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 47	

Abstract 48	

 49	

We have seen important strides in our understanding of mechanisms underlying stroke 50	

recovery, yet effective translational links between basic and applied sciences, as well as from 51	

big data to individualized therapies, are needed to truly develop a cure for stroke. We present 52	

such an approach using The Virtual Brain (TVB), a neuroinformatics platform that employs 53	

empirical neuroimaging data to create dynamic models of an individual’s human brain; 54	

specifically, we simulate fMRI signals by modeling parameters associated with brain dynamics 55	

after stroke. 56	

In twenty individuals with stroke and 11 controls we obtained rest fMRI, T1w, and DTI 57	

data. Motor performance was assessed pre-therapy, post-therapy, and 6-12 months post-58	

therapy. Based on individual structural connectomes derived from DTI, the following steps 59	

were performed in the TVB platform: 1) Optimization of local and global parameters 60	

(conduction velocity, global coupling), 2) Simulation of BOLD signal using optimized 61	

parameter values, 3) Validation of simulated time series by comparing frequency, amplitude, 62	

and phase of the simulated signal with empirical time series, 4) Multivariate linear regression 63	

of model parameters with clinical phenotype. 64	

Compared to controls, individuals with stroke demonstrated a consistent reduction in 65	

conduction velocity, increased local dynamics, and reduced local inhibitory coupling. A 66	

negative relationship between local excitation and motor recovery, and a positive correlation 67	

between local dynamics and motor recovery were seen.  68	

TVB reveals a disrupted post-stroke system favoring excitation-over-inhibition and 69	

local-over-global dynamics, consistent with existing mammal literature on stroke mechanisms. 70	
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Our results point to the potential of TVB to determine individualized biomarkers of stroke 71	

recovery.  72	

 73	

Significance Statement 74	

The development of schemes to acquire neuroimaging big data is fostering a greater 75	

understanding of brain function. Yet we are lacking quantitative tools to translate these insights 76	

to the individual level, particularly associated with neurological disease. We address this 77	

challenge using the neuroinformatics platform, The Virtual Brain, to model individualized 78	

brain activity. This approach enables the linkage of macroscopic brain dynamics with 79	

mesoscopic biophysical parameters, wherein we demonstrate the capacity of large-scale brain 80	

models to track and predict long-term recovery after stroke. Our results establish the basis for 81	

a deliberate integration of computational biology and neuroscience into clinical approaches for 82	

elucidating cellular mechanisms of disease, opening new venues for the development of 83	

individualized therapeutic interventions.   84	

  85	
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Introduction 86	

Previous research has provided key insights into the disease process in stroke. Studies 87	

in mammals have uncovered basic mechanisms of ischemic injury, inflammatory responses, 88	

and cellular recovery (Carmichael, 2012; Nudo, 2013). In humans, researchers have suggested 89	

predictive imaging biomarkers for disease progression and recovery, mapped associated 90	

changes in brain networks, and developed new rehabilitative therapies (Reiss et al., 2012). 91	

Despite this, stroke remains a major source of disability in the United States, with 92	

approximately 6.5 million people living with stroke, with some level of hemiparesis present in 93	

approximately 50% (Go et al., 2014). This is neither the fault of mammal nor human studies, 94	

as both are constrained by their respective study populations. Studies in mammals are well-95	

controlled yet homogeneous, limiting their translational abilities. Human studies reflect the 96	

population at hand, yet often rely on indirect measures, obscuring the full picture. Although 97	

both share a common goal of curing stroke via the repair and reorganization of the injured 98	

brain, what is missing is a translational bridge to effectively span the divide between basic 99	

mechanisms and dynamic human brain systems.  100	

At the same time, the neuroscience community is immersed in collecting large datasets 101	

to provide greater understanding of brain function and dysfunction. Such initiatives span 102	

normal function (Human Connectome Project), development (NIH Pediatric Database), and 103	

brain disorders such as Alzheimer’s disease (ADNI) and mental illness (Research Domain 104	

Criteria Project). While these initiatives provide the necessary empirical foundation, 105	

quantitative tools are missing to integrate these multiple datasets to “reconstruct” the brain, 106	

and provide the link between these data and those from a single person.  107	
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Over the last 6 years, a neuroinformatics platform has been developed: The Virtual 108	

Brain (TVB) (Sanz Leon et al., 2013). The defining feature of TVB is that it generates 109	

personalized functional neuroimaging data based on individual structural connectome data to 110	

create personalized virtual brains. These models are specific to each individual person, and 111	

contain the connectivity between parts of the brain and the dynamics of local neural 112	

populations. TVB uses structural MRI data to create the custom brain surface, diffusion-113	

weighted MRI data to infer the anatomical connections between brain areas, and then 114	

functional MRI data as the target to modify the parameters of the model to reproduce the 115	

observed functional data. The neuroinformatics architecture of TVB houses a library of 116	

models, which catalogues the biophysical parameters that produce different empirical brain 117	

states (Ritter et al., 2013). Global biophysical parameters represent biological mechanisms 118	

governing dynamics between brain regions, while the local biophysical parameters describe 119	

the properties of small populations of neurons integrating dynamics at the local mesoscopic 120	

level.  That is, modeling in TVB comprises multiple scales of brain dynamics that are invisible 121	

to brain imaging devices, and therefore TVB acts as a “computational microscope,” allowing 122	

the inference of internal states and processes of the system. 123	

TVB thus offers a novel platform to formulate biologically interpretable hypotheses on 124	

the effects of stroke and its recovery based on biophysical mechanisms governing brain 125	

dynamics. Beyond the direct clinical implications of network dysfunction in stroke, these 126	

