New Research

eMeuro

Cognition and Behavior

Dynamic Brain Interactions during Picture Naming

Aram Giahi Saravani,! ©Kiefer J. Forseth,2 ©®Nitin Tandon,?3* and ©Xaq Pitkow'*°

https://doi.org/10.1523/ENEURO.0472-18.2019

"Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, ?Department of
Neurosurgery, University of Texas Health Science Center, 6431 Fannin Street, Houston, TX 77030, *Mischer
Neuroscience Institute, Memorial Hermann Hospital Texas Medical Center, Houston, TX 77030, “Department of
Electrical and Computer Engineering, Rice University, 6100 Main St., Houston, TX 77005, and ®Center for
Neuroscience and Artificial Intelligence, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030

Abstract

Brain computations involve multiple processes by which sensory information is encoded and transformed to drive
behavior. These computations are thought to be mediated by dynamic interactions between populations of
neurons. Here, we demonstrate that human brains exhibit a reliable sequence of neural interactions during speech
production. We use an autoregressive Hidden Markov Model (ARHMM) to identify dynamical network states
exhibited by electrocorticographic signals recorded from human neurosurgical patients. Our method resolves
dynamic latent network states on a trial-by-trial basis. We characterize individual network states according to the
patterns of directional information flow between cortical regions of interest. These network states occur consis-
tently and in a specific, interpretable sequence across trials and subjects: the data support the hypothesis of a
fixed-length visual processing state, followed by a variable-length language state, and then by a terminal
articulation state. This empirical evidence validates classical psycholinguistic theories that have posited such
intermediate states during speaking. It further reveals these state dynamics are not localized to one brain area or
one sequence of areas, but are instead a network phenomenon.
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Cued speech production engages a distributed set of brain regions that must interact with each other to
perform this behavior rapidly and precisely. To characterize the spatiotemporal properties of the networks
engaged in picture naming, we recorded from electrodes placed directly on the brain surfaces of patients
with epilepsy being evaluated for surgical resection. We used a flexible statistical model applied to
broadband gamma to characterize changing brain interactions. Unlike conventional models, ours can
identify changes on individual trials that correlate with behavior. Our results reveal that interactions between
brain regions are consistent across trials. This flexible statistical model provides a useful platform for
Kquantifying brain dynamics during cognitive processes. /

ignificance Statement

Introduction

Neural computation requires the orchestration of distrib-
uted cortical processes. In many complex cognitive tasks, it
is unlikely that interactions between large populations of
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neurons merely generate a simple feedforward sequence of
activated brain regions. Instead, these processes likely in-
volve distributed interactions that change over time and
depend on context. To understand information flow and
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computation in the brain, it is critical to account for these
dynamic interactions between functionally distinct regions.

For simplicity, most analyses of coarse-grained brain
activity like that measured by electrocorticography
(ECoG) are based on assumptions of linearity. These in-
clude methods based on second-order correlations
(Aertsen et al., 1987; Friston et al., 1993), structural equa-
tion modeling (Horwitz, 1994; Penny et al., 2004), Granger
causality (Granger, 1969; Baccala and Sameshima, 2001;
Josic et al., 2009), Gaussian graphical models (Zheng and
Rajapakse, 2006; Rajapakse and Zhou, 2007), and linear
dynamical systems. Such linear models cannot capture
crucial behaviors like flexible time-dependent or context-
dependent interactions. One way to improve the expres-
siveness of these models while preserving some of their
tractability is to use switching linear dynamics, where the
switch determines which linear dynamical system cur-
rently best describes the neural dynamics.

Here, we present the first application of such a dynam-
ical model to direct recordings from human brains during
language production. We applied an autoregressive (AR)
hidden Markov model (HMM) or ARHMM, a type of hier-
archical Bayesian network, that accounts for the observed
continuous time series as a consequence of switching
between a discrete set of network states that govern the
electrical activity. Each discrete state corresponds to dis-
tinct stochastic linear dynamics for the observed record-
ings. These switching dynamics between the different
network states approximates the nonlinear dynamics of
the full system. Our statistical method learns these state
dynamics and the latent state transition matrix, as well as
the trial-specific state sequences (see below, ARHMM).

