o)

.

>CTI

dild

ol)Y

Lec

LCEDP

aNeuroe A

This Accepted Manuscript has not been copyedited and formatted. The final version may differ from this version.

Meuro

Research Article: Methods | History, Teaching, and Public Awareness

Neuronify: An Educational Simulator for Neural Circuits

Svenn-Arne Dragly®?, Milad Hobbi Mobarhan’®, Andreas V&vang Solbr&?, Simen Tennge*, Anders Hafreager1?,
Anders Malthe-Sgrenssen™?, Marianne Fyhn*®, Torkel Hafting"® and Gaute T. Einevoll>3®

centre for Integrative Neuroplasticity, University of Oslo, Oslo, Norway

2Department of Physics, University of Oslo, Oslo, Norway

3Department of Biosciences, University of Oslo, Oslo, Norway

4Department of Informatics, University of Oslo, Oslo, Norway

SInstitute of Basic Medical Sciences, University of Oslo, Oslo, Norway

6Faculty of Science and Technology, Norwegian University of Life Sciences, As, Norway

DOI: 10.1523/ENEURO.0022-17.2017
Received: 19 January 2017

Revised: 18 February 2017

Accepted: 23 February 2017

Published: 9 March 2017

Author contributions: S.-A.D., M.M., AV.S,, S.T., AH., AM.-S., M.F., T.H., and G.T.E. designed research;
S.-AD., M.M., A\V.S,, S.T., and A.H. performed research; S.-A.D., M.M., AV.S., S.T., AH, AM.-S,, M.F.,, T.H.,
and G.T.E. wrote the paper.

Conflict of Interest: No conflict of Interest.
No Funding information provided.

Corresponding author: Gaute T. Einevoll, Norwegian University of Life Sciences, #s, Norway. E-mail:
Gaute.Einevoll@nmbu.no

Cite as: eNeuro 2017; 10.1523/ENEURO.0022-17.2017

Alerts: Sign up at eneuro.org/alerts to receive customized email alerts when the fully formatted version of this
article is published.

Accepted manuscripts are peer-reviewed but have not been through the copyediting, formatting, or proofreading
process.

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution and reproduction in any
medium provided that the original work is properly attributed.

Copyright © 2017 the authors

Neuronify: an educational simulator for neural circuits

Svenn-Arne Dragly!-2, Milad Hobbi Mobarhan':3, Andreas Vavang Solbra!:2, Simen Tennge!**, Anders Hafreager!-2, Anders

Malthe-Sgrenssen’2, Marianne Fyhn'»3, Torkel Hafting!:®, and Gaute T. Einevoll’»2:6

LCentre for Integrative Neuroplasticity, University of Oslo, Oslo, Norway
2Department of Physics, University of Oslo, Oslo, Norway
3Department of Biosciences, University of Oslo, Oslo, Norway
4Department of Informatics, University of Oslo, Oslo, Norway
SInstitute of Basic Medical Sciences, University of Oslo, Oslo, Norway

6Faculty of Science and Technology, Norwegian University of Life Sciences, ~As, Norway

February 24, 2017

Abstract

Educational software (apps) can improve science education by providing an inter-
active way of learning about complicated topics that are hard to explain with text
and static illustrations. However, few educational apps are available for simulation of
neural networks. Here, we describe an educational app, Neuronify, allowing the user
to easily create and explore neural networks in a plug-and-play simulation environ-
ment. The user can pick network elements with adjustable parameters from a menu,
i.e., synaptically connected neurons modelled as integrate-and-fire neurons and various

stimulators (current sources, spike generators, visual and touch) and recording devices

]
O
-
O
Vp)
)
-
(O
>
O
)
)
O
()
O
O
<(
O
S
>
(D)
Z
@

]
O
-
O
Vp)
)
-
(O
>
O
)
)
O
()
O
O
<(
O
S
>
(D)
Z
@

(voltmeter, spike detector and loud speaker). We aim to provide a low entry point to
simulation-based neuroscience by allowing students with no programming experience
to create and simulate neural networks. To facilitate the use of Neuronify in teaching,
a set of premade common network motifs is provided, performing functions such as
input summation, gain control by inhibition, and detection of direction of stimulus
movement. Neuronify is developed in C++ and QML using the cross-platform appli-
cation framework Qt and runs on smart phones (Android, i0OS), tablet computers as

well personal computers (Windows, Mac, Linux).

Significance statement

Neuronify, a new educational software application (app) providing an interactive way of
learning about neural networks, is described. Neuronify allows students with no program-
ming experience to easily build and explore networks in a plug-and-play manner picking
network elements (neurons, stimulators, recording devices) from a menu. The app is based
on the commonly used integrate-and-fire type model neuron and has adjustable neuronal and
synaptic parameters. To facilitate teaching, Neuronify comes with premade network motifs
performing functions such as input summation, gain control by inhibition, and detection
of direction of stimulus movement. Neuronify will be available for smart phones (Android,

i08S), tablet computers as well personal computers (Windows, Mac, Linux).

Acknowledgements: We thank Joel Glover and Mikkel Leppergd for very useful inputs

and discussions.

1diiasnueAl p21d220y 04naN2

1 Introduction

Over the past decades, simulation and modeling of neurons have become essential tools
in neuroscience. Although modern software continues to make modeling more accessible
(Gleeson et al., 2007), some programming experience is often required. This makes it difficult
for students to explore computational models early in their education. However, educational
software applications (apps) allow interaction with computational models without knowledge
of programming.