insights can contribute a first step to the understanding of fundamental mechanisms of the 127	

brain’s structure-function relationship. TVB has been established and applied to normative 128	

data sets (Deco et al., 2012) and for learning and plasticity (Roy et al., 2014), yet a proof of 129	

concept needs to be established based on pathological states. 130	
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The objective of the present study using the TVB platform was to determine changes 131	

in local and global biophysical parameters to better understand individualized brain dynamics 132	

after stroke. In this approach, the model parameters act as a means to assess brain health, 133	

analogous to blood samples assessing physical health, and hence, parameter changes could 134	

ideally be used as potential biomarkers of stroke and/or stroke recovery. So far, such 135	

biomarkers have mostly focused on stable architectures, from behavior to fine anatomical and 136	

functional levels (Burke and Cramer, 2013). In contrast, our aim is to create a synergistic 137	

amalgamation of mathematical models with neuroimaging, where the biomarker derives from 138	

the dynamical model itself.  139	

Methods 140	

Subjects:  141	

Twenty volunteers with chronic stroke (ages 23-74, 8 females) in the middle cerebral 142	

artery (MCA) territory and 11 age-matched controls were included in the study. Human 143	

subjects were recruited at a location that will be identified if the article is published. 144	

Demographic details and stroke characteristics of our cohort can be found in Table 1. 145	

Motor performance was assessed with: the Functional Ability Scale of the Wolf Motor 146	

Function Test (WMFT), Nine-hole peg test, the Fugl-Meyer upper arm test, and the Motor 147	

Activity Log (MAL-14). These assessments were collected at baseline (pre-therapy), after one 148	

month of intensive hand therapy (post-therapy) and 6-12 months after therapy (maintenance). 149	

 150	

Brain Imaging:  151	

Imaging data were acquired on a 3 Tesla Philips Achieva scanner using the following 152	

sequences:  153	
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1. High-resolution anatomical images were acquired with a 3D Magnetization 154	

Prepared Rapid Gradient Echo (MP-RAGE) sequence: FOV= 250x250, 155	

resolution=1x1x1mm, SENSE reduction factor =1.5, TR/TE=7.4/3.4ms, flip 156	

angle=8, sagittal orientation, number of slices=301 covering the whole brain. 157	

2. Diffusion Tensor Imaging was acquired with the following sequence: 158	

FOV=224x224, TR/TE=13030/55, 72 slices, slice thickness= 2mm, 159	

resolution=0.875x0.875x2, 2 mm post-processing iso-voxel with b=1000 sec/mm2 160	

(and b=0), 32 diffusion directions.  161	

3. Functional imaging acquisition at rest covering the whole brain (37 slices) was 162	

acquired using single-shot echo-planar MR (EPI) with slice thickness = 4.0 mm, 163	

FOV= 230x230, voxel size = 2.8mm x 2.8mm, TR/TE= 2000/20 ms, duration= 5 164	

min.  165	

Virtual Brain Transplantation: 166	

Because of mechanical deformation consequent to large cortical strokes, the anatomical 167	

parcellation on T1w images using semi-automated methods is very difficult to achieve. 168	

Hence, a “virtual brain transplant” process was performed in accordance with a 169	

previous approach (Solodkin et al., 2010). This method replaces the cortical lesion with 170	

the homologous image from the contralesional hemisphere from the same subject. With 171	

this, brain parcellation is possible using semi-automatized software. The process 172	

consisted of the following steps:  173	

1. Lesion segmentation by hand. 174	

2. Using the AFNI 3dcalc function (Cox, 1996), the homologous region in the non-175	

lesioned hemisphere was dissected and transplanted into the stroke region, 176	
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effectively filling in the missing portions of the brain.  177	

3. Manual corrections were then done in the interface between the native and 178	

transplanted T1-w images by visually examining each voxel and making voxel 179	

intensities uniform using AFNI’s 3dLocalStat and 3dcalc commands. 180	

4. The brain was then parcellated into 96 cortical and subcortical regions. The original 181	

parcellation based on a macaque template (Van Essen, 2004) was transformed to 182	

the human MNI template via PALS (Van Essen, 2005). To increase accuracy, the 183	

deformation process was carried out using landmarks (based on CARET) and 184	

functional activation patterns considered homologous between the two species 185	

(Van Essen and Dierker, 2007).  186	

 187	

Diffusion Tensor Imaging:  188	

Pre-processing of DTI data consisted of 1) motion correction using the FSL eddy 189	

current correction (Leemans and Jones, 2009), 2) generation of a binary brain mask from the 190	

b0 image and application of the mask to all diffusion images using the Brain Extraction Tool 191	

from FSL (Smith, 2002), 3) fitting of a diffusion tensor at each voxel using FSL’s dtifit 192	

function, 4) non-linear co-registration of T1 data to the MNI brain and co-registration of T1 193	

images to their respective DTI images producing an MNI to DTI transformation using ANTS 194	

(Avants et al., 2011), 5) white and gray matter segmentation performed on the MNI-to-T1 atlas 195	

using FAST (Zhang et al., 2001) and 6) parcellation of the gray matter into 96 regions as 196	

described above and registration of these regions to the DTI using the T1-to-DTI 197	

transformation with a nearest neighbor interpolation. 198	

 199	
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Tractography and Structural Connectivity Matrix Generation 200	

1. Probabilistic tractography was performed to trace the fiber bundles associated with 201	

pairs of cortical regions in the MNI space, which were defined as edges in the 202	

network (Ritter et al., 2013; Zalesky and Fornito, 2009).  203	

2. Two connectivity measures were extracted: a) capacities, depicting the maximum 204	

rate of transmission of information through edges, were calculated using the 205	

number of streamlines at the minimum cross-sectional area of an edge (Zalesky and 206	

