studies (i.e., 70 ms in this previous work versus 152 ms here) are likely related to reliance on 64 

idiosyncratic image differences within a small stimulus set in this previous investigation. More 65 

importantly though, not only does the current work examine the time course of individual face 66 

classification in a more reliable and thorough manner but, critically, it utilizes its outcomes for the 67 

purpose of facial feature derivation and image reconstruction. 68 
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Naturally, boosting even further classification and reconstruction accuracy is an important future 69 

endeavor. Regarding classification, this could be achieved, for instance, through efficient techniques for 70 

feature selection, such as recursive feature elimination (Hanson & Halchenko, 2008; Nestor, Plaut, & 71 

Behrmann, 2011), aimed at reducing pattern dimensionality and optimizing discrimination performance. 72 

Since electrodes are likely to carry irrelevant or redundant information at multiple time points, eliminating 73 

this information from higher-dimensional spatiotemporal patterns (e.g., across all electrodes and time 74 

points) could benefit classification. Regarding reconstruction, more complex, biologically-plausible 75 

approaches can be developed, for instance, by considering shape and surface information separately 76 

within the reconstruction process. Since shape and surface provide complementary cues to face processing 77 

(Jiang, Blanz, & O’Toole, 2006; Andrews et al., 2016), it would be informative to derive separate types of 78 

CIMs corresponding to this distinction and to consider their separate contribution to facial image 79 

reconstruction. 80 

Notably though, beyond overall performance, EEG-based reconstruction stands out by its ability to 81 

clarify the dynamics of visual representations as they develop in response to a given stimulus. For 82 

instance, it can speak to how a percept evolves over time in response to a static stimulus, as attempted 83 

here, by inspecting image reconstruction across consecutive time windows. Alternatively, this method 84 

could be extended to recover fine-grained dynamic information as present in moving stimuli. While 85 

reconstruction of natural movies has been previously carried out with fMRI (Nishimoto et al., 2011), the 86 

superior temporal resolution of EEG could make this modality a more efficient choice for the recovery of 87 

dynamic visual information. Further, we note that the comparatively wide availability of EEG systems 88 

could also render this modality the preferred choice for the development of new types of image-89 

reconstruction brain-computer interfaces (BCI). 90 
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Last, while the current investigation focuses on faces as a visual category of interest, we argue that 91 

the present methodological approach can inform individual object recognition more generally. This is 92 

theoretically suggested by the presence of common neurocomputational principles underlying face and 93 

object identification (Cowell & Cottrell, 2013; Wang, Gauthier, & Cottrell, 2016) as well as, 94 

methodologically, by the ability to evaluate the dynamics of invariant object recognition (Isik, et al., 95 

2014). Particularly encouraging in this sense is the success of efforts to construct and characterize object 96 

similarity spaces from MEG (Carlson et al., 2013) and EEG data (Kaneshiro et al., 2015). 97 

To conclude, our investigation targets the neural dynamics of face processing as reflected by EEG 98 

patterns. Our findings shed new light on the time course of facial identity processing while providing a 99 

way to extract and to assess the underlying visual information. Last, from a methodological standpoint, 00 

our results establish the feasibility of EEG-based image reconstruction and, more generally, they confirm 01 

the rich informational content of spatiotemporal EEG patterns. 02 
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Legends 62 

Figure 1.  63 

Grand-averaged ERPs across: (a) left hemisphere electrodes (P5, P7, P9, PO3, PO7, O1) and (b) 64 

right hemisphere electrodes (P6, P8, P10, PO4, PO8, O2) for 54 facial identities (averaged across 65 

expressions). Head maps show voltage distributions at (a) N170 (b) P1, N250. 66 

Figure 2 67 

The time course of EEG-based classification accuracy for across and within-expression 68 

discrimination of facial identity. (a) Classification was conducted across consecutive 10ms window 69 

patterns over 12 occipitotemporal electrodes for group-based ERP data. Both types of analysis exhibited 70 

