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Abstract

Alzheimer’s disease (AD) risk is modified by both genetic and environmental risk factors, which
are believed to interact to cooperatively modify pathogenesis. Although numerous genetic and
environmental risk factors for AD have been identified, relatively little is known about potential
gene-environment interactions in regulating disease risk. The strongest genetic risk factor for
late-onset AD is the &4 allele of apolipoprotein E (APOE4). An important modifiable risk factor
for AD is obesity, which has been shown to increase AD risk in humans and accelerate
development of AD-related pathology in rodent models. Potential interactions between APOE4
and obesity are suggested by the literature but have not been thoroughly investigated. In the
current study, we evaluated this relationship by studying the effects of diet-induced obesity in
the EFAD mouse model, which combines familial AD transgenes with human APOE3 or
APOE4. Male E3FAD and E4FAD mice were maintained for 12 weeks on either a control diet or
a western diet high in saturated fat and sugars. We observed that metabolic outcomes of diet-
induced obesity were similar in E3FAD and E4FAD mice. Importantly, our data showed a
significant interaction between diet and APOE genotype on AD-related outcomes in which
western diet was associated with robust increases in amyloid deposits, 3-amyloid burden and
glial activation in E4FAD but not in E3FAD mice. These findings demonstrate an important
gene-environment interaction in an AD mouse model that suggests that AD risk associated with

obesity is strongly influenced by APOE genotype.
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Significance statement

APOE4 is the strongest genetic risk factor for Alzheimer’s disease, but not all APOE4 carriers
will develop the disease suggesting that APOE genotype interacts with other factors to modulate
Alzheimer’s risk. Here we show that diet-induced obesity interacts with APOE4 genotype to
increase Alzheimer's-like pathology in an Alzheimer’s transgenic mouse model that contains
human APOE3 versus APOE4 isoforms. Interestingly, mice with APOE3 do not show diet-
induced increases in pathology, suggesting that the adverse effects of obesity on Alzheimer’s
risk may be limited to APOE4 carriers. These findings identify an important gene-environment
interaction that may have significant impact for understanding Alzheimer’s risk and etiology and
promoting development of targeted therapeutic approaches that incorporate both obesity and

APOE genotype.
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Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder, the underlying causes of
which are currently incompletely understood. Both genetic and environmental factors are
important in determining individual risk for AD. The strongest genetic risk factor for late-onset
AD is the €4 allele of apolipoprotein E (APOE4) (Strittmatter et al., 1993; Liu et al., 2013). In the
US, roughly 12% of the population carries the €4 allele, but its frequency increases to ~60% in
AD patients (Rebeck et al., 1993). APOE4 not only increases risk, but also accelerates the age
of onset of AD (Corder et al., 1993; van der Flier et al., 2011). However, since homozygous
carriers of APOE4 have a ~50% lifetime risk of AD, a significant number of APOE4 carriers
never develop the disease (Genin et al., 2011). Thus, APOE4 likely interacts with other genetic
and or environmental factors to drive AD risk.

A significant modifiable risk factor for dementia is obesity. Obesity has numerous
adverse neural effects (Lee and Mattson, 2013) and increases the risk of dementia up to three-
fold (Whitmer et al., 2008). Body mass index, a commonly used measure of obesity, has been
shown to be associated with AD risk (Profenno et al., 2010) as well as with reduced brain
volume in AD patients (Ho et al., 2010). Several studies indicate that obesity may be particularly
problematic at midlife (Fitzpatrick et al., 2009; Profenno et al., 2010; Meng et al., 2014;
Emmerzaal et al., 2015), suggesting that obesity contributes to the development of AD. Similar
relationships have been observed in animal models. In particular, diet-induced obesity (DIO)
accelerates AD-related pathology in mouse models of AD (Ho et al., 2004; Julien et al., 2010;
Kohjima et al., 2010; Barron et al., 2013; Orr et al., 2014). Further, genetic models of obesity
and type 2 diabetes exhibit features of AD-like neuropathology (Kim et al., 2009; Jung et al.,
2013; Ramos-Rodriguez et al., 2013).

The extent to which APOE4 and obesity interact to regulate AD risk is unclear.

Interestingly, APOE4 carriers can be more sensitive to metabolic consequences associated with
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obesity (de-Andrade et al., 2000; Kypreos et al., 2009; Niu et al., 2009; Atabek et al., 2012;
Zarkesh et al., 2012; Guan et al., 2013). Although some studies do not report an APOE4 bias in
obesity-associated AD risk (Profenno and Faraone, 2008; Luchsinger et al., 2012), others have
found that AD risk is increased by obesity (Peila et al., 2002; Ghebranious et al., 2011) and
diets high in calories and fatty acids (Luchsinger et al., 2002) only in APOE4 carriers. Though
the human literature suggests a gene-environment interaction between APOE and obesity in
regulating development of AD, this question has not been addressed in experimental models.
To study these relationships, we utilized EFAD transgenic mice, which combine AD transgenes
with targeted replacement of mouse APOE with human APOE (Youmans et al., 2012). We
compared metabolic and AD-related effects of western diet in male APOE3 (E3FAD) and
APOE4 (E4FAD) mice. Here we report that diet-induced obesity increases amyloid pathology
and gliosis almost exclusively in E4FAD mice. Our data reveal a gene-environment interaction
between APOE genotype and obesity, suggesting that APOE4 carriers may be more

susceptible to obesity associated increases in AD risk.

Materials and Methods
Animal Procedures

A colony of EFAD mice, which are heterozygous for the 5xFAD transgenes and
homozygous for human APOE3 or APOE4 (Youmans et al., 2012), were maintained at vivarium
facilities at [Author University] from breeder mice generously provided by Dr. Mary Jo LaDu
(University of lllinois at Chicago). All animals were housed under a 12-hour light/dark cycle with
lights on at 6 AM and ad libitum access to food and water. At 3 months of age, male E3FAD and
E4FAD mice were randomized to dietary treatment groups (N = 7-11/group): control diet (10%
fat, 7% sucrose; #D12450J Research Diets, Inc., NJ, USA) or western diet (45% fat, 17%
sucrose; #D12451, Research Diets, Inc.). EFAD mice were maintained on experimental diets for

12 weeks, an exposure period previously established to yield obesity-induced metabolic
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impairments in APOE mice (Arbones-Mainar et al., 2010; Segev et al., 2016). Body weight and
food consumption were recorded weekly.

At the end of the treatment period, mice were anesthetized with inhalant isoflurane and
transcardially perfused with ice-cold 0.1 M PBS. The brains were rapidly removed and
immersion fixed for 48 h in 4% paraformaldehyde/0.1 M PBS, then stored at 4°C in 0.1 M
PBS/0.3% NaNj until processed for immunohistochemistry. Gonadal and retroperitoneal fat
pads were dissected and weighed as a measure of adiposity, and snap frozen for RNA
extraction. All animal procedures were carried out under protocols approved by the [Author
University] Institutional Animal Care and Use Committee and in accordance with National

Institute of Health standards.

Glucose, Cholesterol, and Triglyceride Measurements

Blood glucose readings were measured after overnight fasting (16 h) every four weeks
beginning at week 0 of the 12-week treatment period. Blood was collected from the lateral tail
vein and immediately assessed for glucose levels using the Precision Xtra Blood Glucose and
Ketone Monitoring System (Abbott Diabetes Care, CA, USA).

Glucose tolerance testing was performed at week 11. Fasting, baseline glucose readings
were taken after which mice were administered a glucose bolus (2 g/kg body weight) via oral
gavage. Blood glucose levels were recorded 15, 30, 60, and 120 min after the glucose bolus
was given. Area under the curve was calculated.