Fornito, 2009);  and b) distances, defined by the lengths of each edge, were 207	

calculated by averaging the lengths of all streamlines in an edge. These measures 208	

were used to generate two 96x96 structural connectivity matrices. Quality 209	

assurance to reduce false positives was performed on each structural connectivity 210	

matrix by a trained neuroanatomist (AS).  211	

 212	

Resting	State	fMRI	Pre‐processing 213	

Pre-processing was done in AFNI (Cox, 1996) and included the following steps: motion 214	

correction of functional and anatomical data sets (Cox and Jesmanowicz, 1999), 3D spatial 215	

registration to a reference acquisition from the rsfMRI run, registration of functional images 216	

to the T1-w volume, despiking and mean normalization of the time series, motion correction 217	

(>1mm, (Johnstone et al., 2006)) and regression of cerebrospinal fluid and white matter 218	

signals to remove slow-wave components (e.g. physiological noise) (Lund et al., 2006). 219	

 220	

Resting State fMRI Post-processing 221	
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Average time series were extracted for each of 96 MNI regions. For each subject, a 222	

96x96 functional connectivity matrix was generated by calculating the pair-wise correlation 223	

of the time series for each region (Ritter et al., 2013) using the “corr” function in Matlab. 224	

 225	

Modeling in TVB (Figure 1): 226	

The Virtual Brain (TVB version 1.08) was used for all simulations (Sanz Leon et al., 227	

2013) where the principal empirical input to the platform is the structural connectivity matrix 228	

derived from each individual subject’s tractography. Based on this input, TVB simulates field 229	

potentials by integrating global dynamics with a local (mesoscopic) model that determines 230	

the dynamics within brain regions. Following, BOLD signals are derived from the generated 231	

field potentials. In this work, we used the Stefanescu-Jirsa 3D (SJ3D, Figure 2) local model, 232	

as the resulting mean field model does not rely heavily on synaptic delays (Jirsa and 233	

Stefanescu, 2011; Sanz-Leon et al., 2015; Stefanescu and Jirsa, 2008), making it compatible 234	

with the poor time resolution associated with BOLD signals. Specifically, the SJ3D model is 235	

derived from populations of bursting neurons and includes six states describing excitatory and 236	

inhibitory dynamics via the inclusion of a variety of biophysical parameters defining the local 237	

mean fields (for a list of the parameter values used in the present study see Table 2) 238	

(Hindmarsh and Rose, 1984; Stefanescu and Jirsa, 2008).  239	

The following sequential steps were performed for each individual subject: 240	

1) Importing of a subject-specific connectivity matrix into the TVB platform. 241	

2) Selection of the SJ3D local model. 242	

3) Parameter Space Estimation (exploration and fitting): We sequentially 243	

performed systematic parameter space explorations and fitting to determine the optimal values 244	
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for global and local parameters in all subjects. a) Parameter space exploration: We used heat 245	

maps of global variance (mean variance of time series across all brain regions) to constrain the 246	

range of values for each model parameter (Figure 3). The range of values considered is assessed 247	

based on those values with high global variance flanked by bifurcation points (Breakspear and 248	

Jirsa, 2007).  An additional advantage of this approach is that it is not only pragmatic but it can 249	

also provide information on the degree of variability and sensitivity that parameter values have 250	

onto the simulated signals. b) Parameter fitting: The final optimal value was subsequently 251	

obtained by assessing the specific value for the parameters that resulted in the best fit between 252	

the empirical and simulated signals based on three metrics described below (step 6). The global 253	

parameters explored included conduction velocity and global coupling and the local parameters 254	

included K12 (excitatory on inhibitory coupling), K21 (inhibitory on excitatory coupling), and 255	

K11 (excitatory on excitatory coupling). The local parameters were chosen as they have the 256	

strongest impact on the dynamics of the SJ3D model (Stefanescu and Jirsa, 2008).  257	

4) Stochastic Network simulation: Based on the values obtained in the parameter 258	

space exploration, we generated field potentials with the same duration (4 min) and sampling 259	

rate (TR=2s) as the empirical rsfMRI acquisition. The length of the simulated data was kept 260	

equal to the length of the empirical data in order to minimize the influence of variability over 261	

the course of the time series, as it is becoming increasingly patent that values of functional 262	

connectivity are not stable over time (Hutchison et al., 2013). White noise with Gaussian 263	

amplitude (mean = 0, standard deviation = 1) was added to each node. Numerical integration 264	

of the system was performed using stochastic Heun’s method (Mannella 2002), with an 265	

integration step size of 0.0122 ms.  266	

5) The BOLD signals were derived from the field potentials using a 267	
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haemodynamic response function implemented with a gamma kernel (Boynton et al., 1996; 268	

Sanz-Leon et al., 2015).  269	

6) Assessing reliability of the simulated time series: Comparison between the 270	

empirical and simulated BOLD time series was done in terms of amplitude, frequency, and 271	

phase.  272	

Amplitude: We calculated the range of amplitude by identifying the highest and lowest 273	

peaks present in the time series across all regions. 274	

Frequency: Fast Fourier transforms of the raw and simulated time series were obtained 275	

using Matlab’s “fft” function with a sampling frequency of 0.5 hz, to determine the range, 276	

profile, and peak frequencies (Ritter et al., 2013).  277	

Phase: This was assessed by comparing the functional connectivity matrices of the 278	

simulated and empirical time series. We averaged all matrices from healthy controls to obtain 279	

a group control matrix, and calculated the pairwise linear correlation coefficient between the 280	

simulated functional connectivity matrix for each individual to the group.   281	

7)  Differences in parameter values between healthy controls and stroke cases were 282	

evaluated with Wilcoxon sum rank test corrected for multiple comparisons (Bonferroni). 283	