Hidden Markov Models (HMMs) have become a useful
tool in characterizing brain dynamics on a multitude of
spatial and temporal scales. They have proved valuable in
brain-computer interfaces (Kemere et al., 2008; Al-Ani
and Trad, 2010), modeling the sequential structure of
cognitive processes using functional magnetic resonance
imaging (Anderson, 2012), and for describing brain states
and behavioral states (Abeles et al., 1995; Sahani, 1999a;
Escola et al., 2011). To capture not only states but also
dynamics, recent studies of human electrocorticography
(ECoG) data have used ARHMMs to classify dynamical
modes of epileptic activity (Wulsin et al., 2014; Baldas-
sano et al.,, 2016), a neural state characterized by rela-
tively simple dynamics in comparison to healthy brain
function.
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In the present work, we use ARHMMs with high-
resolution intracranial human electrophysiology to classify
dynamical states and to reveal information flow between
brain areas during normal cognition. We analyze neural
activity evoked during picture naming, an essential lan-
guage task that requires several interlocking cognitive
processes. This uniquely human ability requires visual
processing, lexical semantic activation and selection,
phonological encoding, and articulation. We concentrate
our analysis on broadband y power, a neural measure that
is thought to arise from spike surges, and serves as a
measure of local cognitive processing (Logothetis, 2003;
Lachaux et al., 2012). We demonstrate that ARHMMs can
identify and characterize transient network states in ECoG
data during a language task.

Picture naming is one often studied language task that
has been the backbone of many psycholinguistic theories
of speech production. Chronometric studies of picture
naming (Levelt, 1989), as well as the nature of common
speech errors (Fromkin, 1971) and speech disruption pat-
terns in aphasia (Dell et al., 1997a), have led to theories
that linguistic components are organized hierarchically
and assembled sequentially. Yet there are no data that
can directly be used to validate these ideas, and the
dynamics of the cortical networks supporting even sim-
ple, single-word articulations, remain unknown. In the
absence of such data, it is difficult to resolve competing
models such as between discrete (Fromkin, 1971; Garrett,
1980; Indefrey and Levelt, 2004) and interactive (Dell
et al., 1997b; Rapp and Goldrick, 2000) models of lan-
guage production.

Prior studies have leveraged the high spatiotemporal
resolution of intracranial electroencephalography to study
specific brain regions during language production (Sahin
et al., 2009; Edwards et al., 2010; Conner et al., 2014;
Kadipasaoglu et al., 2016; Forseth et al., 2018), and have
applied adaptive multivariate AR (AMVAR) analysis (Ding
et al.,, 2000; Korzeniewska et al., 2008; Whaley et al.,
2016), to reveal the fast, transient dynamics of human
cortical networks. This class of methods assumes a con-
sistent progression of state sequences across trials, an
assumption that is frequently violated during complex
behaviors like language that invoke multiple cognitive
processes. Consequently, the inferred activity patterns
from AMVAR may be grouped into false network states.
The ARHMM analysis developed here is a principled
probabilistic framework to resolve trial-by-trial network
state dynamics. As an added benefit, it also provides
model uncertainties. We demonstrate that this method
delivers improved estimates of network dynamics in hu-
man language function compared to conventional AMVAR
clustering analyses.

We show that unsupervised Bayesian methods can infer
reliable time series of latent network states and information
flow from ECoG signals during a task requiring integration of
visual, semantic, phonological, and sensorimotor process-
ing. These states have dynamics that are consistent across
subjects and reflect the timing of subjects’ actions. From the
trial-resolved sequence network states we learn additional
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Figure 1. A-C, Individual pial surface and electrode reconstructions. One representative electrode was selected from each of the
following regions: early visual cortex (blue), middle fusiform gyrus (orange), pars triangularis (yellow), pars opercularis (purple), ventral
sensorimotor cortex (green), and auditory cortex (red). D, Picture naming stimuli: coherent (left) and scrambled (right).

characteristics of the network states not available through
fixed-timing models like AMVAR.

Materials and Methods

Human subjects

We enrolled three patients (one male, two female; mean
age 28 = 9 years; mean IQ 86 =+ 3) undergoing evaluation
of intractable epilepsy with subdural grid electrodes (left,
n = 2; right, n = 1) in this study after obtaining informed
consent. Human subjects were patients undergoing intra-
cranial evaluation at the Texas Comprehensive Epilepsy
program at Memorial Hermann Hospital, in accordance
with a study protocol approved by the institutional com-
mittee on the protection of human subjects. Hemispheric
language dominance was evaluated by intracarotid so-
dium amytal injection (Wada and Rasmussen, 2007), fMRI
laterality index (Ellmore et al., 2010; Conner et al., 2011),
or cortical stimulation mapping (Tandon, 2008; Forseth
et al.,, 2018). All patients were found to have left-
hemisphere language dominance.