Plasma cholesterol and triglyceride levels were enzymatically determined at the
conclusion of the experiment using commercially available kits (LabAssay Triglycerides #290-
63701, Wako Chemicals, VA, USA; Total Cholesterol Colorimetric Assay Kit, #K603, BioVision,

CA, USA). All samples were run in duplicate according to manufacturer’s instructions.

Thioflavin-S Staining and Quantification
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Fixed hemi-brains were fully sectioned in the horizontal plane at 40 um using a
vibratome (Leica Biosystems, IL, USA). Every eighth section was stained for thioflavin S
(#230456, Sigma-Aldrich, MO, USA) using standard methodology. Sections were mounted and
allowed to dry overnight, after which they were washed three times in 50% ethanol for 5 min
each, then washed in double-distilled H,O before being incubated for 10 min in 1% thioflavin-S
dissolved in H,O. Stained slides were then rinsed in 70% ethanol before being dehydrated and
coverslipped in aqueous anti-fade mounting medium (Vector Laboratories, CA, USA). Digital
images were captured at 20X magnification using an Olympus BX50 microscope equipped with
a DP74 camera and CellSens software (Olympus, Tokyo, Japan). The number of spherical
thioflavin-positive deposits were counted using NIH Imaged 1.50i (US National Institutes of
Health, MD, USA) with the cell counter plugin to mark stained plaque-like structures. Thioflavin-
positive deposits were counted in entorhinal cortex (3 fields/section), subiculum (2 fields/
section), and hippocampal subfields CA1 (3 fields/section) and CA2/3 (3 fields/section), across

4 sections per animal, for a total of ~44 fields per brain.

Immunohistochemistry

Immunohistochemistry was performed using a standard avidin/biotin peroxidase
approach with ABC Vector Elite kits (Vector Laboratories). Af immunohistochemistry was
performed on every eighth section using sections immediately adjacent to those processed for
thioflavin S. Briefly, sections were pre-treated with 95% formic acid for 5 min, then rinsed in TBS
before being treated with an endogenous peroxidase blocking solution for 10 min. After three 10
min washes in 0.1% Triton-X/TBS, sections were incubated for 30 min in a blocking solution
consisting of 2% bovine serum albumin in TBS. Blocked sections were incubated overnight at
4°C in primary antibody directed against AB (#71-5800, 1:300 dilution, Invitrogen, CA, USA) that

was diluted in blocking solution. Next, sections were rinsed and incubated in biotinylated
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secondary antibody diluted in blocking solution. Immunoreactivity was visualized using 3,3'-
diaminobenzidine (Vector Laboratories). Additional sections were similarly immunostained
without formic acid pretreatment using IBA-1 (#019-19741, 1:2000 dilution, Wako) and GFAP
(#ab7260, 1:1,000 dilution, abcam, MA, USA).

To quantify the percent area occupied by AB immunoreactivity (AB load), images of non-
overlapping fields were taken at 20X magnification in entorhinal cortex (3 fields/section),
subiculum (3 fields/section), and hippocampal subfields CA1 (5 fields/section) and CA2/3 (3
fields/section) across 4 tissue sections, for a total of ~56 images per brain. Images were digitally
captured using an Olympus BX50 microscope and DP74 camera paired with a computer
running CellSens software (Olympus). The pictures were converted to grayscale images and
thresholded using NIH ImageJ 1.50i to yield binary images separating positive and negative
immunostaining. AB load was calculated as the percentage of the total area that was positively
immunolabeled.

Microglia and astrocyte activation was quantified using live imaging (Olympus BX50,
CASTGrid software, Olympus) at 40X magnification. Each cell was categorized as either resting
or reactive based on its morphology, as reported in previous studies (Ayoub and Salm, 2003;
Wilhelmsson et al., 2006). Specifically, microglia were scored as resting (type 1) if they had
spherical cell bodies, with numerous thin, highly ramified processes. Cells were scored as type
2 cells if they exhibited enlarged rod-shaped cell bodies with fewer processes that were shorter
and thicker, and scored type 3 cells if they had very few or no processes or several filopodial
processes. Both type 2 and type 3 morphologies were considered an activated microglia
phenotype. Astrocytes were visualized with GFAP immunostaining and categorized as
exhibiting either nonreactive (normally sized cell bodies with a few rather short projections) or
reactive (both cell bodies projections are enlarged) morphology phenotypes. Entorhinal cortex

(4 fields/section), subiculum (4 fields/section), and hippocampal subfields CA-1 (5 fields/section)
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and CA-2/3 (3 fields/section) were quantified for both microglia and astrocytes. The number of

cells across brain regions scored for each animal averaged ~700 microglia and ~600 astrocytes.

RNA Isolation and Real-time PCR

For RNA extractions, gonadal fat pads and hippocampi were homogenized using TRIzol
reagent (Invitrogen Corporation), following the manufacturer's protocol. The RNA pellet was
treated with RNase-free DNase | (Epicentre, WI, USA) for 30 min at 37°C, and a
phenol/chloroform extraction was performed to isolate RNA. The iScript cDNA synthesis system
(Bio-Rad, CA, USA) was used to reverse transcribe cDNA from 1 pg of purified RNA. Real-time
quantitative PCR was performed on the resulting cDNA using SsoAdvanced Universal SYBR
Green Supermix (Bio-Rad) and a Bio-Rad CFX Connect Thermocycler. All measurements were
performed in duplicates. Quantification of PCR products was carried out by normalizing with a
combination of corresponding hypoxanthine-guanine phosphoribosyltransferase (HPRT) and
succinate dehydrogenase [ubiquinone] flavoprotein subunit, mitochondrial (SDHA) expression
levels from the gonadal fat samples, and with B-actin expression levels from hippocampus,
using the AA-CT method to obtain relative mRNA levels. Gonadal fat was probed for levels of
cluster of differentiation factor 68 (CD68) and EGF-like module-containing mucin-like hormone
receptor-like 1 (F4/80), while hippocampus was probed for -secretase 1 (BACE1), neprilysin,
insulin degrading enzyme (IDE), CD68, glial fibrillary acidic protein (GFAP), and cluster of

differentiation factor 74 (CD74). Primer pair sequences are shown in Table 1.

Statistical Analyses
For the analysis of body weight and glucose tolerance data, two-way repeated measures
ANOVAs were run using the Statistical Package for Social Sciences (SPSS; version 23, IBM, IL,

USA). All other data were analyzed by two-way ANOVA using Prism (Version 5, GraphPad
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Software, Inc.; CA, USA). In the case of significant main effects, planned comparisons between
groups of interest were made using the Bonferroni correction. All data are presented as the
mean + the standard error of the mean (SEM). Significance was set at a threshold of p < 0.05.

Statistical results are presented in Tables 2 and 3.

Results
Obesity-related outcomes of western diet

To begin investigating whether there are gene X environment interactions between
APOE and western diet, we first compared measures of diet-induced obesity in E3FAD versus
E4FAD mice following the 12-week exposure to control and western diets. The control diet was
associated with < 1% gain in body weight in both E3FAD and E4FAD mice, whereas western
diet yielded a 39 * 7.7% increase in body weight in E3FAD and a 24 + 7.21% increase in
E4FAD mice (Fig. 1A), such that the effects of diet did not vary significantly across genotypes (p
=0.112; Fig. 1A; Table 2). A 2 x 2 repeated measures ANOVA revealed a significant main effect
of diet on body weight (F= 10.51, p = 0.003; Fig. 1A) in which western diet was associated with
increased weight. APOE genotype did not significantly affect body weight (p = 0.759; Fig. 1A).
Between group comparisons revealed that E3FAD mice fed a western diet weighed significantly
more than E3FAD mice fed a control diet at 4, 8, and 12 weeks (p < 0.05). There were no
statistically significant differences in body weights at any time point between control and
western diet groups in E4AFAD mice.