Educational apps have become more common in science, and while such apps exist in
many fields, few intuitive and accessible apps have been made for simulating neural networks
both on smart phones, tablet computers, and personal computers. Previous efforts have,
however, made computational models more accessible. Neurons in Action (Stuart, 2008;
Moore and Stuart, 2017) and Neuromembrane (Ali et al., 2017) are examples of interac-
tive tutorials for exploring properties of excitable membranes and neurons, while Emer-
gent (Aisa et al., 2008), SimBrain (Tosi and Yoshimi, 2016), and SpineCreator (Cope et al., 2017)
are examples of graphical applications where students can design and analyze neural net-
works on personal desktop computers.

We have developed an educational app, Neuronify, that goes beyond previous educational
tools in that it enables students to easily create neural networks in a plug-and-play manner
and is available also on smart phones and tablet computers. It thus provides a new low-
threshold entry point to simulation-based neuroscience for students with no programming

experience.

]
O
-
O
Vp)
)
-
(O
>
O
)
)
O
()
O
O
<(
O
S
>
(D)
Z
@

]
O
-
O
Vp)
)
-
(O
>
O
)
)
O
()
O
O
<(
O
S
>
(D)
Z
@

With Neuronify, we aim to improve teaching of neural networks and circuits to neuro-
science students, by a combination of demonstrating existing circuits, challenging the user
with exercises and allowing the user to explore the environment freely. The app makes it
easy to teach about complicated network behavior such as direction selectivity based on
lateral inhibition (Barlow and Levick, 1965; Fried et al., 2005), where stimuli moving in the
non-preferred direction is prevented from inducing firing in the output neuron by a strong,
temporally coordinated, inhibitory input volley set up by a tailor-made neural circuit. In
the teaching of neuroscience courses, lateral inhibition is one of many examples of networks
that are hard to explain with static illustrations. By live visualization of the network, it is
possible to explain the process thoroughly by showing how the process works in slow motion.
We show how this example is implemented in Neuronify in Section 3.4.

To build and explore neural networks in the app, you drag and drop neurons onto the
app’s workspace. The neurons are connected by pulling synapses between them. Once
connected, the neurons send a signal to each other whenever they spike. Neurons can also be
driven by current sources, spikes generator as well as touch and visual input provided via the
smart phone, tablet or computer peripherals. The neurons can be probed by various type
of sensors such as voltmeters and spike detectors, and the latter can be forwarded to the
loudspeaker. A step-by-step illustration on building a simple circuit is shown in Figure 1.
The user can explore how changing the properties of a single cell leads to changes in entire
networks. Additionally, the app comes with several premade simulations of common neural

network motifs performing functions such as input summation, gain control by inhibition,

]
O
-
O
Vp)
)
-
(O
>
O
)
)
O
()
O
O
<(
O
S
>
(D)
Z
@

and detection of direction of stimulus movement. Neuronify runs on smart phones (Android,
108), tablet computers as well personal computers (Windows, Mac, Linux).

The paper is structured as follows: We describe the circuit elements, the integrate-and-
fire model and go into detail on how the app is implemented in Section 2. Then we show
some examples on how Neuronify can be used in Section 3. Lastly, we make some concluding

remarks and discuss future prospects in Section 4.

2 Materials & Methods

In this section we present the Neuronify workspace, the available circuit elements, and tech-

nical aspects.

2.1 Workspace

The workspace acts as a canvas and is where we expect the user to spend the most time in
Neuronify. A simple example network is shown in Figure 2. The circuit elements can be
dragged into the workspace and connected to each other.

The workspace is overlayed by a toolbar that contains buttons that activates the (from
top to bottom) main menu, the creation menu, the playback controls, and the properties
panel. All these menus are seen in Figure 3.

The main menu, Figure 3a, is where the user can choose between a new simulation,
existing simulations, or save and load own simulations. The creation menu, Figure 3b, is

where all the items are found. To add the items to the workspace, the user drags them from

]
O
-
O
Vp)
)
-
(O
>
O
)
)
O
()
O
O
<(
O
S
>
(D)
Z
@

the creation menu and drops them onto the workspace. The different items are described in
the subsections below.

The playback menu, Figure 3c, allows the user to change the playback speed of the
simulation. It ranges from about 5 ms simulated per 1 s in real time to 50 ms simulated per
1 s in real time. No matter which playback speed is chosen, the temporal resolution of the
simulation however remains the same. This means that an increase in the playback speed
results in a higher computational load for the device running the app.

The properties panel, Figure 3d, is used to modify the properties of items and connec-
tions. This includes properties such as cell membrane resistance, current-source output, and
synaptic delay, to name a few. Neurons can also be assigned labels that are used to identify

them in other contexts, such as in the voltmeter plot labels (see Section 2.5.1).

2.2 Neurons

In the current version of Neuronify, two types of integrate-and-fire neurons are available:

leaky and adaptive. Further, both types can be either excitatory or inhibitory.

2.2.1 Leaky integrate-and-fire neurons

The integrate-and-fire model, see, e.g., (Sterratt et al., 2011), is the most commonly used
spiking neuron model and is a standard part of the curriculum in neuroscience courses with a
computational component. It has been demonstrated to be very useful for understanding how
neurons process information (Burkitt, 2006). Each neuron is modeled as a point neuron, i.e.,

the soma and dendrites are assumed to be equipotential. The membrane potential describes

7

]
O
-
O
Vp)
)
-
(O
>
O
)
)
O
()
O
O
<(
O
S
>
(D)
Z
@

the state of the neuron. Without any external input, the membrane potential decays like an
RC electric circuit towards the resting membrane potential V., which is why the neuron is
called “leaky”.

