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Abstract 44 

Establishing the molecular diversity of cell types is crucial for the study of the nervous system. We compiled 45 

a cross-laboratory database of mouse brain cell type-specific transcriptomes from 36 major cell types from 46 

across the mammalian brain using rigorously curated published data from pooled cell type microarray and 47 

single cell RNA-sequencing studies. We used these data to identify cell type-specific marker genes, 48 

discovering a substantial number of novel markers, many of which we validated using computational and 49 

experimental approaches. We further demonstrate that summarized expression of marker gene sets in bulk 50 

tissue data can be used to estimate the relative cell type abundance across samples. To facilitate use of this 51 

expanding resource, we provide a user-friendly web interface at Neuroexpresso.org. 52 

Significance Statement  53 

Cell type markers are powerful tools in the study of the nervous system that help reveal properties of cell 54 

types and acquire additional information from large scale expression experiments. Despite their usefulness 55 

in the field, known marker genes for brain cell types are few in number. We present NeuroExpresso, a 56 

database of brain cell type specific gene expression profiles, and demonstrate the use of marker genes for 57 

acquiring cell type specific information from whole tissue expression. The database will prove itself as a 58 

useful resource for researchers aiming to reveal novel properties of the cell types and aid both laboratory 59 

and computational scientists to unravel the cell type specific components of brain disorders. 60 

Introduction 61 

Brain cells can be classified based on features such as their primary type (e.g. neurons vs. glia), location 62 

(e.g. cortex, hippocampus, cerebellum), electrophysiological properties (e.g. fast spiking vs. regular spiking), 63 

morphology (e.g. pyramidal cells, granule cells) or the neurotransmitter/neuromodulator they release (e.g. 64 

dopaminergic cells, serotonergic cells, GABAergic cells). Marker genes, genes that are expressed in a 65 

specific subset of cells, are often used in combination with other cellular features to define different types of 66 

cells (Hu et al., 2014; Margolis et al., 2006) and facilitate their characterization by tagging the cells of interest 67 

for further studies (Handley et al., 2015; Lobo et al., 2006; Tomomura et al., 2001). Marker genes have also 68 

found use in the analysis of whole tissue “bulk” gene expression profiling data, which can be challenging to 69 

interpret due to the difficulty to determine the source of the observed expressional change. For example, a 70 

decrease in a transcript level can indicate a regulatory event affecting the expression level of the gene, a 71 

decrease in the number of cells expressing the gene, or both. To address this issue, computational methods 72 
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have been proposed to estimate cell type specific proportion changes based on expression patterns of 73 

known marker genes (Chikina et al., 2015; Newman et al., 2015; Westra et al., 2015; Xu et al., 2013). Finally, 74 

marker genes are obvious candidates for having cell type specific functional roles. 75 

An ideal cell type marker has a strongly enriched expression in a single cell type in the brain. However, this 76 

criterion can rarely be met, and for many purposes, cell type markers can be defined within the context of a 77 

certain brain region; namely, a useful marker may be specific for the cell type in one region but not 78 

necessarily in another region or brain-wide. For example, the calcium binding protein parvalbumin is a useful 79 

marker of both fast spiking interneurons in the cortex and Purkinje cells in the cerebellum (Celio and 80 

Heizmann, 1981; Kawaguchi et al., 1987). Whether the markers are defined brain-wide or in a region-specific 81 

context, the confidence in their specificity is established by testing their expression in as many different cell 82 

types as possible. This is important because a marker identified by comparing just two cell types might turn 83 

out to be expressed in a third, untested cell type, reducing its utility.  84 

During the last decade, targeted purification of cell types of interest followed by gene expression profiling has 85 

been applied to many cell types in the brain. Such studies, targeted towards well-characterized cell types, 86 

have greatly promoted our understanding of the functional and molecular diversity of these cells (Cahoy et 87 

al., 2008; Chung et al., 2005; Doyle et al., 2008). However, individual studies of this kind are limited in their 88 

ability to discover specific markers as they often analyse only a small subset of cell types (Shrestha et al., 89 

2015; Okaty et al., 2009; Sugino et al., 2006) or have limited resolution as they group subtypes of cells 90 

together (Cahoy et al., 2008). Recently, advances in technology have enabled the use of single cell 91 

transcriptomics as a powerful tool to dissect neuronal diversity and derive novel molecular classifications of 92 

cells (Poulin et al., 2016). However, with single cell analysis the classification of cells to different types is 93 

generally done post-hoc, based on the clustering similarity in their gene expression patterns. These 94 

molecularly defined cell types are often uncharacterized otherwise (e.g. electrophysiologically, 95 

morphologically), challenging their identification outside of the original study and understanding their role in 96 

normal and pathological brain function. A notable exception is the single cell RNA-seq study of Tasic et al. 97 

(2016) analysing single labelled cells from transgenic mouse lines to facilitate matching of the molecularly 98 

defined cell types they discover to previously identified cell types. We hypothesized that aggregating cell type 99 

specific studies that analyse expression profiles of cell types previously defined in literature, a more 100 

comprehensive data set more suitable for marker genes could be derived.  101 

Here we report the analysis of an aggregated cross-laboratory dataset of cell type specific expression 102 
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profiling experiments from mouse brain, composed both of pooled cell microarray data and single cell RNA-103 

seq data. We used these data to identify sets of brain cell marker genes more comprehensive than any 104 

previously reported, and validated the markers genes in external mouse and human single cell datasets. We 105 

further show that the identified markers are applicable for the analysis of human brain and demonstrate the 106 

usage of marker genes in the analysis of bulk tissue data via the summarization of their expression into 107 

“marker gene profiles” (MGPs), which can be cautiously interpreted as correlates of cell type proportion. 108 

Finally, we made both the cell type expression profiles and marker sets available to the research community 109 

at neuroexpresso.org. 110 

Materials and methods 111 

Figure 1A depicts the workflow and the major steps of this study. All the analyses were performed in R 112 

version 3.3.2; the R code and data files can be accessed through neuroexpresso.org (RRID: SRC_015724) 113 

or directly from https://github.com/oganm/neuroexpressoAnalysis. 114 

Pooled cell type specific microarray data sets 115 

We began with a collection of seven studies of isolated cell types from the brain, compiled by Okaty et al. 116 

(2011). We expanded this by querying PubMed (http://www.ncbi.nlm.nih.gov/pubmed) and Gene Expression 117 

Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/) (RRID: SCR_007303) (Barrett et al., 2013; Edgar et al., 118 

2002) for cell type-specific expression datasets from the mouse brain that used Mouse Expression 430A 119 

Array (GPL339) or Mouse Genome 430 2.0 Array (GPL1261) platforms. These platforms were our focus as 120 

together, they are the most popular platforms for analysis of mouse samples and are relatively 121 

comprehensive in gene coverage, and using a reduced range of platforms reduced technical issues in 122 

combining studies. Query terms included names of specific cell types (e.g. astrocytes, pyramidal cells) along 123 

with blanket terms such as “brain cell expression” and “purified brain cells”. Only samples derived from 124 

postnatal (> 14 days), wild type, untreated animals were included. Datasets obtained from cell cultures or cell 125 

lines were excluded due to the reported expression differences between cultured cells and primary cells 126 

(Cahoy et al., 2008; Halliwell, 2003; Januszyk et al., 2015). We also considered RNA-seq data from pooled 127 

cells (2016; Zhang et al., 2014) but because such data sets are not available for many cell types, including it 128 

in the merged resource was not technically feasible without introducing biases (though we were able to 129 

incorporate a single-cell RNA-seq data set, described in the next section). While we plan to incorporate more 130 

pooled cell RNA-seq data in the future, for this study we limited their use to validation of marker selection. 131 
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As a first step in the quality control of the data, we manually validated that each sample expressed the gene 132 

that was used as a marker for purification of the corresponding cell type in the original publication 133 

(expression greater than median expression among all gene signals in the dataset), along with other well 134 

established marker genes for the relevant cell type (e.g. Pcp2 for Purkinje cells, Gad1 for GABAergic 135 

interneurons). We next excluded contaminated samples, namely, samples expressing established marker 136 

genes of non-related cell types in levels comparable to the cell type marker itself (for example neuronal 137 

samples expressing high levels of glial marker genes), which lead to the removal of 21 samples. In total, we 138 

have 30 major cell types compiled from 24 studies represented by microarray data (summarized in Table 1); 139 

a complete list of all samples including those removed is available from the authors). 140 

Single cell RNA-seq data 141 

The study of cortical single cells by Tasic et al. (2016) includes a supplementary file (Supplementary Table 7 142 

in Tasic et al. (2016)) linking a portion of the molecularly defined cell clusters to known cell types previously 143 

described in the literature. Using this file, we matched the cell clusters from Tasic et al. with pooled cortical 144 

cell types represented by microarray data (Table 2). For most cell types represented by microarray (e.g. glial 145 

cells, Martinotti cells), the matching was based on the correspondence information provided by Tasic et al. 146 