8)  Relationship with clinical phenotype 284	

In order to determine if there was any relationship between TVB parameters and the 285	

clinical phenotype, multiple linear regression was performed between model parameters 286	

(dependent variables) and the following independent variables: Motor outcome measures 287	

(Fugl-Meyer, WMFT, 9-hole peg and MAL-14), patient demographics (age, sex, presence of 288	

depression) and lesion characteristics (size, location, time after stroke, side of stroke).   289	

 290	



	 14

Results 291	

 292	

Weights of structural connections after stroke 293	

The weights of connections in the control group had a mean (± SD) of 10.16 ± 1.03, 294	

(range 8.75-12.07), and in the stroke cohort had a mean of 9.76  ± 1.57 (range 6.41-10.35) 295	

(Figure 4). Yet, there were no statistical differences in mean, distribution shape between the 296	

groups (Kolmogorov-Smirnov test; pa = 0.42), or skewness (controls = -0.083; stroke = -0.082; 297	

t-test: p=0.35 and 0.29 respectively).  298	

 299	

BOLD simulations generated with TVB correlated with the empirical BOLD 300	

responses (Figure 5) 301	

The frequency spectrums of the simulated and the empirical BOLD responses had 302	

similar ranges (0-0.25 Hz) and mean peak (empirical = 0.05+0.035 Hz; simulated = 0.03+0.023 303	

Hz). Although the mean amplitudes were similar (empirical = 8.15; simulated = 9.49), the 304	

range of values was wider in the empirical signals (0.17 – 87.43) than those found in the 305	

simulated BOLD (3.79 – 22.64). The relative phases of the regions within simulated and 306	

empirical time series were similar as assessed by the mean correlation coefficient between their 307	

respective functional connectivity matrices (mean = 0.27±0.02; pb = 0. 9e-12 Fisher Z-308	

transformation). These validated simulations provided us with specific parameter values at 309	

both the global and the local levels associated with healthy control subjects and after stroke.   310	

 311	

Stroke was associated with reliable changes in global and local parameters 312	

(Table 3) 313	
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Although qualitative in nature, the color-coded graphic representation of the variance 314	

distribution done as part of the parameter space exploration (Figure 3) provides a glimpse into 315	

differences of combined values for the two global parameters: global coupling (x axis) and 316	

conduction velocity (y axis) in healthy controls and in stroke subjects, with warm colors 317	

representing higher variance. These explorations demonstrated at this early stage of analysis 318	

that the range of optimal parameter values (hot colors) in controls had similar topology of the 319	

distribution of variance as well as concrete values. In contrast, stroke cases displayed high 320	

variations in both topology and values, where although some had similar distribution patterns 321	

as the healthy controls, others had scattered, fragmented patterns.  Similar observations were 322	

found with respect to local parameters. 323	

Numerically, differences in parameter values between healthy controls and the stroke 324	

cohort are as follows: 325	

Global Parameters 326	

a. Conduction velocity: The range of modeled conduction velocities obtained via 327	

TVB in healthy controls ranged from 45 to 90 m/s with a mean of 62  ± 10 m/s. In contrast, 328	

the conduction velocities in stroke subjects had a range between 12 and 80 m/s with a mean of 329	

46  ± 21 m/s. Comparison between the two groups with Wilcoxon rank sum test (pc = 0.05) 330	

was marginally significant after correction for multiple comparisons. 331	

b. Global coupling (rescale factor of incoming activity linking global with local 332	

dynamics): In healthy controls, the mean was 0.053 ± 0.009 (range 0.044-0.047) and in cases 333	

with stroke the mean was 0.061 ± 0.016 (range 0.04-0.09). Wilcoxon sum rank test showed 334	

this difference was significant after correction for multiple comparisons (pc = 0.013). 335	
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In addition, it is important to note that the trend in all stroke cases where the values 336	

were different from those in controls was consistent: that is, it presented always as a decrease 337	

in conduction velocities (N = 12) and an increase in global coupling (N = 14). The rest of the 338	

stroke cases did not show differences with healthy controls.  339	

 340	

Local parameters derived from the Stefanescu-Jirsa3D model  341	

a. K12 (coupling of excitatory over inhibitory populations within brain regions): 342	

The values of K12 in controls had a mean of 0.49 ± 0.338 (range 0.12-0.55) and in stroke the 343	

mean was 0.369 ± 0.257 (range 0.1-0.8). Statistical comparison between the two groups 344	

resulted in a pc = 0.17. 345	

 346	

b. K21  (coupling of inhibitory over excitatory populations): This variable (control 347	

mean = 0.804 ± 0.17, range=0.3-0.9) was significantly reduced in the stroke group (mean = 348	

0.674 ± 0.302; range 0.1-0.9; pc = 0.01). 349	

 350	

c. K11 (influence between excitatory populations): The values of K11 in controls 351	

had a mean of 0.833 ± 0.142 (range 0.6-0.95) and in stroke cases had a mean of 0.613 ± 0.301 352	

(range 0.1-0.99). Comparison between the two groups with Wilcoxon sum rank test gave a pc 353	

= 0.1. 354	

 355	

In summary, compared to values in healthy controls, there was a higher global coupling 356	

and a decrease of local inhibitory dynamics represented by the local parameter K21 along with 357	

a trend towards a reduction of conduction velocity.  358	
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 359	