We next examined plasma levels of cholesterol and triglycerides as measures of
adverse effects of western diet. We found that plasma cholesterol levels were significantly
affected by neither genotype (p = 0.103) nor diet (p = 0.221), and did we not find an interaction
effect (p = 0.119) (Fig. 1B; Table 2). Likewise, there were no effects of either genotype (p =
0.46) or diet (p = 0.102), or an interaction effect (p = 0.179) on plasma triglyceride levels (Fig.
1C).

10
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Because metabolic impairments associated with obesity have been linked to adiposity,
we assessed fat deposition across groups. We observed a significant interaction effect (F =
5.01, p = 0.033; Table 2), such that on the control diets, E4AFAD mice had more gonadal fat than
E3FADs (p = 0.027), but there was no difference between E3FAD and E4FAD mice on western
diet (p = 0.230; Fig. 1D). Additionally, there was a significant main effect of diet (F= 37.04, p <
0.001) on weight of the gonadal fat pads, so that both E3FAD and E4FAD mice had increased
fat pads with western diet (Fig. 1D). Parallel findings were observed in the retroperitoneal fat
pads (data not shown). Because inflammation is an established hallmark of obesity, we
examined gene expression of the macrophage markers CD68 and F4/80 by rtPCR in the
adipose tissue. We found a significant main effect of diet on CD68 expression (F= 11.54, p =
0.003), though this effect reached statistical significance only in E3FAD but not in E4AFAD mice
(Fig. 1E). There was no statistically significant effect of genotype (p = 0.353), nor was there an
interaction between diet and genotype (p = 0.366) on CD68 expression. Diet had a main effect
on adipose F4/80 expression (F = 7.02, p = 0.015), and again, this effect reached statistical
significance only in E3FAD mice (Fig. 1F). There was no statistically significant effect of
genotype (p = .768), and no interaction effect (p = 0.288) on F4/80 expression (Table 2).

In addition to increasing body weight and adiposity, western diet can induce metabolic
impairments including dysregulation of glucose homeostasis. When examining glucose
clearance in the glucose tolerance test, we found a significant main effect of diet (F= 5.03, p =
0.033), such that both E3FAD and E4FAD mice fed a western diet were impaired at clearing
glucose (Fig. 1G; Table 2). There was no main effect of genotype (p = 0.886), or interaction
effect between diet and genotype (p = 0.750) on glucose clearance. We also calculated the area
under the curve (AUC) for GTT, and found that there was a significant main effect of diet (F =
5.73, p = 0.023), but not of genotype (p = 0.817) on GTT AUC (Fig. 1H). However, the effect of
diet failed to reach statistical significance when examined separately in E3FAD and E4FAD

mice. There was no interaction between genotype and diet on GTT AUC (p = 0.737). Changes

11
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in fasting glucose levels over the diet treatment period showed a trend towards a main effect of
diet (F= 3.84, p = 0.059; Fig. 11). There was no effect of genotype (p = 0.371) nor was there an

interaction between diet and genotype (p = 0.352) on changes in glucose levels (Table 2).

Western diet increases F-amyloid deposition in E4FAD but not in E3FAD mice

The primary AD-related neuropathological change in EFAD mice at this age is
accumulation of B-amyloid protein, largely in the form of extracellular deposits, many of which
exhibit positive thioflavin-S (Thio-S) staining that is indicative of amyloid. Thus, to begin
assessing AD-related neuropathology, Thio-S positive plaques were counted in entorhinal
cortex and in subregions of the hippocampus. Visual inspection of stained sections qualitatively
showed not only the expected increase in amyloid deposits in E4FAD, but also the surprising
finding that western diet increased Thio-S positive plaques only in EAFAD mice (Fig. 2A).
Specifically, there were significant interaction effects between genotype and diet on Thio-S
positive plaques in subiculum (F=9.75, p = 0.004; Fig. 2C), CA1 (F= 8.41, p = 0.007; Fig. 2D),
and CA2/3 (F=7.32, p = 0.011; Fig. 2E), and a non-significant trend towards an interaction in
entorhinal cortex (F = 4.09, p = 0.053; Fig. 2B; Table 2). Further analyses revealed that diet
significantly increased Thio-S positive plaque counts in E4FAD but not E3FAD males across all
brain regions sampled (p < 0.01). Additionally, there was a significant main effect of genotype
even in the absence of diet, such that E4AFAD mice had a greater number of Thio-S positive
plaques in entorhinal cortex (F = 50.30, p < 0.001; Fig. 2B), subiculum (F = 59.40, p < 0.001;
Fig. 2C), CA1 (F = 80.58, p < 0.001; Fig. 2D), and CA2/3 (F = 46.39, p < 0.001; Fig. 2E), than
did E3FAD mice.

As a second measure of AD-like pathology, we assessed total f-amyloid burden by
immunohistochemistry. This provides a measure of complete B-amyloid, as the antibody

recognizes intra- and extracellular accumulations of AP, even those that have not progressed to

12
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Thio-S positive amyloid deposits. Results repeated the same general pattern observed with
Thio-S staining. That is, (i) E4AFAD mice exhibit greater 3-amyloid burden and, (ii)) E4FAD but

not E3FAD mice show increased B-amyloid accumulation with western diet (Fig. 3A). We found

significant interaction effects between genotype and diet in entorhinal cortex (F = 4.91, p

0.035; Fig. 3B) and in CA2/3 (F= 4.48, p = 0.043; Fig. 3E), but not in subiculum (F=0.11, p
0.742; Fig. 3C) or in CA1 (F= 2.71, p = 0.110; Fig. 3D; Table 2). Bonferroni post hoc tests
showed that western diet significantly increased AP load in E4FAD but not in E3FAD mice
across all brain regions surveyed (p < 0.05). There was a significant main effect of genotype
with E4FAD mice having greater AB load than E3FAD mice in entorhinal cortex (F = 21.38, p <
0.001; Fig. 3B), subiculum (F = 25.40, p < 0.001; Fig. 3C), CA1 (F= 37.66, p < 0.001; Fig. 3D),

and CA2/3 (F= 47.27, p < 0.001; Fig. 3E).

Western diet increases gliosis more strongly in E4FAD than in E3FAD mice

Gliosis is an important neuropathological feature of AD that is also associated with both
obesity and APOE4. To assess gliosis, we compared both the relative cell numbers and
morphological activation state of microglia and astrocytes across groups. We found that, in
comparison to E3FAD mice, E4FAD mice consistently had a higher total number of glial cells as
well as a higher percentage of glial cells with reactive versus resting phenotypes. Moreover, the
effects of diet on glial number and reactivity were stronger in E4FAD than in E3FAD mice.