A spike (action potential) is generated when the membrane potential reaches the thresh-
old potential Vines. When the neuron generates a spike, the membrane potential is reset
to its initial potential Vieset, which is often defined to be equal to the resting potential V.
After the spike, the membrane potential is fixed to Vieset for an absolute refractory period 7.

Otherwise, the dynamics of the neuron’s membrane potential is described as (Burkitt, 2006):

dVv
Cmg = Ileak + Isyn + Iinj~ (1)

Here, C,, is the membrane capacitance, [e, is the current that drives the decay towards the
resting potential, /gy, is the sum of synaptic input currents, and Ii,; is the sum of injected
currents.

With no synaptic inputs or injected currents, Equation (1) is defined to be equivalent to
the equation for an electrical circuit with a resistor and capacitor in parallel (RC circuit).

The leak current is therefore defined as:

Leak = —é(V = Vi) (2)
Here V, is the resting potential and R,, is the resistance of the membrane. The membrane
time constant is given by 7,, = R,,C,,. Note that both R,, and C,, are assumed to be
constant.

In Neuronify, the membrane resistance (R,,), membrane capacitance (C,,), resting poten-

tial (V}), rest potential (Vieset), firing threshold (Vines), refractory period (7,.), and synapse

8

]
O
-
O
Vp)
)
-
(O
>
O
)
)
O
()
O
O
<(
O
S
>
(D)
Z
@

type (excitatory or inhibitory) can be changed in the properties panel. A figure of the leaky

neuron spiking is shown in Figure 4a.

2.2.2 Adaptive leaky integrate-and-fire neurons

In many neurons the firing rate decreases when they receive a sustained input. The standard
leaky integrate-and-fire model is not able to reproduce such behavior, but can easily be ex-
tended to incorporate adaptation (Brette and Gerstner, 2005). Here this is done by adding
an additional hyperpolarizing current ., to Equation (1). The adaptive conductance of
this current is incremented by an amount Agagapt, whenever the neuron spikes (Koch, 1999;
Latham et al., 2000). In between spikes, the adaptive conductance decays with a time con-

stant Tadapt:

dgadapt _ _gadapt (3)
dt Tadapt ’
Iadapt = gadapt(v - V;“) (4)

As the activity in a neuron increases, the adaptive current will also increase due to the
growing adapting conductance, making it harder for the cell to fire.

The adaptation time constant (Taqapt), adaptation conductance (gaqapt), and the synapse
type (excitatory or inhibitory) can be changed in the properties panel. The spiking of an

adaptive neuron receiving a regular spiking input is seen in Figure 4b.

]
O
-
O
Vp)
)
-
(O
>
O
)
)
O
()
O
O
<(
O
S
>
(D)
Z
@

2.3 Synapses

The synaptic input to an integrate-and-fire neuron can be modeled in at least two ways:
as a conductance-based synapse or a current-based synapse (Sterratt et al., 2011). With
a conductance-based synapse model where the current depends on the difference between
the membrane potentials and the reversal potential of the synapse, the maximum current is
limited. For current-based synapses there are no such inherent limitations, and the neuron’s
membrane potential may increase or decrease without limits. The current-based synapse
makes the model easier to analyze and faster to simulate. In Neuronify, connecting two
neurons will create a current-based synapse. Current-based synapses are also created when
connecting regular spike generators, irregular spike generators, or visual inputs to neurons.

The time course of a synaptic input current is described by a decaying exponential func-

tion:

Tsyn €xp (—%) for t >t
Ioyn = (5)

0 for t<t,.
Here, I_Syn is the maximum current (Sterratt et al., 2011).

The maximum current, the synaptic time constant, and the signal delay can be adjusted
in the properties panel. Since with current based synapses we risk that the membrane
potential goes far beyond the reversal potentials of the involved ions, we limit the membrane
potential to be within the range -90 mV to 60 mV. These are the reversal potentials for K+

and Na', respectively. These limits can be modified or disabled by the user.

10

]
O
-
O
Vp)
)
-
(O
>
O
)
)
O
()
O
O
<(
O
S
>
(D)
Z
@

2.4 Neuron activators

Neuronify comes with several neuron activators that can be used to drive neural circuits,
including DC and AC current generators, regular spike generators, and irregular (random)

spike generators. Input from the user can be used in the form of touch or visual input.

2.4.1 DC and AC current sources

The DC current source is an item that, when connected to a neuron, injects constant current
into the neuron. The AC current source injects an alternating current with the form of a
sine wave. The amount of injected current can be adjusted by the user. The frequency of

the sine-wave current can also be adjusted for the AC source.

2.4.2 Regular spike generators

The regular spike generator produces spikes with a constant firing rate. Connected neurons
will experience these spikes as if they were received as synaptic input from a regularly firing
neuron. Connecting a regular spike generator to a neuron creates a current-based synapse,
with properties that can be modified as described in Section 2.3. The generator can produce
both excitatory and inhibitory output, i.e., mimicking afferent inputs both from excitatory

and inhibitory neurons.