(2016). However, for some of the cell clusters from Tasic et al. (2016), the cell types were matched manually, 147 

based on the description of the cell type in the original publication (e.g., cortical layer, high expression of a 148 

specific gene). For example, Glt25d2
+
 pyramidal cells from Schmidt et al. (2012), described by the authors 149 

as “layer 5b pyramidal cells with high Glt25d2 and Fam84b expression” were matched with two cell clusters 150 

from Tasic et al. - “L5b Tph2” and “L5b Cdh13”, 2 of the 3 clusters described as Layer 5b glutamatergic cells 151 

by Tasic et al., since both of these clusters represented pyramidal cells from cortical layer 5b and exhibited 152 

high level of the indicated genes. Cell clusters identified in Tasic et al. that did not match to any of the pooled 153 

cell types were integrated into to the combined data if they fulfilled the following criteria: 1) They represented 154 

well-characterized cell types and 2) we could determine with high confidence that they did not correspond to 155 

more than one cell type represented by microarray data. Table 2 contains information regarding the matching 156 

between pooled cell types from microarray data and cell clusters from single cell RNA-seq data from Tasic et 157 

al. 158 

In total, the combined database contains expression profiles for 36 major cell types, 10 of which are 159 

represented by both pooled cell microarray and single cell RNA-seq data, and five which are represented by 160 

single cell RNA-seq only (summarized in Table 2). Due to the substantial differences between microarray and 161 
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RNA-seq technologies, we analysed these data separately (see next sections). For visualization only, in 162 

neuroexpesso.org we rescaled the RNA-seq data to allow them to be plotted on the same axes. Details are 163 

provided on the web site.  164 

Grouping and re-assignment of cell type samples 165 

When possible, samples were assigned to specific cell types based on the descriptions provided in their 166 

associated publications. When expression profiles of closely related cell types were too similar to each other 167 

and we could not find sufficient number of differentiating marker genes meeting our criteria, they were 168 

grouped together into a single cell type. For example, A10 and A9 dopaminergic cells had no distinguishing 169 

markers (provided the other cell types presented in the midbrain region) and were grouped as “dopaminergic 170 

neurons”. In the case of pyramidal cells, while we were able to detect marker genes for pyramidal cell 171 

subtypes, they were often few in numbers and most of them were not represented on the human microarray 172 

chip (Affymetrix Human Exon 1.0 ST Array) used in the downstream analysis. As a result, calculation of 173 

marker gene profiles in human bulk tissue would not feasible for majority of these cell types. To combat this, 174 

we created two gene lists, one created by considering pyramidal subtypes as separate cell types, and 175 

another where pyramidal subtypes are pooled into a pan-pyramidal cell type. Due to the scarcity of markers 176 

for pyramidal subtypes, we only consider the pan-pyramidal cell type in our downstream analysis. However, 177 

we still kept the pyramidal subtypes separate during marker gene selection (described below) for the non-178 

pyramidal cell types to help ensure marker specificity.  179 

Since our focus was identifying markers specific to cell types within a given brain region, samples were 180 

grouped based on the brain region from which they were isolated, guided by the anatomical hierarchy of 181 

brain regions (Figure 1B). Brain sub-regions (e.g. locus coeruleus) were added to the hierarchy if there were 182 

multiple cell types represented in the sub-region. An exception to the region assignment process are glial 183 

samples. Since these samples were only available from either cortex or cerebellum regions or extracted from 184 

whole brain, the following assignments were made: Cerebral cortex-derived astrocyte and oligodendrocyte 185 

samples were included in the analysis of other cerebral regions as well as thalamus, brainstem and spinal 186 

cord. Bergmann glia and cerebellum-derived oligodendrocytes were used in the analysis of cerebellum. The 187 

only microglia samples available were isolated from whole brain homogenates and were included in the 188 

analysis of all brain regions. 189 

Selection of cell type markers 190 

Marker gene sets (MGSs) were selected for each cell type in each brain region, based on fold change and 191 
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clustering quality (see below). For cell types that are represented by both microarray and single cell data 192 

(cortical cells), two sets of MGSs were created and later merged as described below. Since there is no 193 

generally accepted definition of “marker gene”, our goal was to identify markers that were sufficiently specific 194 

and highly expressed to be useful in computational settings, but also likely to be of interest for potential 195 

laboratory applications. Thus, our threshold selections were guided in part by the expression patterns of 196 

previously well-established markers as well as our intended applications. 197 

Marker genes were selected for each brain region based on the following steps: 198 

1. For RNA-seq data, each of the relevant clusters identified in Tasic et al. was considered as a single 199 

sample, where the expression of each gene was calculated by taking the mean RPKM values of the 200 

individual cells representing the cluster. Table 2 shows which clusters represent which cell types. 201 

2. Expression level of a gene in a cell type was calculated by taking the mean expression of all replicate 202 

samples originating from the same study and averaging the resulting values across different studies per 203 

cell type. 204 

3. The quality of clustering was determined by “mean silhouette coefficient” and “minimal silhouette 205 

coefficient” values (where silhouette coefficient is a measure of group dissimilarity ranged between -1 206 

and 1 (Rousseeuw, 1987)). Mean silhouette coefficient was calculated by assigning the samples 207 

representing the cell type of interest to one cluster and samples from the remaining cell types to another, 208 

and then calculating the mean silhouette coefficient of all samples. The minimal silhouette coefficient is 209 

the minimal value of mean silhouette coefficient when it is calculated for samples representing the cell 210 

type of interest in comparison to samples from each of the remaining cell types separately. The two 211 

measures where used to ensure that the marker gene robustly differentiates the cell type of interest from 212 

other cell types. Silhouette coefficients were calculated with the “silhouette” function from the “cluster” R 213 

package version 1.15.3 (Maechler et al., 2016), using the expression difference of the gene between 214 

samples as the distance metric. 215 

4. A background expression value was defined as expression below which the signal cannot be discerned 216 

from noise. Different background values are selected for microarray (6 – all values are log2 transformed) 217 

and RNA-seq (0.1) due to the differences in their distribution. 218 

Based on these metrics, the following criteria were used: 219 

1. A threshold expression level was selected to help ensure that the gene’s transcripts will be 220 

detectable in bulk tissue. Genes with median expression level below this threshold were excluded 221 
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from further analyses. For microarrays, this threshold was chosen to be 8. Theoretically, if a gene 222 

has an expression level of 8 in a cell type, and the gene is specific to the cell type, an expression 223 

level of 6 would be observed if 1/8
th
 of a bulk tissue is composed of the cell type. As many of the cell 224 

types in the database are likely to be as rare as or rarer than 1/8
th
, and 6 is generally close to 225 

background for these data, we picked 8 as a lower level of marker gene expression. For RNA-seq 226 

data, we selected a threshold of 2.5 RPKM, which in terms of quantiles corresponds to the 227 

microarray level of 8.  228 

2. If the expression level in the cell type of interest is higher than 10 times the background threshold, 229 

there must be at least a 10-fold difference from the median expression level of the remaining cell 230 

types in the region. If the expression level in the cell type is less than 10 times the background, the 231 

expression level must be higher than the expression level of every other cell type in that region. This 232 

criterion was added because below this expression level, for a 10-fold expression change to occur, 233 

the expression median of other cell types needs be lower than the background. Values below the 234 

background signal that do not convey meaningful information but can prevent potentially useful 235 

marker genes from being selected. 236 

3. The mean silhouette coefficient for the gene must be higher than 0.5 and minimum silhouette 237 

coefficient must the greater than zero for the associated cell type. 238 

4. The conditions above must be satisfied only by a single cell type in the region. 239 

To ensure robustness against outlier samples, we used the following randomization procedure, repeated 500 240 

times: One third (rounded) of all samples were removed. For microarray data, to prevent large studies from 241 

dominating the silhouette coefficient, when studies representing the same cell types did not have an equal 242 

number of samples, N samples were picked randomly from each of the studies, where N is the smallest 243 

number of samples coming from a single study. A gene was selected if it qualified our criteria in more than 244 

95% of all permutations. 245 

Our next step was combining the MGSs created from the two expression data types. For cell types and 246 

genes represented by both microarray and RNA-seq data, we first looked at the intersection between the 247 

MGSs. For most of the cell types, the overlap between the two MGSs was about 50%. We reasoned that this 248 

could be partially due to numerous “near misses” in both data sources. Namely, since our method for marker 249 

gene selection relies on multiple steps with hard thresholds, it is very likely that some genes were not 250 

selected simply because they were just below one of the required thresholds. We thus adopted a soft 251 



 

9 

 

intersection: A gene was considered as a marker if it fulfilled the marker gene criteria in one data source 252 