Experimental design

Subjects engaged in a visual naming task (Fig. 1D, left).
We instructed subijects to articulate the name for common
objects depicted by line drawings (Snodgrass and
Vanderwart, 1980; Kaplan et al., 1983). Subjects were
instructed to report “scrambled” for control images in
which we randomly rotated pixel blocks demarcated by
an overlaid grid (Fig. 1D, right). Each visual stimulus was
displayed on a 15-inch LCD screen positioned at eye level
for 2 s with an interstimulus interval of 3 s. A minimum of
240 images and 60 scrambled stimuli were presented to
each patient using presentation software (Python v2.7).

MR acquisition

Preoperative anatomic MRI scans were obtained using
a 3T whole-body MR scanner (Philips Medical Systems)
fitted with a 16-channel SENSE head coil. Images were
collected using a magnetization-prepared 180° radio fre-
quency pulse and rapid gradient-echo sequence with 1
mm sagittal slices and an in-plane resolution of 0.938 X
0.938 mm (Conner et al., 2011). Pial surface reconstruc-
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tions were computed with FreeSurfer (v5.1; Dale et al.,
1999) and imported to AFNI (Cox, 1996). Postoperative
CT scans were registered to the preoperative MRI scans
to localize electrodes relative to cortex. Subdural elec-
trode coordinates were determined by a recursive grid
partitioning technique and then validated using intraoper-
ative photographs (Pieters et al., 2013).

ECoG acquisition

Grid electrodes (n = 615), subdural platinum-iridium
electrodes embedded in a SILASTIC sheet (PMT Corpo-
ration; top-hat design; 3-mm diameter cortical contact),
were surgically implanted via a craniotomy (Tandon, 2008;
Conner et al., 2011; Pieters et al., 2013). ECoG recordings
were performed at least 2 d after the craniotomy to allow
for recovery from the anesthesia and narcotic medica-
tions. These data were collected at either a 1000- or
2000-Hz sampling rate and a 0.1- to 300- or 0.1- to
700-Hz bandwidth, respectively, using NeuroPort NSP
(Blackrock Microsystems). Continuous audio recordings
of each patient were made with an omnidirectional micro-
phone (3- to 20,000-Hz response, 73-dB signal-to-noise
ratio (SNR), Audio Technica U841A) placed next to the
presentation laptop. These were analyzed offline to tran-
scribe patient responses and to determine the time of
articulation onset and offset (Forseth et al., 2018).

Data processing

From previous work, we identified six anatomic regions
of interest that broadly span the cortical network engaged
during picture naming (Conner et al., 2014; Forseth et al.,
2018): early visual cortex, mid-fusiform gyrus, pars trian-
gularis, pars opercularis, ventral sensorimotor cortex, and
superior temporal gyrus. In each individual, we selected
the most active electrodes from each region (Fig. 1A,B). In
a separate analysis to combine information from multiple
sources, we grouped electrodes from each brain region,
computed the principal components of the high y-band
power across electrodes within each region and selected
the leading component as a meta-electrode to represent
each region. Electrodes used for analysis were uncontam-
inated by epileptic activity, artifacts, or electrical noise.

eNeuro.org
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Figure 2. A, Graphical representation of an ARHMM with autoregressive (AR) order 2: latent states z and observations x evolve
according to state transition matrix ®, AR coefficients A, and process covariance Q. B, lllustration of the ARHMM latent state space
model. C, Simulated time series of data points emitted by three latent states (top) with inferred state probabilities (bottom).

Furthermore, we analyzed only trials in which cortical
activity did not show evidence of epileptiform artifact
(Conner et al., 2014; Kadipasaoglu et al., 2014).

We selected trials with reaction times >600 and <2800
ms. Data were re-referenced to a common average of
electrodes without epileptiform activity. The analytic sig-
nal was generated by frequency-domain bandpass Hilbert
filters featuring paired sigmoid flanks with half-width of 1
Hz (Forseth et al., 2018). Instantaneous power was then
extracted as the squared magnitude of the analytic signal,
normalized by a prestimulus baseline level (700-200 ms
before picture presentation), and then downsampled to
200 Hz.

To initialize the ARHMM, we estimated the dynamics in
100-ms time windows with 50-ms overlap, using the AM-
VAR estimation method of (Ding et al., 2000). The AMVAR
estimates were clustered (k-means clustering with Euclid-
ean distance norm) into a set of discrete states to initialize
the ARHMM inference.