2.4.3 Irregular spike generators

The irreqular spike gemerator produces a train of randomly timed spikes with an aver-

age firing rate specified by the user. The spikes follow a homogeneous Poisson process

11

]
O
-
O
Vp)
)
-
(O
>
O
)
)
O
()
O
O
<(
O
S
>
(D)
Z
@

(Dayan and Abbott, 2005). For every time step of the simulator, there is a constant prob-
ability that the generator will produce a spike. As for the regular spike generator, the
generator can produce excitatory or inhibitory spikes, i.e., mimicking afferent inputs both
from excitatory and inhibitory neurons. The synaptic connection is the same as for the

regular spike generator.

2.4.4 Touch activator

A touch activator makes connected neurons fire when activated. On mobile devices with a
touch screen, the sensor is activated by touching it. On desktop versions of the app, the

sensor is activated by left-clicking on it with the mouse.

2.4.5 Visual input

Visual input is a spike generator based on visual input from a camera connected to the
user’s device. This mimics a neuron with a visual receptive field (Dayan and Abbott, 2005;

Mallot, 2013). There are three types of receptive fields implemented in Neuronify:

1. Rectangular edge-detecting. This edge-detecting receptive field consists of two
adjacent rectangular ON and OFF regions of the same size. The orientation of the ON

and OFF region can be adjusted. This field is shown in Figure 5a.

2. Circular center-surround. The field is defined as the difference of two Gaussian
functions, a type of receptive field found in the retina and lateral geniculate nu-

cleus (Rodieck and Stone, 1965; Hoffmann et al., 1972). The center type (ON-center

12

]
O
-
O
Vp)
)
-
(O
>
O
)
)
O
()
O
O
<(
O
S
>
(D)
Z
@

or OFF-center) can be set in the setting menu. This field is shown in Figure 5b.

3. Orientation-selective. The field is defined as a Gabor function, a type of receptive
field found in the primary visual cortex (Hubel and Wiesel, 1962). The orientation of

the field can be adjusted in the setting menu. This field is shown in Figure 5c.

In reality, receptive field neurons have a temporal component such that the response
depends not only on the present visual stimulus, but also the stimulus in the recent past
(Dayan and Abbott, 2005). In Neuronify, however, the wvisual input item currently depends

only on the instantaneous input.

2.5 Sensors

In order to measure the activity of neurons, Neuronify provides several measurement items:

a voltmeter, a spike detector, a firing-rate plot, and a loudspeaker.

2.5.1 Voltmeter

This item can be used to record the membrane potential from one or more neurons. The
plot range can be adjusted by the user. When the voltmeter is connected to more than one
neuron, it will be shown as rows of voltage traces, where the traces are identified by the

labels of the neurons.

13

]
O
-
O
Vp)
)
-
(O
>
O
)
)
O
()
O
O
<(
O
S
>
(D)
Z
@

2.5.2 Spike detector

This item shows spikes from one or more neurons. When the spike detector is connected to
more than one neuron, the spike times are shown in rows, where each row corresponds to
one neuron. If a neuron has a label, it will be shown in the spike detector. The time range

(window) can be adjusted by the user.

2.5.3 Firing rate

This item shows the firing rate measured in spikes per second of one or more neurons. When
connected to more than one neuron, the mean population firing rate is shown (averaged over
connected neurons). The rate is calculated on-the-fly using a Gaussian window, where the
window width can be adjusted by the user. The minimum and maximum firing rate shown

in the plot can also be adjusted.

2.5.4 Loudspeaker

This item plays a sound when a connected neuron fires. The loudspeaker is able to play
different sounds that can be chosen by the user. A loudspeaker can be connected to multiple
neurons. In this case, the loudspeaker plays the sound every time any of the connected

neurons fire.

2.6 Technical aspects

Neuronify is developed using the cross-platform framework Qt (Qt developers, 2016) and is
written in a combination of C++, QML and Javascript. C++ is a programming language

14

]
O
-
O
Vp)
)
-
(O
>
O
)
)
O
()
O
O
<(
O
S
>
(D)
Z
@

suitable for high-performance computations, while QML is a programming language for
defining visual items in a graphical user interface.

In the following section we will briefly discuss how to install Neuronify and the imple-
mentation details of the app. While this is a brief introduction, detailed information can be

found online.

2.6.1 Installation

Neuronify is available to download for multiple platforms. The app can be found in the app
stores for Android and iOS. For Ubuntu, Neuronify is available as a download in Ubuntu
Software. For Windows and Mac, Neuronify is available as a .zip file and a .dmg image,
respectively. While the app is only supported on the above platforms, it should compile and
run on any platform supported by the Qt framework. This includes a number of desktop
and mobile platforms, in addition to embedded devices. For installation on other platforms
or if you intend to make modifications to the source code, please see the next section about

building from source.

2.6.2 Building from source

Neuronify is open-source software, allowing users to download the source code and make
changes to the app. For details about the open-source license, please see the LICENSE.md
file that comes with your copy of the source code. The source code is made available online.
The location of the source code will be identified if the article is published. To obtain the

source code, you may either clone the repository using git or download the most recent

15

]
O
-
O
Vp)
)
-
(O
>
O
)
)
O
()
O
O
<(
O
S
>
(D)
Z
@

release as a zip file.

Up-to-date installation instructions can be found in the README.md file in your copy
of the source code. Neuronify requires a recent version of Qt to be installed. As of writing,
the source code is compatible with Qt 5.7. Once Qt is installed, the file neuronify.pro can

be opened in Qt Creator, from which it can be built and run.