above-chance discrimination across extensive temporal intervals (permutation test; FDR-correction across 71 

time, q<0.01); shaded areas mark intervals of better-than-chance discrimination for across-expression 72 

classification. (b) The time course of EEG-based classification accuracy for across and within-expression 73 

discrimination of facial identity for a single representative participant. Classification was conducted 74 

across consecutive 10 ms window patterns over 12 occipitotemporal electrodes. Both types of analysis 75 

exhibited above-chance discrimination across extensive temporal intervals (permutation test; FDR-76 

correction across time, q<0.01); shaded areas mark intervals of better-than-chance discrimination for 77 

across-expression classification. 78 

Figure 3 79 

EEG-based classification accuracy for across and within-expression discrimination of facial 80 

identity with temporally cumulative data (50-650 ms after stimulus onset). Accuracy corresponding to 81 

neutral and happy faces are separately shown for: (a) group-based ERP data and (b) single-participant data 82 

(i.e., pattern classification was conducted individually for each participant and, then, its results averaged 83 
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across participants). The plots display: (a) the results of permutation tests (red solid and dash lines 84 

indicate average accuracy and 99% confidence intervals estimated with 103 permutations) and (b) the 85 

distribution of single-participant data (green and purple solid lines indicate medians, boxes represent 1st 86 

and 3rd quartiles, whiskers represent minimum and maximum accuracy values, points represent individual 87 

participants’ values and red solid lines indicate chance-level discrimination). 88 

Figure 4 89 

Correlation of EEG and behavioral-based estimates of pairwise face similarity. EEG-based 90 

estimates are derived from across-expression discrimination of facial identity for consecutive 10ms 91 

windows of group-based data. Multiple intervals, marked by shaded areas, exhibit significant levels of 92 

correlation (permutation test; FDR correction across time, q<0.01). 93 

Figure 5 94 

Neutral and happy face space estimates along with their fit (after Procrustes alignment). Estimates 95 

were derived through MDS analysis of similarity matrices based on within-expression face discrimination 96 

of group-based temporally cumulative data. The two face space estimates exhibit a similar topography as 97 

found with: (a) their visualization across multiple dimensions (red and green circles indicate neutral and 98 

happy faces, respectively; solid lines connect face images with the same identity with the thickness of the 99 

line proportionally reflecting shorter distances; the first four dimensions shown here account for 40% and 00 

41% variance for neutral and happy face space); (b) badness of fit (sum of squared errors) for the two 01 

spaces compared to their permutation-based counterpart (average fits and 95% confidence intervals 02 

estimated with 103 permutations). 03 
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Figure 6 04 

Examples of classification images (CIMs) extracted from EEG-based face space constructs for (a) 05 

neutral and (b) happy faces. Pairs of images show raw CIMs (odd columns) and their analysis (even 06 

columns) with a pixelwise permutation-based test (FDR-corrected across pixels; q<0.05). Bright/dark, 07 

red/green, and yellow/blue regions in analyzed CIs mark areas of the face brighter (L*), redder (a*), or 08 

more yellow (b*) than chance in CIEL*a*b*. Results are shown separately for the first and fourth 09 

dimensions of face spaces derived from group-based temporally cumulative data. 10 

Figure 7 11 

Reconstruction results for neutral and happy face images across consecutive 10 ms windows of 12 

group-based data. (a) Examples of face stimuli along with their corresponding reconstructions at two 13 

different times (numbers in the upper left corner indicate image-based estimates of reconstruction 14 

accuracy). (b) The time course of reconstruction accuracy: both neutral and happy face images exhibit 15 

above-chance discrimination across multiple temporal intervals (permutation test; FDR correction across 16 

time, q<0.05; shaded areas mark intervals of better-than-chance discrimination for neutral faces). 17 