(pooled cell microarray or single cell RNA-seq), and its expression in the corresponding cell type from the 253 

other data source was higher than in any other cell type in that region. For example, Ank1 was originally 254 

selected as a marker of FS Basket cells based on microarray data, but did not fulfil our selection criteria 255 

based on RNA-seq data. However, the expression level of Ank1 in the RNA-seq data is higher in FS Basket 256 

cells than in any other cell type from this data source, and thus, based on the soft intersection criterion, Ank1 257 

is considered as a marker of FS Basket cells in our final marker gene set. For genes and cell types that were 258 

only represent by one data source, the selection was based on this data source only. 259 

It can be noted that some previously described markers (such as Prox1 for dentate granule cells) are absent 260 

from our marker gene lists. In some cases, this is due to the absence the genes from the microarray 261 

platforms used, while in other cases the genes failed to meet our stringent selection criteria. Final marker 262 

gene lists are available at http://www.chibi.ubc.ca/supplement-to-mancarci-et-al-neuroexpresso/.  263 

Human homologues of mouse genes were defined by NCBI HomoloGene 264 

(ftp://ftp.ncbi.nih.gov/pub/HomoloGene/build68/homologene.data). 265 

Microglia enriched genes 266 

 Microglia expression profiles differ significantly between activated and inactivated states and to our 267 

knowledge, the samples in our database represent only the inactive state (Holtman et al., 2015). In order to 268 

acquire marker genes with stable expression levels regardless of microglia activation state, we removed the 269 

genes differentially expressed in activated microglia based on Holtman et al. (2015). This step resulted in 270 

removal of 408 out of the original 720 microglial genes in cortex (microarray and RNA-seq lists combined) 271 

and 253 of the 493 genes in the context of other brain regions (without genes from single cell data). 272 

Microglial marker genes which were differentially expressed in activated microglia are referred to as 273 

Microglia_activation and Microglia_deactivation (up or down-regulated, respectively) in the marker gene lists 274 

provided. 275 

S100a10
+
 pyramidal cell enriched genes 276 

The paper (Schmidt et al., 2012) describing the cortical S100a10
+
 pyramidal cells emphasizes the existence 277 

of non-neuronal cells expressing S100a10
+
. Schmidt et al. therefore limited their analysis to 7,853 genes 278 

specifically expressed in neurons and advised third-party users of the data to do so as well. Since a 279 

contamination caveat was only concerning microarray samples from Schmidt et al. (the only source of 280 

S100a10
+
 pyramidal cells in microarray data), we removed marker genes selected for S100a10

+
 pyramidal 281 
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cells based on the microarray data if they were not among the 7,853 genes indicated in Schmidt et al. We 282 

also removed S100a10 itself since based on the author’s description it was not specific to this cell type. In 283 

total, 36 of the 47 S100a10 pyramidal genes originally selected based on microarray data were removed in 284 

this step. Of note, none of the removed genes were selected as a marker of S100a10 cell based on RNA-285 

seq data. 286 

Dentate granule cell enriched genes 287 

We used data from (Cembrowski et al., 2016) (Hipposeq – RRID: SCR_015730) for validation and 288 

refinement of dentate granule markers (as noted above these data are not currently included in 289 

Neuroexpresso for technical reasons). FPKM values were downloaded (GEO accession GSE74985) and 290 

log2 transformed. Based on these values, dentate granule marker genes were removed if their expression in 291 

Hipposeq data (mean of dorsal and ventral granule cells) was lower than other cell types represented in this 292 

dataset. In total, 15 of the 39 originally selected genes that were removed in this step.  293 

In situ hybridization 294 

Male C57BL/6J (RRID: IMSR_JAX:0000664) mice aged 13-15 weeks at time of sacrifice were used (n=5). 295 

Mice were euthanized by cervical dislocation and then the brain was quickly removed, frozen on dry ice, and 296 

stored at -80°C until sectioned via cryostat. Brain sections containing the sensorimotor cortex were cut along 297 

the rostral-caudal axis using a block advance of 14 μm, immediately mounted on glass slides and dried at 298 

room temperature (RT) for 10 minutes, and then stored at -80°C until processed using multi-label fluorescent 299 

in situ hybridization procedures. 300 

Fluorescent in situ hybridization probes were designed by Advanced Cell Diagnostics, Inc. (Hayward, CA, 301 

USA) to detect mRNA encoding Cox6a2, Slc32a1, and Pvalb. Two sections per animal were processed using 302 

the RNAscope® 2.5 Assay as previously described (Wang et al., 2012). Briefly, tissue sections were 303 

incubated in a protease treatment for 30 minutes at RT and then the probes were hybridized to their target 304 

mRNAs for 2 hours at 40°C. The sections were exposed to a series of incubations at 40°C that amplifies the 305 

target probes, and then counterstained with NeuroTrace blue-fluorescent Nissl stain (1:50; Molecular 306 

Probes) for 20 minutes at RT. Cox6a2, Pvalb, and Slc32a1 were detected with Alexa Fluor® 488, Atto 550 307 

and Atto 647, respectively.  308 

Data were collected on an Olympus IX83 inverted microscope equipped with a Hamamatsu Orca-Flash4.0 309 

V2 digital CMOS camera using a 60x 1.40 NA SC oil immersion objective. The equipment was controlled by 310 

cellSens (Olympus). 3D image stacks (2D images successively captured at intervals separated by 0.25 μm 311 
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in the z-dimension) that are 1434 x 1434 pixels (155.35 μm x 155.35 μm) were acquired over the entire 312 

thickness of the tissue section. The stacks were collected using optimal exposure settings (i.e., those that 313 

yielded the greatest dynamic range with no saturated pixels), with differences in exposures normalized 314 

before analyses. 315 

Laminar boundaries of the sensorimotor cortex were determined by cytoarchitectonic criteria using 316 

NeuroTrace labeling. Fifteen image stacks across the gray matter area spanning from layer 2 to 6 were 317 

systematic randomly sampled using a sampling grid of 220 x 220 μm
2
, which yielded a total of 30 image 318 

stacks per animal. Every NeuroTrace labeled neuron within a 700 x 700 pixels counting frame was included 319 

for analyses; the counting frame was placed in the center of each image to ensure that the entire 320 

NeuroTrace labeled neuron was in the field of view. The percentage (± standard deviation) of NeuroTrace 321 

labeled cells containing Cox6a2 mRNA (Cox6a2+) and that did not contain Slc32a1 mRNA (Slc32a1-), that 322 

contained Slc32a1 but not Pvalb mRNA (Slc32a1+/Pvalb-), and that contained both Slc32a1 and Pvalb 323 

mRNAs (Slc32a1+/Pvalb+) were manually assessed. 324 

Allen Brain Atlas in situ hybridization (ISH) data 325 

We downloaded in situ hybridization (ISH) images using the Allen Brain Atlas API (http://help.brain-326 

map.org/display/mousebrain/API). Assessment of expression patterns was done by visual inspection. If a 327 

probe used in an ISH experiment did not show expression in the region, an alternative probe targeting the 328 

same gene was sought. If none of the probes showed expression in the region, the gene was considered to 329 

be not expressed. 330 

Validation of marker genes using external single cell data 331 

Mouse cortex single cell RNA sequencing (RNA-seq) data were acquired from Zeisel et al. (2015) (available 332 

from http://linnarssonlab.org/cortex/, GEO accession: GSE60361,1691 cells) Human single cell RNA 333 

sequencing data were acquired from Darmanis et al. (2015) (GEO accession: GSE67835, 466 cells). For 334 

both datasets, pre-processed expression data were encoded in a binary matrix with 1 representing any 335 

nonzero value. For all marker gene sets, Spearman’s ρ was used to quantify internal correlation. A null 336 

distribution was estimated by calculating the internal correlation of 1000 randomly-selected prevalence-337 

matched gene groups. Gene prevalence was defined as the total number of cells with a non-zero expression 338 

value for the gene. Prevalence matching was done by choosing a random gene with a prevalence of +/-2.5% 339 

of the prevalence of the marker gene. P-values were calculated by comparing the internal correlation of 340 
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marker gene set to the internal correlations of random gene groups using Wilcoxon rank-sum test. 341 

Pre-processing of microarray data 342 

For comparison of marker gene profiles in white matter and frontal cortex, we acquired expression data from 343 

pathologically healthy brain samples from Trabzuni et al. (2013) (GEO accession: GSE60862). For 344 

estimation of dopaminergic marker gene profiles in Parkinson’s disease patients and controls, we acquired 345 

substantia nigra expression data from Lesnick et al. (2007) (GSE7621), Moran et al.(2006) (GSE8397) and 346 