2.6.3 Architecture

Neuronify has a main engine named GraphEngine. This manages all the items in the simu-
lation and is defined in the C++ class of the same name. The neurons and other items are
structured within GraphEngine as nodes in a graph, hence the name. Each connection (or
synapse) is handled as an edge in this graph. The behavior of an item or edge is defined by
its implementation of certain functions. The most notable functions are stepped, fired and
receivedFire. These functions can be overloaded in either C++ or QML for new items.
This flexibility allows for fast prototyping of items in QML while the final implementation
can be written in C++ for improved performance.

In addition to fast prototyping, we have made this choice of architecture to allow for a
future collaborative feature where the user can share custom items and neuron models with
each other. This will be a feature in a future version of Neuronify.

The GraphEngine class is written in C++ and keeps track of all the nodes and edges in
the simulation. The nodes are items such as cells and current generators, while the edges
are synapses connecting the items. The GraphEngine class is responsible for moving the

simulation forward by calling on all nodes and edges to do a time step. This stepping solves

16

]
O
-
O
Vp)
)
-
(O
>
O
)
)
O
()
O
O
<(
O
S
>
(D)
Z
@

the coupled ordinary differential equations for all the cells and synapses. If a cell fires during
the time step it reports this to the GraphEngine which passes on this information to any
connected cells in the next time step.

The visual representation of items is defined in QML, a programming language made
specifically for the Qt application framework. QML is declarative, which means that the
programmer defines logical expressions rather than a sequence of operations. This makes
it a good choice for programming graphical items and prototyping neuron models. Dy-
namic items are defined by their engine. They are implemented by defining the onFired,
onStepped and onReceivedFire signals.

The RegularSpikeGenerator is an example of such a dynamic item which is implemented
in QML. Tt generates a spike with a constant interval, much like a metronome. We defined
onStepped to sum up the time since last it fired. If the time is more than the interval, we
call the fire function. Once it has fired, we set the time since last firing to zero. Below is

a simplified definition of the RegularSpikeGenerator’s engine in QML:

NodeEngine {
property real rate

property real timeSinceFiring

// here we have omitted functions and

// properties for initialization and saving

17

]
O
-
O
Vp)
)
-
(O
>
O
)
)
O
()
O
O
<(
O
S
>
(D)
Z
@

onStepped: {
timeSinceFiring += dt
if (timeSinceFiring > 1.0 / rate) {
fire()

timeSinceFiring = 0.0

While most items are best defined by these functions directly, Neuron objects share many
common properties and are therefore possible to define using a specialized engine named
NeuronEngine. This engine can have Current objects as children. The current property
of each Current object is summed by the engine at each time step. This sum together with
the synaptic and injected currents, define the total current over the neuron’s membrane.
The NeuronEngine automatically controls firing by keeping track of the neuron’s voltage.
Whenever the voltage goes above the firing threshold, the neuron will fire. In addition, the
NeuronEngine adds any synaptic input current to the user-defined currents. A user that
wants to implement a custom neuron model therefore only needs to define the currents of
this model. Below is an example of a QML implementation of a NeuronEngine that defines

a leak current:

NeuronEngine {

id: engine

18

Current {
id: leakCurrent
property real resistance: 100.0e6 // ohm
onStepped: {

var Em = neuronEngine.restingPotential

var V = neuronEngine.voltage
var R = resistance

var I = -1.0 / R * (V - Em)

current = I

Currently, neuron models are added by modifying the source code of Neuronify. In coming
versions of Neuronify, we will add the possibility to develop new models as plugins. Finally,
with the addition of collaborative features, we will make it easy to share these models with

others.

2.6.4 File format

The saved simulations are stored in the JSON file format. This allows the use of the
Javascript functions JSON.stringify() and JSON.parse() to serialize and deserialize the
items, respectively. Because the JSON.stringify () function would include all properties of

a QML item, even though not all are interesting to save, we have included a custom class

]
O
-
O
Vp)
)
-
(O
>
O
)
)
O
()
O
O
<(
O
S
>
(D)
Z
@

19

]
O
-
O
Vp)
)
-
(O
>
O
)
)
O
()
O
O
<(
O
S
>
(D)
Z
@

called PropertyGroup that contains QML aliases for all the properties to save. This is stored
in a list named savedProperties on each item. When we iterate all the items that are to
be saved, we find all PropertyGroups in savedProperties and run JSON.stringify() on
these. This turned out to be a very powerful way to add saved properties for new items.
To enable the above defined neuron for saving, we need to add the resistance property.
The other properties that already exist on NeuronEngine are already enabled for saving by

default. We add the resistance property in the following way:

NeuronEngine {

id: engine

savedProperties: PropertyGroup {

property alias resistance: leakCurrent.resistance

}
Current {

id: leakCurrent

// definition of leakCurrent as above
+

Once saved, all nodes and edges of the GraphEngine are gathered in the JSON file. In

addition, the current version of the file format is saved to ensure the the file is read back

20

correctly if the file format has changed. The main structure of a saved file looks like this:

{
"fileFormatVersion": 3,
"edges": [
1,
"nodes": [
1,
"workspace": {
}
}

Here we have omitted the contents of nodes and edges and the workspace properties for

brevity.

3 Results

Here we present some examples of neural network motifs that can be created with Neuronify.

The below four examples can be found in Neuronify together with other premade simulations.

]
O
-
O
Vp)
)
-
(O
>
O
)
)
O
()
O
O
<(
O
S
>
(D)
Z
@

21

]
O
-
O
Vp)
)
-
(O
>
O
)
)
O
()
O
O
<(
O
S
>
(D)
Z
@

3.1 Textbook example of spike threshold

The large variety of networks that can be built with Neuronify opens up the possibility to use
the app in neuroscience courses. One possible use is as an interactive alternative or addition
to traditional illustrations. To illustrate this ability of Neuronify we have reproduced Figure
8.5 in Principles of Computational Modelling in Neuroscience (Sterratt et al., 2011).