Reconstruction accuracy is maximized in the vicinity of the N170 component (Fig 1) and of the 18 

discrimination peak found with pattern classification (Fig 2). 19 

Figure 8 20 

Reconstruction results for neutral and happy faces relying on temporally cumulative group-based 21 

data: (a) examples of face stimuli along with their corresponding reconstructions (numbers in the upper 22 

left corner indicate image-based estimates of reconstruction accuracy; numbers in the upper right indicate 23 

experimental-based accuracy); (b) average image-based reconstruction accuracy (red solid and dash lines 24 

indicate average accuracy and 95% confidence intervals estimated with 103 permutations) and (c) average 25 
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experimental-based reconstruction accuracy (green and purple solid lines indicate medians, boxes 26 

represent 1st and 3rd quartiles, whiskers represent minimum and maximum accuracy values, points 27 

represent individual participants’ values and red solid lines indicate chance-level reconstruction). 28 
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 41 

 30 

Table 1 31 

Statistical summary 32 

Movie 1 33 

Illustration of (top) neutral face stimulus and its reconstruction across 10ms windows of group-34 

based data along with (bottom) the time course of its reconstruction accuracy assessed with an image-35 

based test. The last frame of the movie shows (top) facial image reconstruction achieved with temporally 36 

cumulative data and (b) its corresponding level of accuracy (dashed red line). 37 

 38 

 39 
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Table 1. Statistical Table. 41 

Analysis 
number Fig Description 

Data 
Structure Type of test Effect p-values Power/CI 

a 1 P1 component 
Assumed 
normal 

repeated 
measures 
ANOVA hemisphere 0.117 0.343 

b 1 P1 component 
Assumed 
normal 

repeated 
measures 
ANOVA identity 0.39 0.447 

c 1 P1 component 
Assumed 
normal 

repeated 
measures 
ANOVA 

identity X 
hemisphere 0.551 0.311 

d 1 N170 component 
Assumed 
normal 

repeated 
measures 
ANOVA hemisphere 0.146 0.299 

e 1 N170 component 
Assumed 
normal 

repeated 
measures 
ANOVA identity 0.513 0.373 

f 1 N170 component 
Assumed 
normal 

repeated 
measures 
ANOVA 

identity X 
hemisphere 0.307 0.532 

g 1 N250 component 
Assumed 
normal 

repeated 
measures 
ANOVA hemisphere 0.171 0.269 

h 1 N250 component 
Assumed 
normal 

repeated 
measures 
ANOVA identity 0.001 0.980 

i 1 N250 component 
Assumed 
normal 

repeated 
measures 
ANOVA 

identity X 
hemisphere 0.07 0.560 

j 1 N250 component 
Assumed 
normal 

repeated 
measures 
ANOVA identity in LH 0.009 0.926 

k 1 N250 component 
Assumed 
normal 

repeated 
measures 
ANOVA identity in RH 0.004 0.943 

l 2a 

 
Group-based 
discrimination 

Normality 
not assumed 

permutation 
test across-expression  

FDR-
corrected 
p=0.006  

m 2b 

Representative 
participant 
discrimination 

Normality 
not assumed 

permutation 
test across-expression 

FDR-
corrected 
p=0.004  
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n 3A 
Group-based 
discrimination 