Zhang et al.(2005) (GSE20295) studies. Expression data for the Stanley Medical Research Institute (SMRI), 347 

which included post-mortem prefrontal cortex samples from bipolar disorder, major depression and 348 

schizophrenia patients along with healthy donors, were acquired through https://www.stanleygenomics.org/, 349 

study identifier 2. 350 

 All microarray data used in the study were pre-processed and normalized with the “rma” function of the 351 

“oligo” (RRID: SCR_015729) (Affymetrix gene arrays) or “affy” (RRID: SCR_012835) (Affymetrix 3’IVT 352 

arrays) (Carvalho and Irizarry, 2010) R packages. Probeset to gene annotations were obtained from Gemma 353 

(Zoubarev et al., 2012) (http://gemma.chibi.ubc.ca/). Probesets with maximal expression level lower than the 354 

median among all probeset signals were removed. Of the remaining probesets, whenever several probesets 355 

were mapped to the same gene, the one with the highest variance among the samples was selected for 356 

further analysis. 357 

Outliers and mislabelled samples were removed when applicable, if they were identified as an outlier in 358 

provided metadata, if expression of sex-specific genes did not match the sex provided in metadata (Toker et 359 

al., 2016), or if they clustered with data from another tissue type in the same dataset based on genes found 360 

to be most differentially expressed between the tissue types. This resulted in the removal of 18/194 samples 361 

from Trabzuni et al. (2013), 3/44 samples from expression data from Stanley Medical Research Institute and 362 

3/93 samples from Zhang et al. (2005) dataset. 363 

Samples from pooled cell types that make up the NeuroExpresso database were processed by an in-house 364 

modified version of the “rma” function that enabled collective processing of data from Mouse Expression 365 

430A Array (GPL339) and Mouse Genome 430 2.0 Array (GPL1261) which share 22690 of their probesets. 366 

As part of the rma function, the samples are quantile normalized at the probe level. However, possibly due to 367 

differences in the purification steps used by different studies (Okaty et al., 2011), we still observed biases in 368 

signal distribution among samples originating from different studies. Thus, to increase the comparability 369 

across studies, we performed a second quantile normalization of the samples at a probeset level before 370 
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selection of probes with the highest variance. After all processing the final data set included 11564 genes. 371 

Estimation of marker gene profiles (MGPs) 372 

For each cell type, relevant to the brain region analysed, we used the first principal component of the 373 

corresponding marker gene set expression as a surrogate for cell type proportions. This method of marker 374 

gene profile estimation is similar to the methodology of multiple previous works that aim to estimate relative 375 

abundance of cell types in a whole tissue sample (Chikina et al., 2015; Westra et al., 2015; Xu et al., 2013). 376 

Principal component analysis was performed using the “prcomp” function from the “stats” R package, using 377 

the “scale = TRUE” option. It is plausible that some marker genes will be transcriptionally differentially 378 

regulated under some conditions (e.g. disease state), reducing the correspondence between their 379 

expression level with the relative cell proportion. A gene that is thus regulated is expected to have reduced 380 

correlation to the other marker genes with expression levels primarily dictated by cell type proportions, which 381 

will reduce their loading in the first principal component. To reduce the impact of regulated genes on the 382 

estimation process, we removed marker genes from a given analysis if their loadings had the opposite sign 383 

to the majority of markers when calculated based on all samples in the dataset and recalculate loadings and 384 

components using the remaining genes. This was repeated until all remaining genes had loadings with the 385 

same signs. Since the sign of the loadings of the rotation matrix (as produced by prcomp function) is 386 

arbitrary, to ease interpretation between the scores and the direction of summarized change in the 387 

expression of the relevant genes, we multiplied the scores by -1 whenever the sign of the loadings was 388 

negative. For visualization purposes, the scores were normalized to the range 0-1. Two sided Wilcoxon rank-389 

sum test (“wilcox.test” function from the “stats” package in R, default options) was used to compare between 390 

the different experimental conditions. 391 

For estimations of cell type MGPs in samples from frontal cortex and white matter from the Trabzuni study 392 

(Trabzuni et al., 2013), results were subjected to multiple testing correction by the Benjamini & Hochberg 393 

method (Benjamini and Hochberg, 1995). For the Parkinson’s disease datasets from Moran et al. (2006) and 394 

Lesnick et al. (2007), we estimated MGPs for dopaminergic neuron markers in control and PD subjects. 395 

Moran et al. data included samples from two sub-regions of substantia nigra. Since some of the subjects 396 

were sampled in only one of the sub-regions while others in both, the two sub-regions were analysed 397 

separately.  398 

For the SMRI collection of psychiatric patients we estimated oligodendrocytes MGPs based on expression 399 

data available through the SMRI website (as indicated above) and compared our results to experimental cell 400 
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counts from the same cohort of subjects previously reported by Uranova et al. (2004). Figure 7B 401 

representing the oligodendrocyte cell counts in each disease group was adapted from Uranova et al. (2004). 402 

The data presented in the figure was extracted from Figure 1A in Uranova et al. (2004)  using 403 

WebPlotDigitizer (http://arohatgi.info/WebPlotDigitizer/app/).  404 

Code Accessibility 405 

All code is available as extended data. They are also maintained in the GitHub repositories lister below. 406 

Marker gene selection and marker gene profile estimation was performed with custom R functions provided 407 

within “markerGeneProfile” R package available on GitHub (https://github.com/oganm/markerGeneProfile). 408 

Human homologues of mouse genes were identified using “homologene” R package available on GitHub 409 

(https://github.com/oganm/homologene). 410 

Code for data processing and analysis can be found at “neuroExpressoAnalysis” repository available on 411 

GitHub (https://github.com/oganm/neuroExpressoAnalysis). 412 

Source code of the neuroexpresso.org we app can be found at “neuroexpresso” repository available on 413 

GitHub (https://github.com/oganm/neuroexpresso) 414 

Results 415 

Compilation of a brain cell type expression database 416 

A key input to our search for marker genes is expression data from purified pooled brain cell types and single 417 

cells. Expanding on work from Okaty et al. (2011), we assembled and curated a database of cell type-418 

specific expression profiles from published data (see Methods, Figure 1A). The database represents 36 419 

major cell types from 12 brain regions (Figure 1B) from a total of 263 samples and 30 single cell clusters. 420 

Frontal cortex is represented by both microarray and RNA-seq data, with 5 of the 15 cortical cell types 421 

represented exclusively by RNA-seq data. We used rigorous quality control steps to identify contaminated 422 

samples and outliers (see Methods). In the microarray dataset, all cell types except for ependymal cells are 423 

represented by at least 3 replicates and in the entire database, 14/36 cell types are represented by multiple 424 

independent studies (Table 1). The database is in constant growth as more cell type data becomes available. 425 

To facilitate access to the data and allow basic analysis we provide a simple search and visualization 426 

interface on the web, www.neuroexpresso.org (Figure 2). The app provides means of visualising gene 427 

expression in different brain regions based on the cell type, study or methodology, as well as differential 428 

expression analysis between groups of selected samples. 429 
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Identification of cell type enriched marker gene sets  430 

We used the NeuroExpresso data to identify marker gene sets (MGSs) for each of the 36 cell types. An 431 

individual MGS is composed of genes highly enriched in a cell type in the context of a brain region (Figure 432 

3A). Marker genes were selected based on a) fold of change relative to other cell types in the brain region 433 

and b) a lack of overlap of expression levels in other cell types (see Methods for details). This approach 434 

captured previously known marker genes (e.g. Th for dopaminergic cells (Pickel et al., 1976), Tmem119 for 435 

microglia (Bennett et al., 2016) (of note, Tmem119 was classified as downregulated in activated microglia in 436 

our analysis, corroborating previous reports of Satoh et al. (2016) and Erny et al. (2015)). We also identified 437 

numerous new candidate markers such as Cox6a2 for fast spiking parvalbumin (PV)
+
 interneurons. Some 438 

marker genes previously reported by individual studies whose data were included in our database, were not 439 

selected by our analysis. For example, Fam114a1 (9130005N14Rik), identified as a marker of fast spiking 440 

basket cells by Sugino et al. (2006), is highly expressed in oligodendrocytes and oligodendrocyte precursor 441 

cells (Figure 3B). These cell types were not considered in the Sugino et al. (2006) study, and thus the lack of 442 

specificity of Fam114a1 could not be observed by the authors. In total, we identified 2671 marker genes (3-443 

186 markers per cell type, (Table 1)). The next sections focus on verification and validation of our proposed 444 

markers, using multiple methodologies. 445 

Verification of markers by in situ hybridization 446 

Two cell types in our database (Purkinje cells of the cerebellum and hippocampal dentate gyrus granule 447 

cells) are organized in well-defined anatomical structures that can be readily identified in tissue sections. We 448 

exploited this fact to use in situ hybridization (ISH) data from the Allen Brain Atlas (ABA) (http://mouse.brain-449 

map.org) (Sunkin et al., 2013) to verify co-localization of known and novel markers for these two cell types. 450 