This example demonstrates how different levels of current injected into a neuron produce
different behavior and firing rates. As shown in Figure 6, there are three cases in this
example, one which results in no firing, one with a low firing rate and one with a higher
firing rate. It is observed that the level of current injection must be sufficiently high to
bring the membrane potential to the firing threshold, otherwise the cell will not fire at all.
For currents above the threshold for firing, increased levels of current injection will result in
higher firing rates.

The benefit of an interactive example when teaching is that the student, at will, can
adjust the level of current injection and properties of the neuron model to explore how this
changes the dynamics. These changes are presented in real-time to the user, which is better
than static illustrations or even figures produced with computational tools where the results
are only available once the simulation is completed. With Neuronify, the results are instead

immediately accessible to the user.

22

3.2 Integration of synaptic inputs

Most neurons receive synapses from many neurons and require more than one synaptic input
to reach threshold and fire. This summation, i.e., integration, of synaptic inputs determines

the firing of neurons, and the principle is illustrated by the example in Figure 7.

3.3 Feedback inhibition

Feedback inhibition is a key network motif that, for example, may provide gain control in
brain circuits. An example of a network with feedback inhibition is shown in Figure 8. Here,
a DC current source delivers a constant current to the excitatory neuron labeled Input.
This neuron is connected to the excitatory neuron A, which again is connected to the neuron
labeled OQutput. The Output neuron is further connected to the inhibitory neuron B, which
finally inhibits neuron A. The overall result is reduced activity both in neuron A and in the

Output neuron in comparison to the Input neuron.

3.4 Direction-selective network

Direction-selective neurons are common in the visual system (Cruz-Martin et al., 2014; Liu, 2015)
and are expectedly involved in motion detection. One way to create networks with direction-
selective neurons is to use feedforward inhibitory connections with lateral connections in one
direction, only. Here, we have a linear array of input neurons that receive inputs from touch
sensors and converge onto a single output neuron through ‘one-sided’ lateral inhibition. The

output neuron will respond to a sequential set of touch signals from right to left, but not

]
O
-
O
Vp)
)
-
(O
>
O
)
)
O
()
O
O
<(
O
S
>
(D)
Z
@

23

]
O
-
O
Vp)
)
-
(O
>
O
)
)
O
()
O
O
<(
O
S
>
(D)
Z
@

in the opposite direction. This stems from the network design where the inhibitory neurons
provides feedforward inhibition only to the relay neuron placed to the right in the network.
Thus, if the sequential touch signal goes from left to right, the relay neurons will already
be inhibited when the excitation arrives from the input layer. Therefore, no relay-neuron
spikes, and consequently no spikes in the output neuron, will be generated. However, with a
touch sequence from right to left, the inhibition arrives too late to prevent the firing of the

relay neurons and the output neuron.

4 Discussion

In this paper we have presented Neuronify, an educational app that provides an interactive
way of learning about neurons and neural networks. In Neuronify the user can add neurons,
current sources, spike generators, and sensory input devices to the workspace. This makes
it possible for students to create and explore their own neural networks without the need for
programming. Students can build intuition for complicated circuits and behavior of neural
networks. Neuronify should be a useful tool in many neuroscience courses because a large
number of phenomena and networks can be demonstrated with the app. An additional use
of Neuronify is as a proof-of-concept software, where the user easily can test the behavior of
a simple network before implementing a more complex version in a suitable tool.

We plan to introduce more features in Neuronify in the future. One obvious candidate
is synaptic plasticity. In short-term synaptic plasticity (Tsodyks and Markram, 1997) the

synaptic efficacy is transiently changed, with typical time constants of less than a second,

24

depending on the detailed pattern of afferent spike trains. In long-term plasticity long-lasting
changes in the strength of synaptic connections are induced, either long-term potentiation
(LTP) (Bliss and Lomo, 1973) or long-term depression (LTD) (Ito, 1989). Inclusion of such
plasticity into Neuronify would require detection of specific firing patterns and a modifica-
tion of the synaptic strengths according to specific rules when various spike patterns are
detected (Sterratt et al., 2011). While the inclusion of LTP and LTD would be particularly
exciting as it would allow the user to create networks that can ‘learn’, a challenge would lie
in visualising synaptic dynamics intuitively. It must be easy for the user to see the change
in synaptic strength in addition to the change in network behavior.

New types of neurons can be implemented to explore a wide class of networks such as
Izhikevich neurons (Izhikevich, 2003), adaptive-exponential integrate-and-fire neurons (Brette and Gerstne
or Hodgkin-Huxley type models (Sterratt et al., 2011).

Note that the list of possible new features to include in Neuronify is not exhaustive, nor
a guarantee that they will be implemented. Exactly which features will be implemented
depends on the feedback we receive.

Online sharing of user-generated networks and items is planned for a future version of
Neuronify in order to foster a community of Neuronify users. This could inspire creativity
and allow users to easily search and find networks of interest. It would also be a place where
networks specific to a neuroscience course could be uploaded and shared with students.

We are hopeful that Neuronify can be valuable tool in neuroscience courses around the

world and even inspire the creation of other educational tools in neuroscience.