We first examined microglia number and morphology by IBA-1 staining. Figure 4A shows
a resting microglial cell with thin, ramified processes (Type 1), and activated cells with rod-
shaped cell bodies and fewer, thicker processes (Type 2), and amoeboid cells (Type 3). We
found significant interactions between genotype and diet when examining the total number of
microglia per mm? in subiculum (F = 4.75, p = 0.038; Fig. 4C) and in CA1 (F=7.97, p = 0.009;

Fig. 4D), with Bonferroni post hoc tests showing that western diet increased microglia number in
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E4FAD but not in E3FAD mice in these brain regions (p < 0.05; Table 2). There were no
interaction effects on microglia number in entorhinal cortex (p = 0.316; Fig. 4B), orin CA2/3 (p =
0.180; Fig. 4E). There was a significant effect of genotype on the total number of microglia per
mm? in entorhinal cortex (F=9.78, p = 0.004; Fig. 4B), subiculum (F= 42.77, p < 0.001; Fig.
4C), CA1 (F=51.42, p < 0.001; Fig. 4D), and CA2/3 (F = 21.64, p < 0.001; Fig 4E), such that
E4FAD mice had a greater total number of microglia across these brain regions than did E3FAD
mice. However, in entorhinal cortex, the effect of genotype was significant only in animals on a
western diet.

Measures of microglial reactivity showed similar results as microglial number. Significant
interaction effects between genotype and diet were observed in entorhinal cortex (F=5.52, p =
0.027; Fig. 4F), CA1 (F=11.58, p = 0.002; Fig. 4H), and CA2/3 (F = 32.66, p < 0.001; Fig. 41),
but not in subiculum (p = 0.480; Fig. 4G; Table 2). Bonferroni post hoc tests revealed that
western diet increased the percent of reactive microglia in entorhinal cortex, CA1, and CA2/3 of
E4FAD, but not E3FAD, male mice. There was a significant main effect of genotype even in the
absence of diet, such that E4AFAD mice had a greater percent of reactive microglia than E3FAD
mice in entorhinal cortex (F= 109.10, p < 0.001; Fig. 4F), subiculum (F= 19.70, p < 0.001; Fig.
4G), CA1 (F=78.70, p < 0.001; Fig. 4H), and CA2/3 (F= 165.70, p < 0.001; Fig. 4l).

We next examined astrocyte number and activation by GFAP staining. Figure 5A shows
examples of a nonreactive astrocyte with a normally sized soma versus a reactive phenotype
with enlarged soma and projections. For the measure of astrocyte number, the effects of diet did
not differ across genotype for any of the brain regions sampled (Table 2). We found significant
main effects of genotype on the total number of astrocytes in subiculum (F = 9.95, p = 0.004;
Fig. 5C), though this effect was only statistically significant in animals on a western diet. There
was a main effect of genotype on astrocyte number in CA1 (F= 5.88, p = 0.022; Fig. 5D), but
this did not reach statistical significance when examined separately in control and western diet

fed animals. There was a trend towards a significant effect of genotype in entorhinal cortex (F=
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3.82, p = 0.060; Fig. 5B), but no effect in CA2/3 (p = 0.188; Fig. 5E). Diet had significant main
effects on astrocyte number in subiculum (F=4.79, p = 0.037; Fig. 5C), and CA2/3 (F=4.26, p
= 0.048; Fig. 5E), with a trend towards a main effect in CA1 (F = 3.55, p = 0.069; Fig. 5D),
though this effect did not reach statistical significance when examined separately in E3FAD and
E4FAD mice in any brain region. There was no effect of diet on astrocyte number in entorhinal
cortex (p = 0.593; Fig. 5B).

When examining astrocyte reactivity, we found similar trends as with microglial reactivity.
That is, there was a significant interaction effect between genotype and diet on astrocyte
reactivity in entorhinal cortex (F = 4.82, p = 0.036; Fig. 5F), with western diet increasing
reactivity only in E4FAD mice (Table 2). There were no significant interaction effects between
genotype and diet in subiculum (p = 0.989; Fig. 5G), CA1 (p = 0.160; Fig. 5H), or CA2/3 (p =
0.132; Fig. 51). Moreover, in the absence of diet, genotype had a significant effect on astrocyte
reactivity, with E4FAD mice having a greater percentage of reactive astrocytes in entorhinal
cortex (F=46.97, p < 0.001; Fig. 5F), subiculum (F=27.72, p < 0.001; Fig. 5G), CA1 (F= 87.49,
p < 0.001; Fig. 5H), and CA2/3 (F = 11.68, p = 0.002; Fig. 51). In CA2/3 the effect of genotype
was only significant in western diet fed animals. Furthermore, western diet significantly
increased astrocyte reactivity in CA1 (F= 23.82, p < 0.001; Fig. 5H), and CA2/3 (F=7.83, p =
0.009; Fig. 51) though this effect was only significant in E4FAD mice in CA2/3. There was a non-

significant trend towards an effect of diet in subiculum (F= 3.13, p = 0.088; Fig. 5G).

E4FAD mice have increased gene expression of inflammatory markers

In order to begin addressing possible mechanisms underlying the interactive effects of
APOE4 and western diet, we examined hippocampal gene expression of several markers
related to AP production and clearance, as well as inflammation. Overall, our results indicate

that gene expression of factors involved in AB clearance and production are not significantly
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altered by genotype or diet, and that inflammatory gene expression is increased in E4FAD mice,
without being altered by western diet (Table 3).

For BACE1, relative mRNA levels did not show evidence of an interaction between the
diet and APOE genotypes (p = 0.874), there was no significant main effect genotype (p =
0.304), but there was a non-significant trend of increased BACE1 levels with western diet (p =
0.074). Expression of the AP clearance factor neprilysin was not significantly affected by
genotype (p = 0.902) or diet (p = 0.126), and there was no interaction between genotype and
diet (p = 0.802). Likewise, gene expression of IDE was not altered by genotype (p = 0.785), diet
(p = 0.955), or the interaction between genotype and diet (p = 0.489).

In assessing gene expression of inflammatory markers we found that E4AFAD mice had
significantly greater levels of the microglial markers CD68 (F = 10.75, p = 0.003), the astrocyte
marker GFAP (F = 14.26, p < 0.001), and the innate immune marker CD74 (F = 16.98, p <
0.001), than did E3FAD mice. However, there were no significant effects of diet on levels of
CD68 (p = 0.178), GFAP (p = 0.634), or CD74 (p = 0.184). Moreover, there were no significant
interactions between genotype and diet on levels of CD68 (p = 0.532), GFAP (p = 0.712), or

CD74 (p = 0.335).

Discussion

The goal of this study is to examine whether APOE genotype and obesity interact to
promote AD pathogenesis. Comparing E3FAD and E4FAD mice maintained on standard versus
western diets, we demonstrate a significant gene-environment interaction whereby diet-induced
obesity drives AD-related pathology primarily in APOE4 mice. Our results are consistent with
previous findings in humans (Fitzpatrick et al., 2009; Profenno et al., 2010), and confirm studies
in rodent models (Ho et al., 2004; Julien et al., 2010; Kohjima et al., 2010; Barron et al., 2013)
that obesity increases risk for development of AD. Similarly, our findings replicate prior rodent

data (Fryer et al., 2005; Castellano et al., 2011; Youmans et al., 2012; Rodriguez et al., 2014;
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Cacciottolo et al., 2016) that model the human observation that APOE4 increases the risk and
or accelerates the onset of AD pathology (Corder et al., 1993; Saunders et al., 1993; Strittmatter
et al., 1993; Morris et al., 2010; Jack et al., 2015). Importantly, our data indicate that the effects
of diet-induced obesity and APOE4 are not strictly additive. Although APOE4 status is
associated with greater AD-like pathology on both control and western diets, obesity increased
AD-like pathology in E4FAD but not E3FAD mice. Our finding that E3FAD mice did not show a
diet-induced increase in AD-related pathology is similar to null findings in some rodent models
of obesity (Zhang et al., 2013; Knight et al., 2014; Niedowicz et al., 2014), suggesting that
deleterious effects of obesity can be regulated by genetic factors besides APOE4. Thus, these
data suggest an important gene X environment interaction in which APOE4 carriers are more
susceptible to the AD-promoting effects of obesity.