There was a high degree of co-localization of the markers to the corresponding brain structures, and by 451 

implication, cell types (Figure 4A-B). For dentate granule (DG) cell markers, all 16 genes were represented in 452 

ABA. Of these, 14 specifically co-localized with known markers (that is, had the predicted expression pattern 453 

confirming our marker selection), one marker exhibited non-specific expression and one marker showed no 454 

signal. For Purkinje cell markers, 41/43 genes were represented in ABA. Of these, 37 specifically co-455 

localized with known markers, one marker exhibited non-specific expression and three markers showed no 456 

signal in the relevant brain structure (Figure 4B). Figure 4A shows representative examples for the two cell 457 

types (details of our ABA analysis, including images for all the genes examined and validation status of the 458 

genes, are provided in extended data).  459 
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The four markers for which no signal was detected (one marker of dentate gyrus granule cells and three 460 

markers of Purkinje cells) underwent additional scrutiny. For one of the markers of Purkinje cells (Eps8l2), 461 

the staining of cerebellar sections was inconsistent, with some sections showing no staining, some sections 462 

showing nonspecific staining and several sections showing the predicted localization. The three remaining 463 

genes had no signal in ABA ISH data brain-wide. We considered such absence or inconsistency of ISH 464 

signal inconclusive. Further analysis of these cases (one DG marker, three Purkinje) suggests that the ABA 465 

data is the outlier. As part of our marker selection procedure, Pter, the DG cell marker in question, was found 466 

to have high expression in granule cells both within NeuroExpresso and Hipposeq – a data set that is not 467 

used for primary selection of markers (see methods). In addition, Hipposeq indicates specificity to DG cells 468 

relative to the other neuron types in Hipposeq. For the Purkinje markers, specific expression for one gene 469 

(Sycp1) was supported by the work of Rong et al. (2004), who used degeneration of Purkinje cells to identify 470 

potential markers of these cells (20/43 Purkinje markers identified in our study were also among the list of 471 

potential markers reported by Rong et al.). We could not find data to further establish expression for the two 472 

remaining markers of Purkinje cells (Eps8l2 and Smpx). However, we stress that the transcriptomic data for 473 

Purkinje cells in our database are from five independent studies using different methodologies for cell 474 

purification, all of which support the specific expression of Eps8l2 and Smpx in Purkinje cells. Overall, 475 

through a combination of examination of ABA and other data sources, we were able to find confirmatory 476 

evidence of cell-type-specificity for 53/57 genes, with two false positives, and inconclusive findings for two 477 

genes.  478 

We independently verified Cox6a2 as a marker of cortical fast spiking PV+ interneurons using triple label in 479 

situ hybridization of mouse cortical sections for Cox6a2, Pvalb and Slc32a1 (a pan-GABAergic neuronal 480 

marker) transcripts. As expected, we found that approximately 25% of all identified neurons were GABAergic 481 

(that is, Slc32a1 positive), while 46% of all GABAergic neurons were also Pvalb positive. 80% of all Cox6a2+ 482 

neurons were both Pvalb and Slc32a1 positive whereas Cox6a2 expression outside GABAergic cells was 483 

very low (1.65% of Cox6a2 positive cells), suggesting high specificity of Cox6a2 to PV+ GABAergic cells 484 

(Figure 5). 485 

Verification of marker gene sets in single-cell RNA-seq data 486 

As a further validation of our marker gene signatures, we analysed their properties in recently published 487 

single cell RNA-seq datasets derived from mouse cortex (Zeisel et al., 2015) and human cortex (Darmanis et 488 

al., 2015). We could not directly compare our MGSs to markers of cell type clusters identified in the studies 489 
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producing these datasets since their correspondence to the cell types in NeuroExpresso was not clear. 490 

However, since both datasets represent a large number of individual cells, they are likely to include individual 491 

cells corresponding to the cortical cell types in our database. Thus, if our MGSs are cell type specific, and 492 

the corresponding cells are present in the single cell datasets, MGS should have a higher than random 493 

chance of being co-detected in the same cells, relative to non-marker genes. A weakness of this approach is 494 

that a failure to observe a correlation might be due to absence of the cell type in the data set rather than a 495 

true shortcoming of the markers. Overall, all MGSs for all cell types with the exception of oligodendrocyte 496 

precursor cells were successfully validated (p<0.001, Wilcoxon rank sum test) in both single cell datasets 497 

(Table 3).  498 

NeuroExpresso as a tool for understanding the biological diversity and similarity of brain cells 499 

One of the applications of NeuroExpresso is as an exploratory tool for exposing functional and biological 500 

properties of cell types. In this section, we highlight three examples we encountered: We observed high 501 

expression of genes involved in GABA synthesis and release (Gad1, Gad2 and Slc32a1) in forebrain 502 

cholinergic neurons, suggesting the capability of these cells to release GABA in addition to their cognate 503 

neurotransmitter acetylcholine (Figure 6A). Indeed, co-release of GABA and acetylcholine from forebrain 504 

cholinergic cells was recently demonstrated by Saunders et al. (2015). Similarly, the expression of the 505 

glutamate transporter Slc17a6, observed in thalamic (habenular) cholinergic cells suggests co-release of 506 

glutamate and acetylcholine from these cells, recently supported experimentally  (Ren et al., 2011)) (Figure 507 

6A). Surprisingly, we observed consistently high expression of Ddc (Dopa Decarboxylase), responsible for 508 

the second step in the monoamine synthesis pathway in oligodendrocyte cells (Figure 6B).  This result is 509 

suggestive of a previously unknown ability of oligodendrocytes to produce monoamine neurotransmitters 510 

upon exposure to appropriate precursor, as previously reported for several populations of cells in the brain 511 

(Ren et al., 2016; Ugrumov, 2013). Alternatively, this finding might indicate a previously unknown function of 512 

Ddc. Lastly, we found overlap between the markers of spinal cord and brainstem cholinergic cells, and 513 

midbrain noradrenergic cells, suggesting previously unknown functional similarity between cholinergic and 514 

noradrenergic cell types. The common markers included Chodl, Calca, Cda and Hspb8, which were recently 515 

confirmed to be expressed in brainstem cholinergic cells (Enjin et al., 2010), and Phox2b, a known marker of 516 

noradrenergic cells (Pattyn et al., 1997).  517 

Marker Gene Profiles can be used to infer changes in cellular proportions in the brain 518 

Marker genes are by definition cell type specific, and thus changes in their expression observed in bulk 519 
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tissue data can represent either changes in the number of cells or cell type specific transcriptional changes 520 

(or a combination). Marker genes of four major classes of brain cell types (namely neurons, astrocytes, 521 

oligodendrocytes and microglia) were previously used to gain cell type specific information from brain bulk 522 

tissue data (Hagenauer et al., 2016; Kuhn et al., 2011; Ramaker et al., 2017; Sibille et al., 2008; Skene and 523 

Grant, 2016; P. P. C. Tan et al., 2013), and infer changes in cellular abundance. Following the practice of 524 

others, we applied similar approach to our marker genes, summarizing their expression profiles as the first 525 

principal component of their expression (see Methods) (Chikina et al., 2015; Westra et al., 2015; Xu et al., 526 

2013). We refer to these summaries as Marker Gene Profiles (MGPs).  527 

In order to validate the use of MGPs as surrogates for relative cell type proportions, we used bulk tissue 528 

expression data from conditions with known changes in cellular proportions. Firstly, we calculated MGPs for 529 

human white matter and frontal cortex using data collected by (Trabzuni et al., 2013). Comparing the MGPs 530 

in white vs. grey matter, we observed the expected increase in oligodendrocyte MGP, as well as increase in 531 

oligodendrocyte progenitor cell, endothelial cell, astrocyte and microglia MGPs, corroborating previously 532 

reported higher number of these cell types in white vs. grey matter (Gudi et al., 2009; Ogura et al., 1994; 533 

Williams et al., 2013). We also observed decrease in MGPs of all neurons, corroborating the low neuronal 534 

cell body density in white vs. grey matter (Figure 7A, Table 4). 535 

A more specific form of validation was obtained from a pair of studies done on the same cohort of subjects, 536 

with one study providing expression profiles (study 2 from SMRI microarray database, see Methods) and 537 

another providing stereological counts of oligodendrocytes (Uranova et al., 2004), for similar brain regions. 538 

We calculated oligodendrocyte MGPs based on the expression data and compared the results to 539 

experimental cell counts from Uranova et al. (2004). The MGPs were consistent with the reduction of 540 

oligodendrocytes observed by Uranova et al. in schizophrenia, bipolar disorder and depression patients. 541 