Global and local parameters were correlated with clinical phenotype 360	

Multiple linear regression analysis to establish a relationship between modeling 361	

parameters and some clinical metrics did not show a correlation. The following clinical 362	

elements were considered in this preliminary assessment: stroke phenotype (size, location, time 363	

after stroke, side of stroke), depression, patient demographics (age, sex), and severity of 364	

impairment.  365	

Next, we assessed the relationship between parameter values with recovery from stroke 366	

immediately after therapy and after one year (maintenance) using a multiple linear regression. 367	

This analysis showed a negative relationship between K12 and Fugl-Meyer scores both post-368	

therapy (t =-2.386; pd =0.038) and at maintenance one year later (t =-3.824; pd =0.005). In 369	

addition, global coupling had a positive relationship with the Wolf Motor Function Test (t= 370	

2.461; pd =0.039) at maintenance. Thus, these two parameters derived from modeling based 371	

on pre-therapy conditions were related to long-term motor gains rather than the physical 372	

features of the stroke or the patient’s demographics. 373	

 374	

 375	



Statistical Table

 Comparison of Interest Data Structure Type of Test p value  

a Weights of connections: stroke vs. control Normal Kolmogorov-Smirnov test 0.42 

b Pearson’s correlation coefficients: simulated vs. 

empirical functional connectivity matrices 

Normal after  

Z-transformation 

T test 0.9e-12 

c TVB parameters: stroke vs. control Control: Non-normal

Stroke: Normal 

Wilcoxon rank sum test Conduction Velocity: 0.05 

Global Coupling: 0.013 
 
K12: 0.17 
 
K21: 0.01 
 
K11: 0.1 

d Regression: TVB parameters with subject 

demographics, lesion characteristics and 

recovery 

Normal Multiple linear regression Post-Therapy: 

K12 - Fugl-Meyer: 0.038 

Maintenance:  

K12 – Fugl-Meyer: 0.005 

Global Coupling – WMFT: 0.039 



Discussion 377	

The main result of the study showed that the simulation of BOLD signals using TVB in stroke 378	

enables the identification of key changes associated with large-scale neural dynamics in individual 379	

patients. Overall, our results showed that, compared to healthy controls, individuals with stroke have 380	

a consistent reduction in conduction velocity and a relative increase in local-over-global brain 381	

dynamics. Further, the identified parameters were related to functional outcomes such that these 382	

parameters predicted long term recovery after therapy. Taken together, these results not only back 383	

TVB as an effective tool in identifying dynamic brain changes in stroke spanning multiple scales, but 384	

also specifically identify potential predictors of recovery in stroke at the individual level. This study 385	

suggests that TVB may be a powerful platform for the application of large-scale modeling in 386	

understanding brain mechanisms at an individual subject level. 387	

  388	

Stroke is related to consistent global and local parameter changes 389	

The successful simulation of empirical rfMRI data in this study facilitated a particularly salient 390	

finding; the dynamic model derived from stroke subjects had a significant decrease in the local 391	

parameter K21 and a consistent global coupling increase, accompanied by a trend in decreased 392	

conduction velocity. Two aspects of these results are of special interest: the first relates to the nature 393	

of the statistical outcomes and the second to the biological interpretation of these changes. 394	

1) Imaging-derived metrics in humans in general have high variance (Mueller et al., 2013); 395	

consequently, analytical measures have been developed to minimize it (Fischl et al., 1999). Further, 396	

this variance is amplified by stroke (Rehme et al., 2012), and has compelled researchers to stratify 397	

patients with precise criteria (Cramer, 2010), resulting in low sample sizes and high inter-study 398	

variability. In contrast, even when we used minimal exclusion criteria when selecting participants, 399	
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changes seen after stroke were highly consistent, where all the cases that had a parameter change with 400	

respect to controls had the same directionality and relatively low variance. Given the high level of 401	

subject variability (as expected for a cohort including a large range of clinical phenotypes), we find 402	

this consistency somewhat surprising. However, we are not suggesting high reliability of our 403	

modeling, as the definitive answer will result from expanding the assessment to a larger population 404	

where the predictive value of the parameter changes can be formally assessed.   405	

2) Stroke survivors exhibited a significant decrease in K21, a parameter at the mesoscopic level 406	

that represents the influence of inhibitory on excitatory neuronal populations. A decrease in K21 thus 407	

indicates local dis-inhibition. These results are highly consistent with existing data on the basic 408	

mechanisms of stroke at the cellular level. For example, rodent models of MCA stroke show an 409	

imbalance in the density of excitatory and inhibitory receptors in tissue surrounding the lesion 410	

(Schiene et al., 1996). Specifically, they suggest a decrease in GABA receptor expression in 411	

widespread ipsi-lesional cortical areas and a concomitant increase of N-methyl-D-aspartate (NMDA) 412	

receptor expression in the contra-lesional hemisphere.  413	

In the context of stroke in humans, hyper-excitability has been described in two experimental 414	

paradigms:  415	

1) Studies using TMS to test cortical excitability after stroke have shown a decrease in the 416	

current needed to elicit motor evoked potentials (MEPs) and an increase in their amplitude (Hallett, 417	

2007) along with an expansion in the area producing them (Liepert et al., 2000) suggesting dis-418	

inhibition in motor cortices (Shimizu, 2002). Furthermore, decreasing the hyper-excitability via 419	

repetitive low frequency stimulation (Takeuchi et al., 2005) along with a reduction of the TMS 420	

stimulation area (Liepert et al., 2000) has been related to motor recovery (Hallett, 2007).    421	
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2) Increased activity in motor and non-motor regions has been reported in fMRI studies after 422	

stroke (Rehme and Grefkes, 2013). Specifically, increased contra-lesional activity has been observed 423	