]
O
-
O
Vp)
)
-
(O
>
O
)
)
O
()
O
O
<(
O
S
>
(D)
Z
@

25

]
O
-
O
Vp)
)
-
(O
>
O
)
)
O
()
O
O
<(
O
S
>
(D)
Z
@

References

Aisa B, Mingus B, O'Reilly R (2008) The emergent neural modeling system. Neural

networks 21:1146-1152.

Ali D, Funk G, Jones K, Atmist (2017) Neuromembrane — simulator

https://neuromembrane.ualberta.ca,.

Barlow HB, Levick WR (1965) The mechanism of directionally selective units in rabbit’s

retina. The Journal of Physiology 178:477-504.

Bliss TV, Lgmo T (1973) Long-lasting potentiation of synaptic transmission in the dentate
area of the anaesthetized rabbit following stimulation of the perforant path. The Journal

of physiology 232:331-356.

Brette R, Gerstner W (2005) Adaptive exponential integrate-and-fire model as an effective

description of neuronal activity. Journal of neurophysiology 94:3637—-3642.

Burkitt AN (2006) A review of the integrate-and-fire neuron model: I. Homogeneous

synaptic input. Biological cybernetics 95:1-19.

Cope AJ, Richmond P, James SS, Gurney K, Allerton DJ (2017) Spinecreator: a graphical

user interface for the creation of layered neural models. Neuroinformatics 15:25-40.

Cruz-Martin A, El-Danaf RN, Osakada F, Sriram B, Dhande OS, Nguyen PL, Callaway
EM, Ghosh A, D. HA (2014) A dedicated circuit links direction-selective retinal ganglion

cells to the primary visual cortex. Nature advance online publication.

26

]
O
-
O
Vp)
)
-
(O
>
O
)
)
O
()
O
O
<(
O
S
>
(D)
Z
@

Dayan P, Abbott LF (2005) Theoretical Neuroscience: Computational and Mathematical

Modeling of Neural Systems The MIT Press.

Fried SI, Miinch TA, Werblin F'S (2005) Directional selectivity is formed at multiple levels

by laterally offset inhibition in the rabbit retina. Newron 46:117-127.

Gleeson P, Steuber V, Silver RA (2007) neuroConstruct: a tool for modeling networks of

neurons in 3D space. Neuron 54:219-235.

Hoffmann K, Stone J, Sherman SM (1972) Relay of receptive-field properties in dorsal

lateral geniculate nucleus of the cat. J. Neurophysiol 35:18-531.

Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional archi-

tecture in the cat’s visual cortex. The Journal of Physiology 160:106-154.

Tto M (1989) Long-term depression. Annual Review of Neuroscience 12:85-102.

Izhikevich EM (2003) Simple model of spiking neurons. IEEE Transactions on Neural

Networks 14:1569-1572.

Koch C (1999) Biophysics of Computation: Information Processing in Single Neurons

Oxford University Press.

Latham P, Richmond B, Nelson P, Nirenberg S (2000) Intrinsic dynamics in neuronal

networks. I. Theory. Journal of neurophysiology 83:808-827.

Liu J (2015) The anatomy and physiology of direction-selective retinal ganglion cells In
Kolb H, Fernandez E, Nelson R, editors, Webvision: The Organization of the Retina and

27

]
O
-
O
Vp)
)
-
(O
>
O
)
)
O
()
O
O
<(
O
S
>
(D)
Z
@

Visual System [Internet]. Salt Lake City (UT): University of Utah Health Sciences Center

https://www.ncbi.nlm.nih.gov/books/NBK321299/.

Mallot H (2013) Computational Neuroscience: A First Course Springer Series in Bio-

/Neuroinformatics. Springer International Publishing,.

Moore JW, Stuart AE (2017) Neurons in action http://neuronsinaction.com/.

Qt developers (2016) Qt Reference Documentation http://qt.io/.

Rodieck RW, Stone J (1965) Analysis of receptive fields of cat retinal ganglion cells. Journal

of Neurophysiology 28:833-849.

Sterratt D, Graham B, Gillies A, Willshaw D (2011) Principles of computational modelling

in neuroscience Cambridge University Press.

Stuart AE (2008) ’Neurons in action’ in action - educational settings for simulations and

tutorials using NEURON. Brains, Minds & Media 3.

Tosi Z, Yoshimi J (2016) Simbrain 3.0: A flexible, visually-oriented neural network simu-

lator. Neural Networks 83:1 — 10.

Tsodyks MV, Markram H (1997) The neural code between neocortical pyramidal neurons
depends on neurotransmitter release probability. Proceedings of the National Academy of

Sciences 94:719-723.

28

]
O
-
O
Vp)
)
-
(O
>
O
)
)
O
()
O
O
<(
O
S
>
(D)
Z
@

Figure 1: Step-by-step illustration of how to build a simple neural circuit in
Neuronify. (a) A neuron is added to the canvas by dragging it from the creation menu.
(b) A DC current clamp is added and connected to the neuron by dragging the DC current
clamp connection handle onto the neuron. (c¢) A voltmeter is added and connected to the
neuron by dragging the voltmeter connection handle onto the neuron. (d) The properties of

neurons and other items can be changed in the properties panel.

Figure 2: Neuronify workspace. Here, a simulation has been loaded where two touch
input sensors are connected to one excitatory neuron (A) and one inhibitory neuron (B).
Neuron C is connected to a voltmeter that plots the membrane potential as described by the
integrate-and-fire model. This network can be used to illustrate how neuron B can inhibit
neuron C so that when neuron A fires shortly after, A may not be able to excite neuron
C beyond its threshold potential. Activating neuron A results in a spike in neuron C (first
spike in the figure). However if neuron B is activated first and then neuron A shortly after,
neuron C is not excited beyond its threshold potential. To the right we see the toolbar that

overlays the workspace and at the bottom we see the playback controls.