(Figure 7B, Table 4; direct comparison between MGP and experimental cell count at a subject level was not 542 

possible, as Uranova et al. did not provide subject identifiers corresponding to each of the cell count values). 543 

To further assess and demonstrate the ability of MGPs to correctly represent cell type specific changes in 544 

neurological conditions, we calculated dopaminergic profiles of substantia nigra samples in three expression 545 

data sets of Parkinson’s disease (PD) patients and controls from Moran et al. (2006) (GSE8397), Lesnick et 546 

al. (2007) (GSE7621) and Zhang et al. (2005) (GSE20295). We tested whether the well-known loss of 547 

dopaminergic cells in PD could be detected using our MGP approach. MGP analysis correctly identified 548 

reduction in dopaminergic cells in substantia nigra of Parkinson’s disease patients (Figure 7C, Table 4).  549 
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Discussion 550 

Cell type specific expression database as a resource for neuroscience 551 

We present NeuroExpresso, a rigorously curated database of brain cell type specific gene expression data 552 

(www.neuroexpresso.org), and demonstrate its utility in identifying cell-type markers and in the interpretation 553 

of bulk tissue expression profiles. To our knowledge, NeuroExpresso is the most comprehensive database of 554 

expression data for identified brain cell types. The database will be expanded as more data become 555 

available. 556 

NeuroExpresso allows simultaneous examination of gene expression associated with numerous cell types 557 

across different brain regions. This approach promotes discovery of cellular properties that might have 558 

otherwise been unnoticed or overlooked when using gene-by-gene approaches or pathway enrichment 559 

analysis. For example, a simple examination of expression of genes involved in biosynthesis and secretion 560 

of GABA and glutamate, suggested the co-release of these neurotransmitters from forebrain and habenular 561 

cholinergic cells, respectively.  562 

Studies that aim to identify novel properties of cell types can benefit from our database as an inexpensive 563 

and convenient way to seek novel patterns of gene expression. For instance, our database shows significant 564 

bimodality of gene expression in dopaminergic cell types from the midbrain (Figure 6C). The observed 565 

bimodality might indicate heterogeneity in the dopaminergic cell population, which could prove a fruitful 566 

avenue for future investigation. Another interesting finding from NeuroExpresso is the previously unknown 567 

overlap of several markers of motor cholinergic and noradrenergic cells. While the overlapping markers were 568 

previously shown to be expressed in spinal cholinergic cells, to our knowledge their expression in 569 

noradrenergic (as well as brain stem cholinergic) cells was previously unknown.  570 

NeuroExpresso can be also used to facilitate interpretation of genomics and transcriptomics studies. 571 

Recently (Pantazatos et al., 2016) used an early release of the databases to interpret expression patterns in 572 

the cortex of suicide victims, suggesting involvement of microglia. Moreover, this database has further 573 

applications beyond the use of marker genes, such as  understanding the molecular basis of cellular 574 

diversity (Tripathy et al., 2017).  575 

Importantly, NeuroExpresso is a cross-laboratory database. A consistent result observed across several 576 

studies raises the certainty that it represents a true biological finding rather than merely an artefact or 577 

contamination with other cell types. This is specifically important for unexpected findings such as the 578 

expression of Ddc in oligodendrocytes (Figure 6B).  579 
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Validation of cell type markers 580 

To assess the quality of the marker genes, a subset of our cell type markers was validated by in situ 581 

hybridization (Cox6a2 as a marker of fast spiking basket cells, and multiple Purkinje and DG cell markers). 582 

Further validation was performed with computational methods in independent single cell datasets from 583 

mouse and human. This analysis validated all cortical gene sets except Oligodendrocyte precursors (OP). In 584 

their paper, Zeisel et al. (2015) stated that none of the oligodendrocyte sub-clusters they identified were 585 

associated with oligodendrocyte precursor cells, which likely explains why we were not able to validate the 586 

OP MGP in their dataset. The Darmanis dataset however, is reported to include oligodendrocyte precursors 587 

(18/466 cells) (Darmanis et al., 2015), but again our OPC MGP did not show good validation. In this case the 588 

reason for negative results could be changes in the expression of the mouse marker gene orthologs in 589 

human, possibly reflecting functional differences between the human and mouse cell types (Shay et al., 590 

2013; Zhang et al., 2016). Further work will be needed to identify a robust human OPC signature. However, 591 

since most MGSs did validate between mouse and human data, it suggests that most marker genes 592 

preserve their specificity despite cross-species gene expression differences.  593 

Improving interpretation of bulk tissue expression profiles 594 

Marker genes can assist with the interpretation of bulk tissue data in the form of marker gene profiles 595 

(MGPs). A parsimonious interpretation of a change in an MGP is a change in the relative abundance of the 596 

corresponding cell type. Similar summarizations of cell type specific genes were previously used to analyse 597 

gene expression (Chikina et al., 2015; Newman et al., 2015; Westra et al., 2015; Xu et al., 2013) and 598 

methylation data (Jones et al., 2017; Shannon et al., 2017). Since our approach focuses on the overall trend 599 

of a MGS expression level, it should be relatively insensitive to expression changes in a subset of these 600 

genes. Still, we prefer to refer the term “marker gene profile” rather than “cell type proportions”, to emphasize 601 

the indirect nature of the approach. 602 

Our results show that MGPs based on NeuroExpresso marker gene sets (MGSs) can reliably recapitulate 603 

relative changes in cell type abundance across different conditions. Direct validation of cell count estimation 604 

based on MGSs in human brain was not feasible due to the unavailability of cell counts coupled with 605 

expression data. Instead, we compared oligodendrocyte MGPs based on a gene expression dataset 606 

available through the SMRI database to experimental cell counts taken from a separate study (Uranova et 607 

al., 2004) of the same cohort of subjects and were able to recapitulate the reported reduction of 608 

oligodendrocyte proportions in patients with schizophrenia, bipolar disorder and depression. Based on 609 
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analysis of dopaminergic MGPs we were also able to capture the well-known reduction in dopaminergic cell 610 

types in PD patients. 611 

Limitations and caveats 612 

While we took great care in the assembly of NeuroExpresso, there remain a number of limitations and room 613 

for improvement. First, the NeuroExpresso database was assembled from multiple datasets, based on 614 

different mouse strains and cell type extraction methodologies, which may lead to undesirable heterogeneity. 615 

We attempted to reduce inter-study variability by combined pre-processing of the raw data and 616 

normalization. However, due to insufficient overlap between cell types represented by different studies, many 617 

of the potential confounding factors such as age, sex and methodology could not be explicitly corrected for. 618 

Thus, it is likely that some of the expression values in NeuroExpresso may be affected by confounding 619 

factors. While our confidence in the data is increased when expression signals are robust across multiple 620 

studies, many of the cell types in NeuroExpresso are represented by a single study. Hence, we advise that 621 

small differences in expression between cell types as well as previously unknown expression patterns based 622 

on a single data source should be treated with caution. In our analyses, we address these issues by 623 

enforcing a stringent set of criteria for the marker selection process, reducing the impact of outlier samples, 624 

ignoring small changes in gene expression and validating the results in external data. However, it must be 625 

noted that it was not possible validate our markers for all cell types and brain regions. 626 

An additional limitation of our study is that the representation for many of the brain cell types is still lacking in 627 

the NeuroExpresso database. Therefore, despite our considerable efforts to ensure cell type-specificity of the 628 

marker genes, we cannot rule out the possibility that some of them are also expressed in one or more of the 629 

non-represented cell types. This problem is partially alleviated in cortex due to the inclusion of single cell 630 

data. As more such datasets become available, it will be easier to create a more comprehensive database. 631 

A related problem to the coverage of cell types in NeuroExpresso lies in the definition of the term “cell type”. 632 

Most cell types represented in NeuroExpresso are heterogeneous populations. For instance, fast-spiking 633 

basket cells as defined by microarray data matches 5 distinct clusters identified by Tasic et al. (2016) based 634 

on single cell RNA sequencing data. By considering them as a single cell type, we lose the ability to detect 635 

unique properties of the individual clusters. Heterogeneity also may reduce the confidence we have in our 636 

marker genes. If a selected marker is expressed in a subtype of another cell type, this will not be noticed in 637 

pooled expression data as the signal will be suppressed by other subtypes that do not express the gene. We 638 

hope to remedy this problem with increased availability of single cell data in the future. Where inter-cell type 639 



 

22 

 

variability ends and new cell type begins is an ongoing discussion in the field. For the purposes of this study, 640 

we tried to ensure that cell types we define are accepted and studied by a portion of the community, and that 641 

the expression profiles of the cell types were distinct enough to allow marker gene identification. The data we 642 

make available to other researchers may be portioned into finer cell types or grouped together into more 643 

broad cell type groups depending on the aims of the researchers. 644 

Finally, it must be noted that while we aim to infer changes in cell type abundance with MGPs, we do not 645 

attempt to estimate the cell type proportions themselves even though many established deconvolution 646 

methods do accomplish this using databases of expression profiles (Chikina et al., 2015; Grange et al., 647 