ARHMM

AR processes are random processes with temporal
structure, where the current state x, of a system is a linear
combination of previous states and a stochastic innova-
tion v; ~ N(O, /') (zero mean isotropic white noise). The
dynamics of such a system is thus both linear and sto-
chastic. This stochastic linear dynamics can be described
by a tensor of AR coefficients, A = {A_} (i.e., a matrix for
each time lag 7), and a covariance matrix Q for the sto-
chastic aspect of the system:

N,
X, = EATXH + Q"v,, (1)
=1

where N_ is the order (number of relevant time lags) of the
AR process. Since this model is linear, it is poorly suited to
describing brain activity, which motivates us to use a
richer model with changing dynamics.

A HMM is a latent state model which describes obser-
vations as a consequence of unobserved discrete states
z, where each state emits observable variables with spe-
cific probabilities. The probability of occurrence of a state
depends on the previous state, the defining characteristic
of a Markov model. The set of transition probabilities
constitute the state transition matrix,
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o, = P(z'|2) @
where z' and z are the current and previous state, respec-
tively.

The ARHMM combines AR stochastic linear dynamics
with the HMM (Ghahramani and Hinton, 2000; Fox et al.,
2009): Each latent state z indicates a different stochastic
linear process with state-specific dynamics and process
noise covariance, A, and Q, (Fig. 2A,B). The switching of
the linear dynamics makes the ARHMM effectively non-
linear.

Applied to the multivariate ECoG data, each state de-
scribes the measured neural activity by a specific linear
and stochastic dynamic, with a set of AR coefficients,
A_.ii» Which specify the (Granger) causal dynamical rela-
tionship between nodes i and j for state z at time lag 7. For
a given state z at time t, the multivariate autoregressive
(MVAR) coefficients constitute an MVAR tensor, A,,., de-
scribing the evolution of the multivariate ECoG signal x at
time t,

N,
— 1/2
X = : :Ath-xtfq- + ta Vi + M’zt’

=1

©)

where v ~ N(0, /) and p, is a state-dependent bias.

Neither the set of dynamical parameters, {A, Q, u}, nor
the occurrence and frequency of individual states (rep-
resented by the state transition matrix @), are observed.
The ARHMM infers the latent parameters: the time
series of network states z,;, their transition probabilities
®,,., and the dynamical parameters for each state, A,,
Q,, and p,.

This is in contrast to the commonly used method in
ECoG signal analysis to estimate the autoregression co-
efficient matrix A and process noise covariance, Q, based
on the assumption that the network states occur at same
times across all trials (Morf et al., 1978; Ding et al., 2000).
This assumption will inevitably be inaccurate when there
are significant variations in the emergence and durations
of state sequences. This leads to artifacts in the estima-
tion of the state parameters and the creation of pseudo-
states that combine data points from different states into
a new mixed state estimate. Also, our method does not
require any manual alignment of trials by the epoch of
interest, such as stimulus onset or articulation onset
(Whaley et al., 2016), but instead provides a means of
predicting these events from brain activity.
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Probabilistic inference alleviates this problem by as-
signing posterior probabilities (conventionally called “re-
sponsibilities”), P(z,x4.7), to each state z; given the entire
observed data sequence x,.r (Fig. 2C,D). Since neither
responsibilities nor dynamical parameters are known a
priori, estimates for state parameters and responsibilities
are calculated iteratively by an expectation-maximization
algorithm (EM; Dempster et al., 1977) known as the
Baum-Welch algorithm (Baum et al., 1970). We incorpo-
rate a prior over ® to favor infrequent transitions, by
adding pseudocounts of self-transitions to the observed
state transitions. This is realized by adding a scaled iden-
tity matrix, /, to @, and then renormalizing:

b + ul

cIDsmcvoth = 1 +u (4)

where u sets the lower bound on the time constant of
self-transitions, and thereby determine minimal average
state durations. For the state transition matrix (Eq. 2), we
used a flat prior on transitions between different states,
and a “stickiness” parameter, u = 0.5, for transitions back
to the same state.

Initial conditions for A and Q are informed by the lagged
correlation MVAR clustering method from (Morf et al.,
1978; Ding et al., 2000). We initialized the state-
dependent biases p, with random seeds. For the expec-
tation part of our algorithm, responsibilities within each
trial are evaluated based on the previous iteration’s pa-
rameters from the maximization loop. The maximization in
turn uses these responsibilities to attribute the data points
to different network states when estimating new param-
eters. The number of states and time lags in the ARHMM
is selected according to the Bayesian information criterion
(BIC; Schwarz, 1978).