How neural outcomes in human populations are impacted by the relationship between
APOE genotype and metabolic risk factors remains incompletely defined. Many studies simply
control for APOE genotype rather than considering its potential moderating role in the
relationship between obesity and AD risk (Vanhanen et al., 2006; Luchsinger et al., 2012).
When APOE status has been considered as a modulator of AD risk associated with metabolic
factors, the results have been mixed. In some studies, APOE4 carriers showed significantly
more cognitive impairment in association with adverse metabolic conditions including
atherosclerosis, peripheral vascular disease, type 2 diabetes (Haan et al., 1999), and high
systolic blood pressure at midlife (Peila et al., 2001). Further, levels of senile plaques and
neurofibrillary tangles were highest in obese men that were also APOE4 carriers (Peila et al.,
2002). However, several other studies reported that the AD risk associated with obesity and
metabolic syndrome is stronger in APOES3 carriers (Dixit et al., 2005; Leiva et al., 2005; Singh et
al., 2006; Profenno and Faraone, 2008).

An important consideration in interpreting these seemingly discordant findings is the

potential role of sex differences. Although the impact of sex differences in the interactions
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among obesity, APOE, and AD risk has not been thoroughly addressed, AD is characterized by
numerous sex differences (Li and Singh, 2014; Pike, 2017). Further, the AD-associated risk of
APOE4 appears to disproportionately affect women (Payami et al., 1994; Farrer et al., 1997;
Altmann et al., 2014). Additionally, there are sex differences in various aspects of obesity
(Lovejoy et al., 2009; Mauvais-Jarvis, 2015; Moser and Pike, 2016), including observations that
women exhibit relative protection against obesity untii menopause (Meyer et al., 2011;
Sugiyama and Agellon, 2012; Bloor and Symonds, 2014). Given that sex differences have been
found in each of these factors, future studies should address sex as a possible mediator in the
relationship between APOE4 and obesity. Ongoing projects in our lab have begun to address
this issue using female E3FAD and E4FAD mice.

How obesity and APOE interact to regulate AD pathogenesis remains to be determined.
One candidate mechanism linked to both factors is metabolic impairment. Obesity is strongly
associated with development of impaired glucose and insulin metabolism (Kahn et al., 2006;
Singla et al., 2010), which are also characteristic of AD patients and have been proposed as
possible mechanisms driving AD pathogenesis (Craft, 2005; Martins et al., 2006; Craft, 2009).
Notably, APOE genotype affects metabolic responses to diet (Snook et al., 1999; Barberger-
Gateau et al., 2011), and several studies show that APOE4 carriers are at increased risk for a
number of metabolic disturbances (de-Andrade et al., 2000; Oh and Barrett-Connor, 2001;
Elosua et al., 2003; Marques-Vidal et al., 2003; Sima et al., 2007; Kypreos et al., 2009; Niu et
al., 2009; Atabek et al., 2012; Zarkesh et al., 2012; Guan et al., 2013), though some studies find
no effect of APOE genotype on metabolic outcomes (Meigs et al., 2000; Ragogna et al., 2011).
Our findings suggest that E3FAD mice may be more susceptible to some metabolic effects of
western diet, though E4FAD mice trend towards metabolic disturbances even in the absence of
a western diet. Specifically, relative to EAFAD mice, E3FAD mice showed greater diet-induced
body weight gain, gonadal fat inflammatory cytokine expression, and higher glucose levels on

western diet. Conversely, E4AFAD mice had higher gonadal fat pad weight and a trend towards
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higher fasting glucose levels than E3FAD mice under the control diet condition. These findings
are consistent with several previous reports showing that mice with human APOE3 gain more
weight in response to a high fat diet than mice with either human APOE4 (Arbones-Mainar et
al., 2008; Segev et al., 2016) or mouse APOE (Karagiannides et al., 2008). It is important to
note that the western diet utilized in this study has elevated levels of saturated fats, cholesterol,
and sucrose, all of which have been independently associated with increased AD-related
pathology (Refolo et al., 2000; Oksman et al., 2006; Cao et al., 2007; Takechi et al., 2010).
Understanding how APOE genotype interacts with various dietary components should be one
target of future studies. Though metabolic factors may have a role in AD pathogenesis, our
findings that metabolic outcomes of diet-induced obesity were greater in E3FAD than E4FAD
mice argue against the possibility that metabolic impairment significantly contributes to the
observed APOE4 bias in diet-induced increases in AD-like pathology.

There are several other mechanisms besides metabolic impairment that may contribute
to the observed interactions among obesity, APOE, and AD-like pathology. One established
consequence of obesogenic diets is pro-amyloidogenic alteration in the expression and or
activity of factors that regulate generation and clearance of A including BACE1, neprilysin, and
IDE (Standeven et al., 2010; Maesako et al., 2012; Brandimarti et al., 2013; Wei et al., 2014;
Maesako et al., 2015). Although we cannot exclude a significant role of such pathways in our
observations, we did not observe that mRNA levels of BACE1, neprilysin, and IDE were
significantly altered by either the simple or interactive effects of western diet and APOE. Another
compelling candidate mechanism is neuroinflammation, which is widely implicated as a
significant regulator of AD risk and development of AD pathology (Glass et al., 2010; Wyss-
Coray and Rogers, 2012; Heneka et al., 2015). Notably, both obesity and APOE4 are
associated with increased inflammation in brain and systemically. For example, obesity is linked
with increased immune cell infiltration into brain (Buckman et al., 2014), as well as increased

glial activation (Koga et al., 2014; Dorfman and Thaler, 2015; Douglass et al., 2017). In addition,
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obesity increases inflammation in peripheral organs including adipose tissue (Weisberg et al.,
2003; Zeyda and Stulnig, 2009) and liver (Park et al., 2010). APOE4 is also associated with
greater levels of inflammation in the brain (Ophir et al., 2005; Vitek et al., 2009) and throughout
the body (Colton et al., 2004; Gale et al., 2014). Moreover, stimulating innate inflammation in
the presence of apoE4 increases cell death and damage in macrophages (Cash et al., 2012),
and in microglia and neurons (Maezawa et al., 2006a; 2006b). In the context of AD pathology,
APOE4 is associated with greater glial activation in EFAD mice (Rodriguez et al., 2014).
Similarly, we found that both the total number and the relative level of morphological activation
of microglia and astrocytes were higher in E4FAD than E3FAD mice. Further, we observed that
E4FAD mice expressed significantly higher mRNA levels of glial markers than E3FAD mice
under both control and western diets. These glial markers were significantly increased across
several brain regions in response to diet-induced obesity in E4FAD but not E3FAD mice.
Perhaps in contrast to our results, middle-aged female APOE4 mice showed higher levels of
neuroinflammation in hippocampus under control diet but decreased neuroinflammation with
high-fat diet, relative to age- and sex-matched wild-type mice (Janssen et al., 2016). Though the
presence of familial AD transgenes and AP pathology in the EFAD model may account for these
divergent findings, there may also be age and sex differences in inflammatory responses to both
diet and APOE4. Further, because reactive astrocytes and microglia are associated with A
plaques, the changes in gliosis we observe with APOE4 and diet-induced obesity may be a
consequence of, rather than a contributor to, AB pathology. Thus, additional research is needed
to directly assess the potential mechanistic role of gliosis in the interaction between APOE4 and
obesity in AD.