2014; Newman et al., 2015). These approaches operate on the assumption that the absolute expression 648 

levels of genes will be conserved across the cell types in the reference database and cell types that make up 649 

the whole tissue sample. In our work, we avoid these approaches because our database (mouse cell types) 650 

and the whole tissue samples we analyse (human brain tissue) come from different species which may 651 

cause changes in gene expression, while marker genes are more likely to be conserved. 652 

In summary, we believe that NeuroExpresso is a valuable resource for neuroscientists. We identified 653 

numerous novel markers for 36 major cell types and used them to estimate cell type profiles in bulk tissue 654 

data, demonstrating high correlation between our estimates and experiment-based cell counts. This 655 

approach can be used to reveal cell type specific changes in whole tissue samples and to re-evaluate 656 

previous analyses on brain whole tissues that might be biased by cell type-specific changes. Information 657 

about cell type-specific changes is likely to be very valuable since conditions like neuron death, 658 

inflammation, and astrogliosis are common hallmarks of in neurological diseases.  659 
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Figures 888 

Figure 1: Mouse brain cell type specific expression database compiled from publicly available datasets. (A) 889 

Workflow of the study. Cell type specific expression profiles are collected from publicly available datasets and personal 890 

communications. Acquired samples are grouped based on cell type and brain region. Marker genes are selected per 891 

brain region for all cell types. Marker genes are biologically and computationally validated and used in estimation of cell 892 

type proportions. (B) Brain region hierarchy used in the study. Samples included in a brain region based on the region 893 

they were extracted from. For instance, dopaminergic cells isolated from the midbrain were included when selecting 894 

marker genes in the context of brainstem and whole brain. Microglia extracted from whole brain isolates were added to 895 

all brain regions.  896 

Figure 2: The NeuroExpresso.org web application. The application allows easy visualization of gene expression 897 

across cell types in brain regions. Depicted is the expression of cell types from frontal cortex region. Alternatively, cell 898 

types can be grouped based on their primary neurotransmitter or the purification type. The application can be reached at 899 

www.neuroexpresso.org. 900 

Figure 3: Marker genes are selected for mouse brain cell types and used to estimate cell type profiles. (A) 901 

Expression of top marker genes selected for cell cortical cell types in cell types represented by RNA-seq (left) and 902 

microarray (right) data in NeuroExpresso. Expression levels were normalized per gene to be between 0-1 for each 903 

dataset. (B) Expression of Fam114a1 in frontal cortex in microarray (left) and RNA-seq (right) datasets. Fam114a1 is a 904 

proposed fast spiking basket cell marker. It was not selected as a marker in this study due to its high expression in 905 

oligodendrocytes and S100a10 expressing pyramidal cells that were both absent from the original study.  906 

Figure 4: Validation of candidate markers using the Allen brain atlas (A) In situ hybridization images from the Allen 907 

Brain Atlas. Rightmost panels show the location of the image in the brain according to the Allen Brain mouse reference 908 

atlas. Panels on the left show the ISH image and normalized expression level of known and novel dentate granule (upper 909 

panels) and Purkinje cell (lower panels) markers. (B) Validation status of marker genes detected for Purkinje and dentate 910 

granule cells. Figures used for validation and validation statuses of individual marker genes can be found in extended 911 

data (Figure 4-1,2,3,4). 912 

Figure 5: Single-plane image of mouse sensorimotor cortex labeled for Pvalb, Slc32a1, and Cox6a2 mRNAs and 913 

counterstained with NeuroTrace. Arrows indicate Cox6a2+ neurons. Bar = 10 µm. 914 

Figure 6: NeuroExpresso reveals gene expression patterns. (A) Expression of cholinergic, GABAergic and 915 

glutamatergic markers in cholinergic cells from forebrain and thalamus. Forebrain cholinergic neurons express 916 

GABAergic markers while thalamus (hubenular) cholinergic neurons express glutamatergic markers. (B) (Left) 917 

Expression of Ddc in oligodendrocyte samples from Cahoy et al., Doyle et al. and Fomchenko et al. datasets and in 918 

comparison to dopaminergic cells and other (non-oligodendrocyte) cell types from the frontal cortex in the microarray 919 

dataset. In all three datasets expression of Ddc in oligodendrocytes is comparable to expression in dopaminergic cells 920 

and is higher than in any of the other cortical cells. Oligodendrocyte samples show higher than background levels of 921 

expression across datasets. (Right) Ddc expression in oligodendrocytes, oligodendrocyte precursors, and other cell 922 

types from Tasic et al. single cell dataset. (C) Bimodal gene expression in two dopaminergic cell isolates by different 923 

labs. Genes shown are labeled as marker genes in the context of midbrain if the two cell isolates are labeled as different 924 

cell types. 925 

Figure 7: Marker gene profiles reveal cell type specific changes in whole tissue data. (A) Estimation of cell type 926 

profiles for cortical cells in frontal cortex and white matter. Values are normalized to be between 0 and 1. (***p<0.001). 927 

(B) Left: Oligodendrocyte MGPs in Stanley C cohort. Right: Morphology based oligodendrocyte counts of Stanley C 928 
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cohort. Figure adapted from Uranova et al. (2004). (C) Estimations of dopaminergic cell MGPs in substantia nigra of 929 

controls and Parkinson’s disease patients. Values are relative and are normalized to be between 0 and 1 and are not 930 

reflective of absolute proportions (**p <0.01, ***p<0.001). 931 

Tables 932 

Table 1 Cell types in NeuroExpresso database 933 

Cell Type Sample count Marker gene count GEO accession and reference 

Whole Brain 

Astrocyte 9 / 1* 94** GSE9566 (Cahoy et al., 2008), GSE35338 (Zamanian 
et al., 2012), GSE71585 (Tasic et al., 2016) 

Oligodendrocyte 25 / 1* 22** GSE48369, (Bellesi et al., 2013), GSE9566 (Cahoy et 
al., 2008), GSE13379 (Doyle et al., 2008), GSE30016 
(Fomchenko et al., 2011), GSE71585 (Tasic et al., 
2016) 

Microglia 3 / 1* 131** GSE29949 (Anandasabapathy et al., 2011), GSE71585 
(Tasic et al., 2016) 

Cortex 

FS Basket (G42) 13 / 5* 18 GSE17806 (Okaty et al., 2009), GSE8720 (Sugino et 
al., 2014), GSE2882 (Sugino et al., 2006), GSE71585 
(Tasic et al., 2016) 

Martinotti (GIN) 3 / 1* 15 GSE2882 (Sugino et al., 2006), GSE71585 (Tasic et al., 
2016)  

VIPReln (G30) 6 / 1* 33 GSE2882 (Sugino et al., 2006), GSE71585 (Tasic et al., 
2016) 

Pan-Pyramidal*** 9 / 17 * 35 See below 

Pyramidal  
cortico-thalamic 

3 / 2* 2 GSE2882 (Schmidt et al., 2012), GSE71585 (Tasic et 
al., 2016) 

Pyramidal 
Glt25d2 

3 / 2* 3 GSE35758 (Schmidt et al., 2012), GSE71585 (Tasic et 
al., 2016) 

Pyramidal 
S100a10 

3 / 4* 2 GSE35751 (Schmidt et al., 2012), GSE71585 (Tasic et 
al., 2016) 

Layer 2 3 Pyra 2* 3 GSE71585 (Tasic et al., 2016) 

Layer 4 Pyra 3* 5 GSE71585 (Tasic et al., 2016) 

Layer 6a Pyra 2* 6 GSE71585 (Tasic et al., 2016) 

Layer 6b Pyra 2* 9 GSE71585 (Tasic et al., 2016) 

Oligodendrocyte 
precursors 

1* 184 GSE71585 (Tasic et al., 2016) 

Endothelial 2* 178 GSE71585 (Tasic et al., 2016) 

BasalForebrain 

Forebrain 
cholinergic 

3 90 GSE13379 (Doyle et al., 2008) 

Striatum 

Forebrain  
cholinergic 

3 45 GSE13379 (Doyle et al., 2008) 

Medium spiny 
neurons  

39 74 GSE13379 (Doyle et al., 2008), GSE55096 (Heiman et 
al., 2014), GSE54656 (Maze et al., 2014), GSE48813 
(C. L. Tan et al., 2013) 

Amygdala 

Glutamatergic 3 10 GSE2882 (Sugino et al., 2006) 

Pyramidal Thy1 
Amyg 

12 21 GSE2882 (Sugino et al., 2006)  

Hippocampus 

DentateGranule 3 17 GSE11147 (Perrone-Bizzozero et al., 2011) 