(Grefkes et al., 2008; Ward, 2003; Weiller et al., 1992). Although this has been explained as a 424	

recruitment of supplementary areas to assist movement (Rehme and Grefkes, 2013), others have 425	

related it to widespread cortical hyper-excitability (Buchkremer-Ratzmann et al., 1996), suggesting 426	

long-range cortico-cortical inputs (Logothetis et al., 2001) with increased activation via decreased 427	

inhibition (Blicher et al., 2009; Liepert, 2003). Functional recovery has in turn been associated with 428	

the degree of recovery of activity in the affected cortical areas (Cramer, 2008). 429	

Complementing the above, our results show a correspondence between local and global levels. 430	

Indeed, the reduction in local inhibitory influence over excitatory populations was accompanied by an 431	

increase in global coupling, reflecting an imbalance after stroke between global and local brain 432	

dynamics, favoring the latter. That is, local dynamics exert a stronger influence than global dynamics 433	

following stroke. In this case, the imbalance could be exacerbated by the decrease in conduction 434	

velocity. Interestingly, this imbalance has also recently been modeled in other brain diseases. For 435	

example, early stages of schizophrenia have been associated with a breakdown of local dynamics 436	

occurring prior to the disruption of global dynamics occurring later on in disease progression (van den 437	

Berg et al., 2012; Rubinov et al., 2009).  438	

A particularly interesting finding was the trend associated with a decrease in conduction 439	

velocity in individuals with stroke, as it has previously been described through measurements of 440	

central motor conduction times (CMCT) via transcranial magnetic stimulation (TMS) in the primary 441	

motor cortex. Immediately following stroke, CMCT decreases and correlates with functional measures 442	

(Abbruzzese et al., 1991; Pennisi, 2002) tending towards an incomplete normalization over the long-443	

term (Heald et al., 1993). That said, there is a paucity of information on decreased conduction velocity 444	
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on cortico-cortical connections. The bulk of knowledge derives from studies in rodents showing 445	

structural changes to axons and oligodendrocytes in the primary lesion and the ischemic penumbra 446	

(Rosenzweig and Carmichael, 2015). And although some degree of re-myelination occurs in the 447	

recovery phase, the process is often arrested before completion (Syed et al., 2008). In human autopsy 448	

samples, there is an increase in nodal and para-nodal lengths adjacent to lacunar lesions (Hinman et 449	

al., 2015), which may lead to decreased conduction velocities (Rasband, 2011). Our results thus 450	

provide direction for future animal studies, exemplifying the translational nature of TVB findings.  451	

TVB thus appears to be effective at modeling brain activity in healthy brains and those 452	

impacted by disease processes, and has the novel capability of studying brain dynamics at multiple 453	

scales, including at a level that has thus far only been available via animal models or surrogate 454	

neuroimaging markers in humans. Applying this method of modeling, which is tied directly to 455	

biological mechanisms, to existing large data sets opens up the possibility to experiment with 456	

expanded models of brain states, including a myriad of diseases and their potential treatments.  457	

 458	

Potential Predictors of Motor Recovery after Stroke 459	

Our results demonstrated that local (K12) and global (global coupling) parameters, derived from 460	

pre-therapy conditions, were significantly correlated with motor gains post-therapy and at 461	

maintenance. Furthermore, both parameters point in the same direction, as poor recovery was 462	

associated with an increase in local excitatory influences and with an emphasis on local dynamics, 463	

whereas values closer to controls correlated with better recovery. 464	

Interestingly, TVB parameters in stroke did not correlate with severity of disease at the pre-465	

stroke time point, even though the structural connectivity matrix used in the modeling coincided with 466	

this time point. In addition, other physical features of the stroke (size, location) or patient 467	
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demographics (sex, age) did not correlate with the modeled parameters. Finally, neither lesion 468	

characteristics nor patient demographics correlated with recovery, highlighting the unique predictive 469	

potential of these parameters. 470	

The question then becomes to what extent these parameter estimates can be used as predictors 471	

of recovery at the individual patient level. While a cross-validation approach using the current data set 472	

could serve to answer this question, a new and larger stroke cohort is ideal in obtaining estimates of 473	

the sensitivity and the specificity of our markers, due to high variance in stroke. However, there is 474	

clear value of our observations even with this limitation. At present, biomarkers for stroke recovery 475	

have been limited by the use of “substitute or surrogate” measures derived from brain imaging or 476	

electrophysiology, mainly due to the inability to measure in vivo more ideal basic elements, i.e., at 477	

molecular or cellular levels (Burke and Cramer, 2013). Indeed, such elements may be observed more 478	

closely in animal models, but are difficult to translate to humans due to the limited homology between 479	

species. Specifically, the Stefanescu-Jirsa 3D model used in this study evolved from the mesocopic 480	

level Hindmarsh-Rose model. The Hindmarsh-Rose model itself is rooted in the principles of the 481	

Hodgkin-Huxley neuron equations, in addition to dynamics based on bursting neurons found in 482	

invertebrate circuitry (Hindmarsh and Rose, 1984). Further, the neural behaviors described by the 483	

Hindmarsh-Rose model have been biologically verified in other animal models (Gu, 2013; Selverston 484	

and Ayers, 2006).  Therefore, while any model of the meso-scale does not encompass the complexity 485	

of brain processes at the cellular level, there is likely emergence of behavior from the cellular level to 486	

the mesoscopic level, exhibiting deterministic behavior that can be modeled and also observed in vivo.   487	

That is, the transition between the macro- and microscopic level is represented by population 488	

dynamics at the mesoscopic level (Mitra, 2014). From this, one could conclude that the path towards 489	

basic biomarkers should include the intermediate mesoscopic level. Indeed, TVB allows one not only 490	
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to estimate parameters at that level but also to link it to the macroscopic global whole-brain level. TVB 491	

is not unique in considering biophysical parameters as exemplified by inference models based on 492	