To our knowledge, this is the first experimental investigation examining the interaction
between APOE4 and obesity in the context of AD. Interactions among genetic risk factors like

APOE4 and environmental and modifiable lifestyle risk factors in AD have thus far not been well
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studied, though there are some epidemiological studies consistent with this possibility (Dufouil
et al., 2000; Hanson et al., 2013; Rajan et al., 2014; Wirth et al., 2014, Ishioka et al., 2016;
Zheng and Li, 2016). Our findings suggest that APOE genotype affects the relationship between
obesity and AD, such that APOE4 carriers may be more susceptible to obesity-associated risks
than APOES3 carriers. This illustrates an important gene-environment interaction and points to
the need for additional research exploring such relationships in the context of AD, as well as
identifying underlying mechanisms. Additionally, these findings identify a large population that
may be at increased risk of AD, but whose chance of developing the disease may be reduced

by preventative lifestyle changes.
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Table legends

Table 1. Gene targets for the rtPCR analyses are listed with their corresponding oligonucleotide

sequences for the forward and reverse primers.

Table 2. Statistics are shown for each relevant figure and are listed by panel number and
description. The Kolmogorov-Smirnov test for normality was performed, with p > 0.05 indicating
a normal distribution. Statistical analyses were determined using 2 x 2 ANOVAs as described in
the Methods. The values for the F statistic, degrees of freedom (df), and significance (p) are
shown for the main effects of genotype and diet as well as interactions between genotype and

diet.

Table 3. Relative gene expression in hippocampus. Data are presented as mean fold
differences (SEM) relative to E3FAD mice on a control diet. The Kolmogorov-Smirnov test for
normality was performed, with p > 0.05 indicating a normal distribution. Genes related to B-
amyloid production (BACE-1) and clearance (neprilysin, IDE) showed no significant changes
with either diet or genotype, while genes related to glial activation (CD68, GFAP, and CD74)

were increased in E4FAD mice on both control and western diets.
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Figure legends

Figure 1. Metabolic outcomes associated with diet-induced obesity in ESFAD and E4FAD mice.
A) Body weights in male E3FAD and E4FAD mice maintained on control (CTL) and western
(WD) diets taken at baseline (week 0) and four-week intervals across the 12-week experimental
period. B) Plasma levels of cholesterol and C) triglyceride levels in E3FAD and E4FAD mice on
control and western diets at the end of the experimental period. D) Weight of the gonadal fat
pads across groups. Relative mRNA expression of macrophage markers E) CD68 and F) F4/80
in gonadal fat, as determined by rtPCR. Data show fold differences relative to the E3FAD +
control diet group. G) Glucose tolerance test showing blood glucose levels over time after a
glucose bolus. H) Area under the curve (AUC) for the glucose tolerance test (GTT). I) Percent
change in fasting blood glucose levels relative to baseline after 12-weeks of control or western
diet. Data are presented as mean (+SEM) values; n=7-11/group. E3FAD mice are shown as
circles, E4AFAD mice are shown as squares; control diet groups are indicated as open symbols
or bars, whereas western diet groups are filled symbols or bars. * p < 0.05 relative to genotype-

matched mice in control diet condition. # p < 0.05 relative to E3FAD mice in same diet condition.

Figure 2. Accumulation of amyloidogenic deposits assessed by thioflavin-S staining in E3FAD
and E4FAD mice across dietary treatments. A) Representative images of thioflavin-S staining in
the subiculum of E3FAD and E4FAD males fed control and western diets. Scale bar = 50 ym.
Numbers of thioflavin-S positive plaque numbers in ESFAD and E4FAD mice maintained on
control and western diets were quantified in B) entorhinal cortex, and hippocampal subregions
C) subiculum, D) CA1, and E) CA2/3. Data are presented as mean (+SEM) values; n=7-
11/group. E3FAD mice are shown as circles, E4AFAD mice are shown as squares; control diet

groups are indicated as open symbols, and western diet groups as filled symbols. * p < 0.05
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relative to genotype-matched mice in control diet condition. # p < 0.05 relative to E3FAD mice in

same diet condition.

Figure 3. Accumulation of B-amyloid deposits assessed by immunohistochemistry in E3FAD
and E4FAD mice across dietary treatments. A) Representative images of [B-amyloid
immunoreactivity in entorhinal cortex and hippocampus in E3FAD and E4FAD males maintained
on control and western diets. Scale bar = 100 ym. B-Amyloid burden was quantified as
immunoreactivity load in E3FAD and E4FAD mice in control and western diets groups in B)
entorhinal cortex, and hippocampal subregions C) subiculum, D) CA1, and E) CA2/3. Data are
presented as mean (+SEM) values; n=7-11/group. E3FAD mice are shown as circles, E4AFAD
mice are shown as squares; control diet groups are indicated as open symbols, and western
diet groups as filled symbols. * p < 0.05 relative to genotype-matched mice in control diet

condition. # p < 0.05 relative to E3FAD mice in same diet condition.

Figure 4. Microglia number and morphological status assessed by IBA-1 immunohistochemistry
in E3FAD and E4FAD mice across dietary treatments. A) Representative images of microglial
morphology associated with resting (Type 1) and reactive (Types 2, 3) phenotypes. Scale bar =
40 pm. B-E) Densities (cells/mm?) of IBA-1 immunoreactive cells in E3FAD and E4FAD mice on
control and western diets were quantified in B) entorhinal cortex, and hippocampal subregions
C) subiculum, D) CA1, and E) CA2/3. F-l) Percentages of all IBA-1 immunoreactive cells scored
as having reactive phenotype (types 2 and 3) were quantified in F) entorhinal cortex, and
hippocampal subregions G) subiculum, H) CA1, and 1) CA2/3. Data are presented as mean
(+SEM) values; n=7-11/group. E3FAD mice are shown as circles, E4AFAD mice are shown as

squares; control diet groups are indicated as open symbols, and western diet groups as filled
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symbols. * p < 0.05 relative to genotype-matched mice in control diet condition. # p < 0.05

relative to E3FAD mice in same diet condition.

Figure 5. Astrocyte number and morphological status assessed by GFAP
immunohistochemistry in E3FAD and E4FAD mice across dietary treatments. A) Representative
images of astrocyte morphology associated with resting and reactive phenotypes. Scale bar =
50 um. B-E) Densities (cellss/mm?) of GFAP immunoreactive cells in E3FAD and E4FAD mice
on control and western diets were quantified in B) entorhinal cortex, and hippocampal
subregions C) subiculum, D) CA1, and E) CA2/3. F-l) Percentages of all GFAP immunoreactive
cells scored as having reactive phenotype (type 2) were quantified in F) entorhinal cortex, and
hippocampal subregions G) subiculum, H) CA1, and 1) CA2/3. Data are presented as mean
(+SEM) values; n=7-11/group. E3FAD mice are shown as circles, EAFAD mice are shown as
squares; control diet groups are indicated as open symbols, and western diet groups as filled
symbols. * p < 0.05 relative to genotype-matched mice in control diet condition. # p < 0.05

relative to E3FAD mice in same diet condition.
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Table 1. Sequences of primers used in rtPCR analyses.