GabaSSTReln 3 54 GSE2882 (Sugino et al., 2006) 
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Pyramidal Thy1 
Hipp 

12 17 GSE2882 (Sugino et al., 2006) 

Subependymal 

Ependymal 2 50 GSE18765 (Beckervordersandforth et al., 2010) 

Thalamus 

GabaReln 3 53 GSE2882 (Sugino et al., 2006) 

Hypocretinergic 4 35 GSE38668 (Dalal et al., 2013) 

Thalamus  
cholinergic 

3 40 GSE43164 (Görlich et al., 2013) 

Midbrain 

Midbrain  
cholinergic 

3 34 GSE13379 (Doyle et al., 2008) 

Serotonergic 3 18 GSE36068 (Dougherty et al., 2013) 

Substantia nigra 

Dopaminergic 30 58** No accession **** (Chung et al., 2005), GSE17542 
(Phani et al., 2010) 

LocusCoeruleus       

Noradrenergic 9 133 GSE8720 (Sugino et al., 2014), No accession**** 
(Sugino et al. Unpublished) 

Cerebellum 

Basket 16 6 GSE13379 (Doyle et al., 2008), GSE37055 (Paul et al., 
2012) 

Bergmann 3 52 GSE13379 (Doyle et al., 2008) 

Cerebral granule 
cells 

3 11 GSE13379 (Doyle et al., 2008) 

Golgi 3 26 GSE13379 (Doyle et al., 2008) 

Purkinje 44 43 GSE13379 (Doyle et al., 2008), GSE57034 (Galloway 
et al., 2014), GSE37055 (Paul et al., 2012), No acces-
sion**** (Rossner et al., 2006), GSE8720 (Sugino et al., 
2014),  No accession**** Sugino et al. unpublished 

SpinalCord 

Spinal cord 
cholinergic 

3 124 GSE13379 (Doyle et al., 2008) 

Sample count - number of samples that representing the cell type; Gene count - number of marker genes detected for 

cell type. *The number of clusters from RNA-seq data. **Marker genes for these cell types are identified in multiple 

regions displayed yet only the number of the genes that are found in the region specified on the table is shown for the 

sake of conservation of space. Astrocytes, microglia and oligodendrocyte markers are identified in the context of all other 

brain regions (except cerebellum for astrocytes) and dopaminergic markers are also identified for midbrain. ***Pan-

pyramidal is a merged cell type composed of all pyramidal samples. ****Data obtained directly from authors. 

  934 
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Table 2: Matching single cell RNA sequencing data from Tasic to well defined cell types. 935 

Microarray cell type Tasic et al. cell cluster Matching method NeuroExpresso 
cell type name 

Astrocyte Astro Gja1 Direct match Astrocyte 

Microglia Micro Ctss Direct match Microglia 

Oligodendrocyte Oligo Opalin Direct match Oligodendrocyte 

FS Basket (G42) Pvalb Gpx3, Pvalb Rspo2, Pvalb 
Wt1, Pvalb Obox3, Pvalb Cpne5 

Definition: fast spiking 
pval positive interneurons  

FS Basket 
(G42) 

Martinotti (GIN) Sst Cbln4 Direct match Martinotti (GIN) 

VIPReln (G30) Vip Sncg Unique Vip and Sncg ex-
pression, high Sncg ex-
pression in microarray cell 
type 

VIPReln (G30) 

Pyramidal Glt25d2 L5b Tph2, L5b Cdh13 Definition: Glt25d2 posi-
tive Fam84b positive 

Pyramidal 
Glt25d2 

Pyramidal S100a10 L5a Hsd11b1, L5a Batf3, L5a 
Tcerg1l, L5a Pde1c 

Definition: S100a10 ex-
pressing cells from layer 
5a 

Pyramidal 
S100a10 

Pyramidal CrtThalamic L6a Car12, L6a Syt17 Direct match Pyramidal Crt-
Thalamic 

--- Endo Myl9, Endo Tbc1d4 New cell type Endothelial 

--- OPC Pdgfra New cell type Oligodendrocyte 
precursors 

--- L4 Ctxn3, L4 Scnn1a, L4 Arf5 New cell type Layer 4 Pyra 

--- L2 Ngb, L2/3 Ptgs2 New cell type Layer 2 3 Pyra 

--- L6a Mgp, L6a Sla New cell type Layer 6a Pyra 

--- L6b Serpinb11, L6b Rgs12 New cell type Layer 6b Pyra 

List of molecular cell types identified by Tasic et al. and their corresponding cell types in NeuroExpresso. Matching 

method column defines how the matching was performed. Direct matches are one to one matching between the 

definition provided by Tasic et al. for the molecular cell types and definition provided by microarray samples. For 

“Definition” matches, description of the cell type in the original source is used to find molecular cell types that fit the 

definition. VIPReln – Vip Sncg matching was done based on unique Sncg expression in VIPReln cells in the microarray 

data. New cell types are well defined cell types that have no counterpart in microarray data. 

Table 3: Coexpression of cortical MGSs in single cell RNA-seq data. 936 

 Zeisel et al. (mouse) Darmanis et al. (human) 

Cell Types p-value Gene Count p-value Gene Count 

Endothelial p<0.001 180 p<0.001 157 

Astrocyte p<0.001 282 p<0.001 239 

Microglia p<0.001 248 p<0.001 201 

Oligodendrocyte p<0.001 156 p<0.001 201 

Oligodendrocyte 
precursors 

0.831 193 0.999 203 

FS Basket (G42) p<0.001 26 p<0.001 26 

Martinotti (GIN) p<0.001 21 p<0.001 20 

VIPReln (G30) p<0.001 43 p<0.001 36 

Pyramidal p<0.001 34 p<0.001 27 

Statistics are calculated by Wilcoxon rank sum test.  
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Table 4: Summaries of statistical analyses.  937 

Figure 7A         

 Frontal Cortex 
(n= 91) 

White Matter (n= 88) Group comparison   

 Mean SD Mean SD W p value   

Endothelial 0.265 0.117 0.64 0.112 42 p<0.001   

Astrocyte 0.401 0.135 0.757 0.101 136 p<0.001   

Microglia 0.179 0.092 0.708 0.135 4 p<0.001   

Oligodendrocyte 0.226 0.107 0.815 0.087 2 p<0.001   

Olig. precursors 0.215 0.123 0.817 0.078 0 p<0.001   

FS Basket (G42) 0.865 0.081 0.27 0.115 7744 p<0.001   

VIPReln (G30) 0.792 0.102 0.288 0.142 7718 p<0.001   

Pyramidal 0.877 0.062 0.212 0.112 7744 p<0.001   

Figure 7B (left)   

 Mean SD W (vs 
control) 

p value (vs 
control) 

    

Schizophrenia 
(n=10) 

0.598 0.129 75 0.013     

Bipolar (n=11) 0.334 0.242 102 p<0.001     

Depression (n=9) 0.386 0.13 89 p<0.001     

Control (n=11) 0.78 0.146 NA NA     

Figure 7B (right)   

See Uranova et al., 2004   

Figure 7C   

 Parkinson's disease Control Group 
comparison 

 Mean SD n Mean SD n W p value 

Lesnick 0.26 0.179 16 0.578 0.263 9 119 0.007 

Moran Lateral 0.174 0.135 9 0.665 0.246 7 60 0.001 

Moran Medial 0.305 0.191 15 0.799 0.191 8 115 p<0.001 

Zhang 0.201 0.101 10 0.489 0.287 18 148 0.004 

All statistics are calculated by Wilcoxon rank sum test 

Extended Data 938 

Figure 4B 939 

Figure 4-1: Expression of dentate granule cell markers discovered in the study in Allen Brain Atlas mouse brain in situ 940 

hybridization database. The first gene is Prox1, a known marker of dentate granule cells. The intensity is color-coded to 941 

range from blue (low expression intensity), through green (medium intensity) to red (high intensity). All images except 942 

Ogn is taken from the sagittal view. Ogn is taken from the coronal view. 943 

Figure 4-2: Expression of Purkinje markers discovered in the study in Allen Brain Atlas mouse brain in situ hybridization 944 

database. The first gene is Pcp2, a known marker of Purkinje cells. The intensity is color-coded to range from blue (low 945 

expression intensity), through green (medium intensity) to red (high intensity).} All images are taken from the sagittal 946 

view. 947 
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Figure 4-3: Validation status of dentate granule cell markers. 948 

Figure 4-4: Validation status of Purkinje cell markers. 949 

neuroExpressoAnalysis-master.zip 950 

Code for data acquisition, analysis and generation of all figures. 951 

markerGeneProfile-master.zip 952 

R package to perform marker gene profile estimations on whole tissue expression data and to select marker 953 

genes from cell type specific expression data. 954 

homologene-master.zip 955 

R package to find gene homologues across species. 956 
