Visualizing network states

The ARHMM classifies dynamical states by the network
connectivity associated with the inferred MVAR coeffi-
cient matrix. The MVAR coefficients and the related partial
directed coherence (PDC) in the frequency domain are
measures of causality for interactions between brain ar-
eas. PDC was defined by Baccald and Sameshima (2001)
to describe information flow (in the sense of Granger
causality) between multivariate time series in the fre-
quency domain. This measure is directly related to the
MVAR coefficients, and for each state, z, we have:

A
AL

©)

where

NT
1 - EAzﬁke—znifr forj = k
AuH = & ©)
- E A, e 2", otherwise.
=1

represents the transfer function at frequency f, ||A,(f)| =
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(2 A(HA,(H)"2 is the norm of the kth column of A,(f),

ahd * denotes the complex conjugate. PDC is normalized
to show the ratio between the outflow from channel k to
channel j to the overall outflow from channel k, with ||
taking values from the interval [0,1].

For each latent state z, we have an associated set of
MVAR coefficients A,. We display these as directed
graphs, with interactions quantified by the PDC magni-
tude | T, | integrated over all frequencies. In these graphs,
each node represents a single electrode and arrows rep-
resent the causal relationship between nodes.

To visualize the inferred time series of network states
with their associated probability we display the statisti-
cally most likely sequence of states (Viterbi trace)
weighted by the associated uncertainty (responsibility).

To estimate the cumulative durations of each state, we
first filter the states by computing the most probable state
within a sliding 200-ms time window. We then integrate
the total time within these filtered state sequences when
each state dominated, from stimulus onset to 3200 ms
after stimulus onset. We identify the end of the “language
processing” state as the last time between picture pre-
sentation and articulation completion when the majority of
states within a sliding 100-ms window from stimulus on-
set to articulation offset were identified as language pro-
cessing.

Robustness of ARHMM inference

To see how robust the ARHMM is to deviations from our
model assumptions, we simulated data with mean-
dependent process noise variance and observation noise.
Note that uncontrolled or unmodeled factors can have
similar effects as observation noise, creating unexplained
variability. Figure 3A shows the simulated multivariate
signal and its mean-dependent variance. Initialized from
AMVAR-based k-means clustering of network states, the
ARHMM then infers the trial-by-trial state sequence and
network interactions for each state (Fig. 3C). Depending
on the amount of observation noise [signal-to-noise ratios
(SNR) = 0.3, 1.5, 3, and 30], the inference has different
degrees of confidence, visualized by the brightness. The
inferred states and network properties in each state gen-
erally agree with the ground truth (Fig. 3B) despite the
model mismatch from observation noise and mean-
dependent variance. The beginning and the end of the
trials have similar properties, and for lower SNRs (more
observation noise) the ARHMM naturally identifies them
with the same latent state. Interestingly, in these condi-
tions the ARHMM also misclassifies states in the middle
of the trials, as it automatically finds hallmarks of the first
state in the middle of the trial. For smaller observation
noise, these states are correctly classified. Even when
some times are misclassified in low SNR, the network
structures are recovered accurately (Fig. 3C).

To estimate how well our model explains the temporal
structure of the data we follow (Ding et al., 2000) and
perform a residual whiteness test for our model fit, com-
puting the auto-correlation and cross-correlation of the
multivariate residuals between the ARHMM fit and the
data for each time lag (except zero) up to AR model order.

eNeuro.org
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Figure 3. Comparison of state clustering for simulated data. A, Underlying data with varying state durations, and mean-dependent
variance with associated state sequence and network states on the right. B, Ground truth: rasters of discrete latent states over time
and trials and graphs of network interactions for each latent state, measured by PDC. C, Estimates inferred from data with four
different SNRs (0.3, 1.5, 3, and 30). Estimates are obtained from mean-subtracted time series. Color represents the discrete states,
and confidence (responsibility) is encoded by brightness and increases with SNR.

If the model captures the temporal structure of the data,
the auto- and cross-correlation coefficients of the resid-
uals should approach zero (uncorrelated white noise). For
the SNRs tested, the residual temporal correlations be-
tween data and model fit were small, indicating that the
model is reasonable even for low SNR.