Target Gene Sequence

Cluster of differentiation factor 68 (CD68) | Forward: 5-TTCTGCTGTGGAAATGCAAG-3’
Reverse: 5-AGAGGGGCTGGTAGGTTGAT-3

EGF-like module-containing mucin-like | Forward: 5-TGCATCTAGCAATGGACAGC-3’

hormone receptor-like 1 (F4/80) Reverse: 5-GCCTTCTGGATCCATTTGAA-3’
Hypoxanthine-guanine Forward: 5-AAGCTTGCTGGTGAAAAGGA-3’
phosphoribosyltransferase (HPRT) Reverse: 5-TTGCGCTCATCTTAGGCTTT-3’

Succinate dehydrogenase [ubiquinone] | Forward: 5-~ACACAGACCTGGTGGAGACC-3
flavoprotein subunit, mitochondrial (SDHA) | Reverse: 5-GGATGGGCTTGGAGTAATCA-3’

Neprilysin Forward: 5-GAGAAAAGCCCACTTGCTTG-3’
Reverse: 5-GAAAGACAAAATGGGGCAGA-3’

B-Secretase 1 (BACE1) Forward: 5-TCGCTGTCTCACAGTCATCC-3’
Reverse: 5-AACAAACGGACCTTCCACTG-3’

Insulin degrading enzyme (IDE) Forward: 5-TGTTTCCACACACAGGCAAT-3’

Reverse: 5-ACCTGTGAAAAGCCGAGAGA-3’

Cluster of differentiation factor 74 (CD74) | Forward: 5-CAAGTACGGCAACATGACCC-3
Reverse: 5-GCACTTGGTCAGTACTTTAGGTG-3’

Glial fibrillary acidic protein (GFAP) Forward: 5-AACGACTATCGCCGCCAACTG-3’
Reverse: 5-CTCTTCCTGTTCGCGCATTTG-3’
B-Actin Forward: 5-AGCCATGTACGTAGCCATCC-3’

Reverse: 5-CTCTCAGCTGTGGTGGTGAA-3’
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Table 2. Statistical analyses of metabolic and Alzheimer-related outcomes.

Figure Kolmogorov-Smirnov | Statistical Significance
Test for Normality (p
value)
1A All groups at all time Genotype: F129=0.10, p = 0.759
Body Weight points are normally Diet: Fy29=10.51, p = 0.003
distributed (p > 0.05). Interaction: Fi9=2.68, p =0.112
1B E3FAD CTL > 0.10 Genotype: Fy29=2.86, p = 0.103

Plasma Cholesterol

E3FAD WD > 0.10
E4FAD CTL > 0.10
E4FAD WD > 0.10

Diet: F129=1.58, p =0.221
Interaction: F1 9= 2.60, p = 0.119

1C E3FAD CTL > 0.10 Genotype: F129=0.56, p = 0.46
Plasma E3FAD WD > 0.10 Diet: F19=2.87, p =0.102
Triglycerides E4FAD CTL > 0.10 Interaction: F129=1.91, p=0.179
E4FAD WD > 0.10
1D E3FAD CTL > 0.10 Genotype: Fy29=0.18, p = 0.673
Gonadal Fat E3FAD WD > 0.10 Diet: F1 9 = 37.04, p < 0.001
Weight E4FAD CTL > 0.10 Interaction: Fy29=5.01, p = 0.033
E4FAD WD > 0.10
1E E3FAD CTL N/A Genotype: F121=0.90, p = 0.353
CD68 E3FAD WD > 0.10 Diet: F121=11.54, p = 0.003
E4FAD CTL = 0.004 Interaction: F;21=0.85, p = 0.366
E4FAD WD > 0.10
1F E3FAD CTL N/A Genotype: F121=.09, p =.768
F4/80 E3FAD WD > 0.10 Diet: F11=7.02, p=0.015
E4FAD CTL > 0.10 Interaction: Fy21=1.19, p = 0.288
E4FAD WD > 0.10
1G All groups at all time Genotype: F129=0.02, p = 0.886
Glucose (GTT) points are normally Diet: Fy9=5.03, p =0.033
distributed (p > 0.05), Interaction: F; 9= 0.10, p = 0.750
except:
E4FAD CTL O min =
0.002
E4FADWD 15 min =
0.025
E3FAD WD 30 min =
0.011
E4FAD WD 30 min =
0.008
1H E3FAD CTL =0.07 Genotype: F129= .06, p=0.817
GTT AUC E3FAD WD = 0.097 Diet: F129=5.73, p =0.023

E4FAD CTL > 0.10
E4FAD WD = 0.033

Interaction: Fy29=0.12, p = 0.737

11
Percent Glucose
Change

E3FAD CTL > 0.10
E3FAD WD > 0.10
E4FAD CTL > 0.10
E4FAD WD > 0.10

Genotype: F129= .83, p=0.371
Diet: F1’29 = 384, p= 0.059
Interaction: Fy29=0.90, p = 0.352

2B
Thio-S: Entorhinal
Cortex

E3FAD CTL > 0.10
E3FAD WD = 0.049
E4FAD CTL >0.10

Genotype: F1 9= 50.30, p < 0.001
Diet: Fy9=6.62, p=0.016
Interaction: Fiy29=4.09, p = 0.053
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Neuro ACC

E4FAD WD > 0.10

2C
Thio-S: Subiculum

E3FAD CTL > 0.10
E3FAD WD > 0.10
E4FAD CTL > 0.10
E4FAD WD > 0.10

Genotype: F129=59.40, p < 0.001
Diet: Fq29=2.98, p = 0.095
Interaction: Fy29=9.75, p = 0.004

2D
Thio-S: CA1

E3FAD CTL >0.10
E3FAD WD > 0.10
E4FAD CTL > 0.10
E4FAD WD > 0.10

Genotype: F129= 80.58, p < 0.001
Diet: F129=4.95, p =0.034
Interaction: F1 9= 8.41, p = 0.007

2E
Thio-S: CA2/3

E3FAD CTL > 0.10
E3FAD WD > 0.10
E4FAD CTL > 0.10
E4FAD WD > 0.10

Genotype F129=46.39, p < 0.001
Diet: F129=7.41, p=0.011
Interaction: Fq29=7.32, p = 0.011

3B
AP Load:
Entorhinal Cortex

E3FAD CTL > 0.10
E3FAD WD = 0.002
E4FAD CTL > 0.10
E4FAD WD > 0.10

Genotype F129=21.38, p < 0.001
Diet: F1yz9= 7.83, p= 0.009
Interaction: Fy29=4.91, p = 0.035

3C
AP Load:
Subiculum

E3FAD CTL > 0.10
E3FAD WD > 0.10
E4FAD CTL > 0.10
E4FAD WD > 0.10

Genotype F129=25.40, p < 0.001
Diet: F1y29= 1119, p= 0.002
Interaction: Fy29=0.11, p = 0.742

3D
AP Load:
CA1

E3FAD CTL > 0.10
E3FAD WD > 0.10

E4FAD CTL > 0.10
E4FAD WD = 0.036

Genotype F129= 37.66, p < 0.001
Diet: F1y29= 2.91, p= 0.099
Interaction: Fy29=2.71, p = 0.110

3E
AB Load:
CA2/3

E3FAD CTL > 0.10
E3FAD WD > 0.10
E4FAD CTL > 0.10
E4FAD WD > 0.10

Genotype Fq29=47.27, p < 0.001
Diet: Fy29=10.36, p = 0.003
Interaction: Fy29=4.48, p = 0.043

4B
Microglia Number:
Entorhinal Cortex

E3FAD CTL >0.10
E3FAD WD > 0.10
E4FAD CTL > 0.10
E4FAD WD > 0.10

Genotype F1,7=9.78, p = 0.004
Diet: Fy7=2.31, p=0.141
Interaction: Fy2;=1.05, p = 0.316

4C
Microglia Number:
Subiculum

E3FAD CTL >0.10
E3FAD WD > 0.10
E4FAD CTL > 0.10
E4FAD WD > 0.10

Genotype F1,7=42.77, p < 0.001
Diet: Fy,7=4.20, p = 0.050
Interaction: Fy,7,=4.75, p = 0.038