DCM (Moran et al., 2011). Basically, there are no conceptual differences in the inferential goals 493	

between TVB and DCM but they do differ in the detailed mechanics. For example, whereas TVB 494	

develops the model at the level of large-scale networks, DCM focuses on portions of these networks. 495	

Second, and perhaps the key contrast is that while DCM fits the parameter of the model but does not 496	

generate data, TVB uses the model to generate data, making these two approaches highly 497	

complementary. 498	

An interesting and unique aspect of TVB is its highly individualized approach, as parameter 499	

estimates are derived from individualized structural connectivity matrices obtained from each subject, 500	

and hence, it can provide the first step to customize individual therapeutic interventions. For example, 501	

our ongoing work is beginning to test potential “virtual interventions” by modifying specific 502	

parameters changed after stroke and determining the degree of restoration of brain dynamics on each 503	

stroke patient. 504	

A second ability of this modeling approach is to use the model of an individual patient’s brain 505	

connectivity that can be objectively measured and evaluated as an indicator of normal biological 506	

processes (such as resting state activity, rsfMRI), pathogenic processes, or pharmacologic responses 507	

to therapeutic intervention (Group, 2001). Dynamics of rsfMRI are highly non-stationary (Allen et al., 508	

2014) and existing metrics, including the direct correlation between functional and structural 509	

connectivity, are so far incapable of addressing this issue satisfactorily (Goni, 2013). A number of 510	

studies have therefore used generative modeling to parse the relationship between structural and 511	

functional connectivity. A recent study (Andersen et al., 2014) demonstrated that the fusion of TVB-512	

like network modeling with structural neuroimaging explains the non-stationary dynamics observed 513	
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in rsfMRI. Thus we propose a conceptual paradigm shift, in which the dynamic model shifts the non-514	

stationary functional data from imaging at the mesoscopic scale to a more deterministic set of 515	

coefficients in a brain model. In other words, complex dynamics cannot be captured by stationary 516	

imaging analyses, but can be generated by a data-constrained mechanistic model of brain circuit 517	

dynamics, as seen in the generative modeling approach detailed in stroke (Brodersen et al., 2011). 518	

Thus, the mathematical model could be seen as a compact generator of dynamics-based biomarkers, 519	

or even as the biomarker itself. The primary benefit, as we demonstrated here, is that it becomes easier 520	

to understand disease mechanisms by evaluating the coefficients of the model.  521	

Of note, the approach used in this study to validate the simulated time series was to compare 522	

frequency, amplitude and phase of the simulated and empirical signals. After the refinement of the 523	

TVB models, future studies will incorporate a larger variety of multi-dimensional analyses, 524	

particularly with respect to temporal variability in resting state signals. Furthermore, the current study 525	

determined optimal values of local parameters applied to all brain regions. Future studies will focus 526	

on local parameters for subsets of brain regions, e.g., changing parameters of nodes within and/or 527	

around a stroke lesion to determine how this impacts the resultant simulated brain activity. We also 528	

note that the translational power of our findings depends upon the reproducibility of parameters for a 529	

given brain state, the answer for which will emerge with expanded application of TVB to other cohorts. 530	

The results from this study thus confirm that TVB allows the assessment of biophysical variables 531	

previously unattainable in human studies. This method provides a potentially important and novel 532	

application of large-scale modeling, in which we can probe brain dynamics and biomarkers on an 533	

individual level. Therefore, The Virtual Brain has the potential to become an important step towards 534	

the development of individualized medicine in stroke. 535	

 536	
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Legends to Figures 696	
 697	

Figure 1: Simulation workflow in TVB. 698	

Graphic representation depicting the sequential steps of TVB modeling. (A) Empirical inputs 699	

(structural connectome) are generated from DTI tractography based on T1-w brain parcellation. (B) 700	

Subsequent parameter exploration at the global and local levels (w = weights, cv = conduction 701	

velocity, c= global coupling). (C) Once parameter values are obtained, the BOLD signal is simulated. 702	

(D) The efficacy of the simulation is calculated by correlating it to the empirical signals. 703	

 704	

Figure 2: Equations of the Stefanescu-Jirsa 3D model. 705	

(A) Evolution equation implemented in The Virtual Brain to simulate brain activity. The mean 706	

field potential xi(t) of a region i at time t is dependent on the local dynamics f(xi(t)) provided by the 707	

Stefanescu-Jirsa-3D model, the long-range structural connectivity ݓ, which links regions i and j and 708	

is provided by the input of individual structural connectivity matrices (weights), and noise ߟሺݐሻ). Time 709	

delays (Δݐ) are distance dependent and are provided by the structural connectivity matrices (lengths). 710	

All mathematical details of the model and its numerical implementation are provided in (Sanz-Leon 711	

et al. (2015, in press)). (B) Equations comprising Stefanescu-Jirsa 3D. The first 3 (ξ, η, τ) equations 712	

represent the excitatory sub-population of neurons within a local region, while the last 3 equations (713	

α, β, γ) represent the inhibitory sub-population of neurons in that region. IE and II denote the input 714	

current to the excitatory and inhibitory populations of each node, respectively. The first of each of the 715	

two sets of equations accounts for neuron potentials. The second and third equations account for the 716	

transport of ions across the membrane through ion channels. Note that the dynamics of these 717	

populations are dependent on the interactions between inhibitory and excitatory influences (K12, K21, 718	

K11).   719	
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 720	

Figure 3: Examples of global parameter space exploration in healthy controls and stroke. Two 721	

examples of heat graphs of global variance (mean variance of the time series across all regions) used 722	

to narrow down the range of parameter values more suitable for modeling in (A) a healthy control and 723	