Figure 3: Menus in Neuronify. (a) Main menu. (b) Creation menu. (c¢) Playback controls.

(d) Properties panel.

29

]
O
-
O
Vp)
)
-
(O
>
O
)
)
O
()
O
O
<(
O
S
>
(D)
Z
@

Figure 4: (a) Leaky integrate-and-fire neuron. The membrane potential of a leaky
neuron is shown as plotted by the voltmeter item. As can be seen, the membrane potential
increases until it reaches its threshold value and is immediately reset to the initial potential.
The spike itself is overlayed as a vertical line for illustrative purposes and is not explicitly
included in the dynamics of the membrane potential. (b) Adaptive leaky integrate-and-
fire neuron. The membrane potential of an adaptive neuron as plotted by the voltmeter
item. This neuron receives input from the same DC current source. The interval between
each spike of the adaptive neuron increases due to the an additional hyperpolarizing current

which grows for each spike and decays between the spikes.

Figure 5: Illustration of receptive fields implemented in the visual input item in
Neuronify. The user may choose between these and use them in combination with input
from the camera on their device to simulate a neuron with a visual receptive field. (a)
Rectangular edge-detecting receptive field. (b) Circular center-surround receptive field. (c)

Orientation-selective receptive field.

Figure 6: Example of how Neuronify can be used to create interactive illustrations
for neuroscience courses. This is a reproduction of figure 8.5 in Principles of Computa-
tional Modelling in Neuroscience. The example shows how different levels of current injection
into a neuron model results in different firing rates. Note that this example uses an artificial

resting potential of 0 mV.

30

]
O
-
O
Vp)
)
-
(O
>
O
)
)
O
()
O
O
<(
O
S
>
(D)
Z
@

Figure 7: Example illustrating integration of synaptic inputs. In the upper circuit
the output neuron only receives input from a single presynaptic neuron. This input alone
is not sufficient to make the output neuron spike. In the lower circuit the output neuron
instead receives input from three presynaptic neurons. This makes the neuron fire, thus
illustrating how a neuron effectively integrates the synaptic input it receives to produce
spikes. In the app, this example uses touch sensors instead of a current source for a more

interactive illustration of this behavior.

Figure 8: Example of gain control with feedback inhibition. The Input neuron re-
ceives a constant direct current input and is connected to neuron A which in turn is connected
to the Output neuron. The Output neuron is further connected to the inhibitory neuron B.
Neuron B inhibits neuron A, which in total results in feedback inhibition, i.e., reduced activity

in the Output neuron compared to the Input neuron.

31

]
O
-
O
Vp)
)
-
(O
>
O
)
)
O
()
O
O
<(
O
S
>
(D)
Z
@

Figure 9: Example of direction-selective network. This example illustrates a direction-
selective feedforward network based on one-sided lateral inhibitory connections. The upper
row of touch inputs are connected to the Input neurons. These are both connected to the
Relay neurons and the Inhibitory neurons. Each Inhibitory neuron inhibit the Relay
neuron positioned immediately to the right in the network. The Relay neurons are connected
to the Output neuron. The effect of the inhibition is that the network only responds to input
where the touch sensors are pressed sequentially from right to left, but not in the opposite

direction.

32

))))))

-100

[Aw] A

O s
06
(b)

(d)

(c)

@
o ¢

1diosnue|Al pa1da2oy 0InaNa3

n + 2 O

1365

C
t [ms]

—
1265

AWl A

4
2 g »
4
A

1diiasnueAl p21d220y 04naN2

® <8 % m >
Neuronify
Continue ‘ .

Leaky excitatory neuron - Excitatory neuron with with only leak currents

New

»
Examples
Save O

Load

About

(a) (b)

< Potentials

“ membrane potential -70.0 mV)
&t membrane potential -80.0 mvV)
' Firing threshold 550mV)

& ¥ + 1

in» »wn

(c) (d)

]
O
-
O
Vp)
)
-
(O
>
O
)
)
O
()
O
O
<(
O
S
>
(D)
Z
@

2163

a)
t [ms]

WYYy V-

-100

2063

[AW] A

1diiasnueAl p21d220y 04naN2

(b)

(a)

1diiasnueAl p21d220y 04naN2

370
370

t [ms]

30
0
270
30
0
270
30

&
1444

270

[AW] A [AW] A [AW] A

1diosnue|Al pa1da2oy 0InaNa3

]
O
-
O
Vp)
)
-
(O
>
e
)
)
O
()
O
O
<(
O
S
>
(D)
Z
@

V[mV]

-100

e e Y giae Y

6081

t [ms]

6181

50

V [mV]

-100

5980

~

t [ms]

6080

-100 L’Jk/\-—

324 t [ms] 424

)
.9— 50 Input

S

) S

W E

> "4 %4 %

- 100324 t [ms] 424

(O

E 50 Output

Input

st ~— 4
Q_ -100324 t [ms] 424
a 50 A

)

O

< >

O

S

]

b

=z

b

o000
m

Output

lnhlbltoryh

eIay

50

]
O
-
O
Vp)
)
-
(O
>
e
)
)
O
()
O
O
<(
O
S
>
(D)
Z
@

V [mV]

-100
837 t [ms] oS