Normality 
not assumed 

permutation 
test 

across 
expression/neutral 0.001 

95% CI: 
47.1-
51.3 

o 3A 
Group-based 
discrimination 

Normality 
not assumed 

permutation 
test 

across 
expression/happy 0.001 

95% CI: 
47.2-
50.9 

p 3A 
Group-based 
discrimination 

Normality 
not assumed 

permutation 
test 

within 
expression/neutral 0.001 

95% CI: 
45.9-
51.8 

q 3A 
Group-based 
discrimination 

Normality 
not assumed 

permutation 
test 

within 
expression/happy 0.001 

95% CI: 
45.9-
52.1 

r 3B 

Single-participant-
based 
discrimination 

Assumed 
normal 

two-tailed t-
test  

across 
expression/neutral 0.001 

95% CI: 
53.1-57 

s 3B 

Single-participant-
based 
discrimination 

Assumed 
normal 

two-tailed t-
test  

across 
expression/happy 0.001 

95% CI: 
53.2-
57.2 

t 3B 

Single-participant-
based 
discrimination 

Assumed 
normal 

two-tailed t-
test  

within 
expression/neutral 0.001 

95% CI: 
0.559-
0.602 

u 3B 

Single-participant-
based 
discrimination 

Assumed 
normal 

two-tailed t-
test  

within 
expression/`happy 0.001 

95% CI: 
54.8-
60.4 

v n/a 

Single-participant-
based 
discrimination 

Assumed 
normal 

repeated 
measures 
ANOVA discrimination type <0.001 >0.999 

w n/a 

Single-participant-
based 
discrimination 

Assumed 
normal 

repeated 
measures 
ANOVA expression 0.466 0.107 

x n/a 

Single-participant-
based 
discrimination 

Assumed 
normal 

repeated 
measures 
ANOVA 

discrimination type 
X expression 0.211 0.230 

y n/a 

Single-participant 
based 
discrimination 
within and across 
databases 

Assumed 
normal 

repeated 
measures 
ANOVA discrimination type <0.001 >0.999 

z n/a 

Single-participant 
based 
discrimination 
within and across 
databases 

Assumed 
normal 

repeated 
measures 
ANOVA pairs type <0.001 >0.999 
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aa n/a 

Single-participant 
based 
discrimination 
within and across 
databases 

Assumed 
normal 

repeated 
measures 
ANOVA 

discrimination type 
X pairs type 0.033 0.565 

ab n/a 

Single-participant 
based 
discrimination 
within and across 
databases 

Assumed 
normal 

post hoc 
(matched 
two-tailed t-
test) 

across-within 
database for 
within-expression 
vs. across-within 
database for 
across-expression 0.412 

95% CI: -
-0.1- 
1.5 

ac n/a 

Single-participant 
based 
discrimination 
within and across 
databases 

Assumed 
normal 

two-tailed t-
test against 
0.5 

within-expression, 
within-database 
discrimination <0.001 

95% CI: 
54.6- 
57.9 

ad n/a 

Single-participant 
based 
discrimination 
within and across 
databases 

Assumed 
normal 

two-tailed t-
test against 
0.5 

within-expression, 
across-database 
discrimination <0.001 

95% CI: 
56.4- 
61 

ae n/a 

Single-participant 
based 
discrimination 
within and across 
databases 

Assumed 
normal 

two-tailed t-
test against 
0.5 

across-expression, 
within-database 
discrimination <0.001 

95% CI: 
52.8- 
55 

af n/a 

Single-participant 
based 
discrimination 
within and across 
databases 

Assumed 
normal 

two-tailed t-
test against 
0.5 

across-expression, 
across-database 
discrimination <0.001 

95% CI: 
54- 
57.7 

ag n/a 
temporally 
cumulative analysis 

Assumed 
normal 

Pearson 
correlation 

EEG-based 
discrimination/ 
behavioral 
discrimination <0.001 0.436 

ah 4 
temporal 
correlation 

Assumed 
normal 

Pearson 
correlation 

across-expression 
discrimination/ 
behavioral 
discrimination 

FDR-
corrected 
p=0.002  

ai n/a 
temporally 
cumulative analysis 

Assumed 
normal 

Pearson 
correlation 

across-expression 
discrimination/ 
CFMT 0.219 0.237 

aj n/a temporally Assumed Pearson across-expression 0.676 0.05 
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cumulative analysis normal correlation discrimination/ 
VVIQ-2 