(B) a stroke case. Global coupling is shown on the x-axis and conduction velocity (m/s) on the y-axis. 724	

Colors indicate degree of global variance with hotter colors indicating higher values. White arrows 725	

show the range of values considered for global coupling limited by bifurcation points (yellow). Black 726	

arrows point to the range in conduction velocity considered in each case. Note the higher range of 727	

values associated with global coupling and lower for conduction velocity in the stroke case.  728	

 729	

Figure 4: Weights of structural connections in stroke and healthy controls. 730	

(A) Structural connectivity matrices in a healthy control (left) and one individual with stroke 731	

(right). Dark blue denotes absence of connections while hotter colors indicate stronger weights. (B) 732	

Frequency distribution of weight of connections in healthy controls (orange bars) and stroke (blue 733	

bars).  734	

 735	

Figure 5: Comparison of simulated and empirical BOLD signals. 736	

(A) Amplitude: Example of a raw simulated (left) and empirical (right) time series (TS). 737	

Amplitudes are indicated by the maxima and minima of the time series.  (B) Frequency: Frequency 738	

distribution graphs (FFT) of the simulated (left) and empirical (right) time series. Note that both 739	

empirical and simulated signals have the same range, profiles, and peaks. (C) Phase: Functional 740	

connectivity (FC) matrix based on simulated time series (left) and the empirical group matrix (right).  741	

 742	
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Figure 6: Correlation between modeling parameters and post-therapy motor outcomes.  743	

Scatterplots showing correlation between TVB modeling parameters (x-axis) and post-therapy 744	

motor outcomes (y-axis). Clear relationships were found between (A) k12 and Fugl-Meyer (Post-745	

therapy), (B) k12 and Fugl-Meyer (Maintenance), and (C) Global coupling and WMFT 746	

(Maintenance). 747	

 748	

  749	
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Tables 750	

Subject Age Sex 
Handedness 

Affected 
Hemisphere 

Affected 
Hand 

 Stroke 
Location 

Stroke 
Volume  
(mm3) 

1 41 F Right Right ND Cort 22495.0 

2 54 F Right Left D Cort/subcort 49078.0 

3 57 M Right Left D Cort/subcort 17411.0 

4 57 M Right Left D Cort/subcort 38703.0 

5 54 F Right Left D Subcort 27677.0 

6 50 M Right Right ND Subcort 3570.0 

7 23 M Right Left D Subcort 560.0 

8 55 F Right Right ND Cort 6781.0 

9 68 M Right Left D Subcort 1988.3 

10 56 F Right Left D Subcort 6239.7 

11 46 M Right Left D Subcort 325.0 

12 56 F Left Right D Cort/subcort 60669.0 

13 37 M Right Left D Cort/subcort 83406.2 

14 62 M Right Left D Subcort 22154.8 

15 57 M Right Right ND Cort/subcort 25392.0 

16 66 M Right Left ND Cort/subcort 19927.0 

17 61 M Right Left D Subcort 978.0 

18 74 M Right Left D Cort/subcort 63642.0 

19 67 F Right Right ND Subcort 588.0 

20 74 F Right Left D Cort/subcort 44892.0 
 751	

Table 1: Demographics and stroke characteristics of the stroke cohort.  D = dominant 752	

hemisphere; ND = non-dominant hemisphere, Cort = cortical, Subcort = subcortical.  753	

 754	
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 755	

 756	

Table 2: State variables and parameters of the Stefanescu-Jirsa 3D model and 757	

corresponding range of values used in the present study. Values used for the simulation 758	

included global coupling, conduction velocity, and K12, K21, and K11 optimized via parameter 759	

space explorations. Default values were used for all other variables. 760	

 761	

 762	

 763	

 764	

 765	

Parameter Value Description  

a, b, c, d 1, 3, 1, 5 Constants affecting faster ion channels 

r 0.006 Constant affecting slower ion channels 

s 4 Bursting strength of model 

μ and σ 2.2, 0.3 Mean and dispersion of input current in 

each node 

X0 -1.6 Leftmost equilibrium point of X 

IE, II Derived from μ and 

σ 

Models excitability of each node and 

mode (IE for excitatory input, II for 

inhibitory input) 

Global Coupling 0.01-1.0 Coupling scaling factor for connections 

between nodes 

Conduction velocity 10-100 Scales delay for defined internode 

distances 

β, γ 4, 5 Corresponding values for IPs 

K12,K21,K11 0.01-1.0 Models coupling between excitatory and 

inhibitory populations within nodes 
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 766	

Table 3: Summary of long-range and local parameters used in TVB to simulate BOLD time series 767	

in healthy controls and individuals with stroke.  SD = standard deviation. p = probability resulting from 768	

the Wilcoxon sum rank test comparing parameter values between the two groups. 769	

Group Variable Range Mean SD 
Wilcoxon 
Rank Sum 

(p) 

Control 

Global Variables:     

Global Coupling 0.044-0.047 0.053 0.009  

Conduction Velocity 45-90 61.9 9.9  

Model Variables:     

K12 0.12-0.55 0.49 0.338  

K21 0.3-0.9 0.804 0.17  

K11 0.6-0.95 0.833 0.142  
      

Stroke 

Global Variables:     

Global Coupling 0.04-0.09 0.061 0.016 0.013 

Conduction Velocity 12-80 46 21 0.05 

Model Variables:     

K12 0.1-0.8 0.369 0.257 0.17 

K21 0.1-0.9 0.674 0.302 0.01 

K11 0.1-0.99 0.613 0.301 0.1 