4D
Microglia Number:
CA1

E3FAD CTL >0.10
E3FAD WD > 0.10
E4FAD CTL > 0.10
E4FAD WD > 0.10

Genotype Fi,7=51.42, p < 0.001
Diet: F17=10.78, p = 0.003
Interaction: Fy7=7.97, p = 0.009

4E
Microglia Number:
CA2/3

E3FAD CTL >0.10
E3FAD WD > 0.10
E4FAD CTL > 0.10
E4FAD WD > 0.10

Genotype F1,7=21.64, p < 0.001
Diet: F17=1.97, p=0.172
Interaction: ;7= 1.90, p = 0.180

4F

Microglia
Reactivity:
Entorhinal Cortex

E3FAD CTL > 0.10
E3FAD WD > 0.10
E4FAD CTL > 0.10
E4FAD WD > 0.10

Genotype F1,7=109.10, p < 0.001
Diet: F17=1.64, p=0.212
Interaction: Fy2;=5.52, p = 0.027

4G

E3FAD CTL > 0.10

Genotype Fi,7=19.70, p < 0.001
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Microglial

E3FAD WD > 0.10

Diet: F; 7= 0.00, p = 0.995

Reactivity: E4FAD CTL = 0.07 Interaction: ;7= 0.51, p = 0.480
Subiculum E4FAD WD < 0.001

4H E3FAD CTL > 0.10 Genotype Fi,7=78.70, p < 0.001
Microglial E3FAD WD > 0.10 Diet: Fy,7=5.00, p = 0.034
Reactivity: E4FAD CTL > 0.10 Interaction: ;7= 11.58, p = 0.002
CA1 E4FAD WD = 0.04

4] E3FAD CTL > 0.10 Genotype F127=165.70, p < 0.001
Microglial E3FAD WD > 0.10 Diet: Fy27=21.04, p <0.001
Reactivity: E4FAD CTL > 0.10 Interaction: F 7= 32.66, p < 0.001
CA2/3 E4FAD WD > 0.10

5B E3FAD CTL > 0.10 Genotype F129=3.82, p = 0.060

Astrocyte Number:

Entorhinal Cortex

E3FAD WD > 0.10
E4FAD CTL > 0.10
E4FAD WD > 0.10

Diet: F1,29 = 029, p= 0.593
Interaction: Fy29=0.41, p = 0.528

5C

Astrocyte Number:

E3FAD CTL > 0.10
E3FAD WD > 0.10

Genotype F129=9.95, p = 0.004
Diet: F129=4.79, p = 0.037

Subiculum E4FAD CTL > 0.10 Interaction: F; 9= 1.04, p = 0.316
E4FAD WD > 0.10
5D E3FAD CTL > 0.10 Genotype F129=5.88, p = 0.022

Astrocyte Number:

E3FAD WD > 0.10

Diet: F1 9= 3.55, p = 0.069

CA1 E4FAD CTL > 0.10 Interaction: F; 9= 0.49, p = 0.489
E4FAD WD > 0.10
5E E3FAD CTL >0.10 Genotype F129=1.82, p=0.188

Astrocyte Number:

E3FAD WD > 0.10

Diet: F129=4.26, p = 0.048

CA2/3 E4FAD CTL > 0.10 Interaction: ;9= 0.02, p = 0.894
E4FAD WD > 0.10

5F E3FAD CTL > 0.10 Genotype F129=46.97, p < 0.001

Astrocyte E3FAD WD = 0.004 Diet: Fy9=5.75, p = 0.023

Reactivity: E4FAD CTL > 0.10 Interaction: Fy29=4.82, p = 0.036

Entorhinal Cortex

E4FAD WD > 0.10

5G

E3FAD CTL >0.10

Genotype Fi9=27.72, p < 0.001

Astrocyte E3FAD WD > 0.10 Diet: F129=3.13, p = 0.088
Reactivity: E4FAD CTL = 0.045 Interaction: F1 9= 0.00, p = 0.989
Subiculum E4FAD WD > 0.10

5H E3FAD CTL > 0.10 Genotype F1.9=87.49, p < 0.001
Astrocyte E3FAD WD > 0.10 Diet: F19=23.82, p < 0.001
Reactivity: E4FAD CTL > 0.10 Interaction: F1 9= 2.08, p = 0.160
CA1 E4FAD WD > 0.10

5l E3FAD CTL > 0.10 Genotype F129=11.68, p = 0.002
Astrocyte E3FAD WD > 0.10 Diet: Fy29=7.83, p =0.009
Reactivity: E4FAD CTL > 0.10 Interaction: F1 9= 2.405, p = 0.132
CA2/3 E4FAD WD > 0.10
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Table 3. Relative mRNA expression of genes related to B-amyloid and glial activation.

Gene Mean + SEM Kolmogorov- Statistical Significance
Smirnov Test for
Normality (p
value)
BACE1 E3FAD CTL =1+ N/A E3FAD CTL > 0.10 | Genotype: F123=1.10, p = 0.304
E3FAD WD = 1.53 + 0.31 E3FAD WD > 0.10 Diet: Fy 5 = 3.44, p = 0.074
E4FAD CTL = 1.32+0.19 E4FAD CTL > 0.10 | Interaction: F 3= 0.03, p = 0.874
E4FADWD =1.76+0.41 | E4FADWD>0.10
Neprilysin | E3FAD CTL = 1 £ N/A E3FAD CTL > 0.10 | Genotype: Fq23=0.02, p = 0.902
E3FAD WD = 1.61 +0.79 E3FAD WD > 0.10 Diet: F128=2.49, p=0.126
E4FAD CTL = 0.94 + 0.30 E4FAD CTL > 0.10 | Interaction: F; 2= 0.06, p = 0.802
E4FAD WD = 1.79+0.63 | E4FAD WD >0.10
IDE E3FAD CTL =1+ N/A E3FAD CTL > 0.10 | Genotype: F125=0.08, p=0.785
E3FAD WD = 1.27 + 0.39 E3FAD WD > 0.10 | Diet: Fy3 =0.00, p = 0.955
E4FAD CTL = 1.30 + 0.39 E4FAD CTL = 0.01 | Interaction: F 3= 0.49, p = 0.489
E4FAD WD =1.12+0.35 | E4FAD WD >0.10
CD68 E3FAD CTL =1 £ N/A E3FAD CTL > 0.10 | Genotype: F; 2= 10.75, p = 0.003
E3FAD WD =1.21+0.29 E3FAD WD > 0.10 | Diet: F103=1.91, p=0.178
E4FAD CTL = 1.74 + 0.30 E4FAD CTL > 0.10 | Interaction: F 3= 0.40, p = 0.532
E4FAD WD =2.30+0.29 | E4FADWD>0.10
GFAP E3FAD CTL =1+ N/A E3FAD CTL > 0.10 | Genotype: Fy2= 14.26, p < 0.001
E3FAD WD = 1.02 + 0.11 E3FAD WD > 0.10 Diet: F126=0.23, p =0.634
E4FAD CTL = 1.56 + 0.21 E4FAD CTL > 0.10 | Interaction: Fy23=0.14, p =0.712
E4FAD WD =2.70 +0.04 | E4FAD WD >0.10
CD74 E3FAD CTL =1+ N/A E3FAD CTL > 0.10 | Genotype: Fj03=16.98, p < 0.001

E3FAD WD =1.28 £ 0.28
E4FAD CTL =3.32£0.62
E4FAD WD = 5.04 £ 1.30

E3FAD WD = 0.01
E4FAD CTL > 0.10
E4FAD WD > 0.10

Diet: Fy3=1.86, p=0.184
Interaction: Fy25=0.96, p = 0.335
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