ak 5B Face space fit 
Normality 
not assumed 

Permutation 
test  

happy-neutral 
similarity <0.001 

95% CI: 
0.738-
0.798 

al 6A 
Classification 
image 

Normality 
not assumed 

Permutation 
test  

neutral 
dimension 1; 
luminance 

FDR-
corrected 
p=0.027  

am 6A 
Classification 
image 

Normality 
not assumed 

Permutation 
test  

neutral 
dimension 1;  
red-green 

FDR-
corrected 
p=0.018  

an 6A 
Classification 
image 

Normality 
not assumed 

Permutation 
test  

neutral 
dimension 1;  
yellow-blue 

FDR-
corrected 
p=0.024  

ao 6A 
Classification 
image 

Normality 
not assumed 

Permutation 
test  

neutral 
dimension 2; 
luminance 

FDR-
corrected 
p=0.012  

ap 6A 
Classification 
image 

Normality 
not assumed 

Permutation 
test  

neutral 
dimension 2;  
red-green N/A  

aq 6A 
Classification 
image 

Normality 
not assumed 

Permutation 
test  

neutral 
dimension 2;  
yellow-blue 

FDR-
corrected 
p=0.009  

ar 6B 
Classification 
image 

Normality 
not assumed 

Permutation 
test  

happy 
dimension 1; 
luminance 

FDR-
corrected 
p=0.040  

as 6B 
Classification 
image 

Normality 
not assumed 

Permutation 
test  

happy  
dimension 1;  
red-green 

FDR-
corrected 
p=0.018  

at 6B 
Classification 
image 

Normality 
not assumed 

Permutation 
test  

happy  
dimension 1;  
yellow-blue 

FDR-
corrected 
p=0.024  

au 6B 
Classification 
image 

Normality 
not assumed 

Permutation 
test  

 
 
happy  
dimension 2; 
luminance N/A  

av 6B 
Classification 
image 

Normality 
not assumed 

Permutation 
test  

happy 
dimension 2;  
red-green 

FDR-
corrected 
p=0.021  

aw 6B 
Classification 
image 

Normality 
not assumed 

Permutation 
test  

happy 
dimension 2;  
yellow-blue 

FDR-
corrected 
p=0.008  
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ax 7B 

Temporal 
reconstruction 
accuracy 

Normality 
not assumed 

Permutation 
test neutral 

FDR-
corrected 
p=0.002  

ay 7B 

Temporal 
reconstruction 
accuracy 

Normality 
not assumed 

Permutation 
test happy 

FDR-
corrected 
p=0.006  

bz 8B 

Reconstruction 
accuracy (image-
based) 

Normality 
not assumed 

Permutation 
test  neutral 0.001 

95% CI: 
42.3-
57.8 

ba 8B 

Reconstruction 
accuracy (image-
based) 

Normality 
not assumed 

Permutation 
test  happy 0.001 

95% CI: 
42.1-
58.1 

bb 8C 

Reconstruction 
accuracy 
(experimental-
based) 

Assumed 
normal 

two-tailed t-
test  neutral 0.001 

95% CI: 
55.6-
62.6 

bc 8C 

Reconstruction 
accuracy 
(experimental-
based) 

Assumed 
normal 

two-tailed t-
test  happy 0.001 

95% CI: 
52.4-
59.2 

bd n/a 

Correlation 
between 
experimental and 
image-based 
accuracies 

Assumed 
normal 

Pearson 
correlation neutral 0.001 0.912 

be n/a 

Correlation 
between 
experimental and 
image-based 
accuracies 

Assumed 
normal 

Pearson 
correlation happy 0.002 0.898 

bf n/a 

 
Correlation 
between 
reconstruction and 
discrimination 

Assumed 
normal 

Pearson 
correlation 

averaged across 
expressions <0.001 >0.999 

bg n/a 

Single-participant –
based 
reconstruction 
accuracy (image-
based) 

Assumed 
normal 

two-tailed t-
test neutral 0.027 0.676 

bh n/a 

Single-participant –
based 
reconstruction 

Assumed 
normal 

two-tailed t-
test happy 0.045 0.580 
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accuracy (image-
based) 

bi n/a 

Correlation 
between single-
participant-based 
reconstruction and 
discrimination 

Assumed 
normal 

Pearson 
correlation neutral <0.001 0.974 

bj n/a 

Correlation 
between single-
participant-based 
reconstruction and 
discrimination 

Assumed 
normal 

Pearson 
correlation happy <0.001 0.980 
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