Statistical analysis

Correlations are calculated using the Pearson correla-
tion. Significance was evaluated using a two-sided test for
deviations from zero correlation. This was evaluated using
the Fisher transform, which renders correlations approx-
imately normal and thereby gives p values as p = 1 +

erf( - iarctanh(lrl)\/n—3 where n is the number of

samples and r is the measured correlation coefficient
(Fisher, 2006).

To compare the states across subjects, we define a
dissimilarity score based on a distance, d (A, B), between
two matrices of integrated PDC magnitudes:

s
d(A, B) = ||A||,: ”B”F

7

F

where |All- = | X |A,l? denotes the Frobenius norm. We
J k
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calculate this difference for all pairs of states for different
subjects.

Code accessibility

The code/software described in the paper is freely
available online at https://github.com/agiahi/ARHMM.git.
The code is available as Extended Data 1.

Computer system

The ARHMM code was run in MATLAB 2016b, on a
MacBook Pro 13-inch 2016 computer system (2 GHz Intel
Core i5, macOS 10.13.3).

Results

We observed a sequence of peak trial-averaged
gamma-band activity (GBA; Fig. 4A) beginning in early
visual cortex, moving anteriorly to middle fusiform gyrus
and pars triangularis, and then culminating in pars oper-
cularis, subcentral gyrus, and superior temporal gyrus.
Consistent with Conner et al. (2014), Figure 4B indicates
that the GBA response varies substantially across trials.
This motivates an analysis method like the ARHMM that
can account for the such variability.

Using ARHMM inference in combination with Bayesian
model selection (Fig. 5), we analyzed the network dynam-
ics for each subject independently (Fig. 6). These analyses
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Figure 4. GBA at salient brain regions following picture presentation. A, Trial-averaged GBA, relative to baseline. Each articulation
onset is indicated by a vertical blue line below (mean 1.2 s), and the visual stimulus is presented during the black interval. B, Density

plot of trial-wise GBA, z-scored.

converged on models for all subjects featuring dynamics
that depended on three time lags and were best explained
by four network states.

Prestimulus and postarticulation activity patterns were
predominantly assigned to one state, which we therefore
named “resting.” Immediately following picture presentation,
a second state dominated for ~250 ms, which we named
“visual processing.” A prominent feature of this network
state was information flow from early visual cortex and
middle fusiform gyrus. The next state is characterized by
interactions distributed throughout the network, but most
strongly driven by frontal regions. We named this state
language processing. Comparing our inference results for
both hemispheres, we find that the language processing
state was only pronounced in the recordings of language-
dominant cortex (Fig. 6), consistent with a left-lateralized
language production network. During articulation, we ob-
served a fourth state we named “articulation” which fea-
tured greater information flow from subcentral gyrus and
superior temporal gyrus back to the language processing
network. The ARHMM model reveals that neural interac-
tions transition back to the resting state following each
completed articulation.

To check whether multi-electrode activity patterns sug-
gested different state sequences than implied by the best
electrode in each region, we repeated our ARHMM anal-
ysis using a weighted average of electrodes in each re-
gion. The weighting was selected to extract the principal
component, i.e., the multi-electrode pattern with the wid-
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est range of gamma-band power for each region. When fit
to these patterns, the model produced higher state prob-
abilities and exhibited lower similarity across subjects
(Extended Data Fig. 6-1), but were otherwise consistent
with the results from individually selected electrodes for
each region.

An indication that the network states found by the
ARHMM reflect task-relevant neural computations is that
they predict the onset of articulation. The duration of the
visual processing state was uninformative about this on-
set time (Fig. 7A), but both the duration (Fig. 7B) and
termination (Fig. 7D) of the language processing state
were significantly related to reaction time. This is consis-
tent with variable difficulty in identifying word names for
the heterogeneous stimuli. For one of the two patients
with left hemisphere recordings, the duration of the artic-
ulation state was negatively related to articulation onset
(Fig. 7C).

Across these three patients and across 120-160 trials,
we find that the inferred network states follow a reliable
state sequence (Fig. 6A). Moreover, each state’s interac-
tions between brain regions were similar between pa-
tients, as measured by PDC (Fig. 6B). Our measurements
do not cover the complete visual and language process-
ing networks, and these areas are unlikely to have exclu-
sively direct connections. Nonetheless, the analysis still
indicates that interactions between early visual cortex and
the language areas have directionality, even if mediated
by some unmeasured areas.
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Figure 5. Model selection. BIC (A) and held-out log-likelihood (B) as a function of number of states. C, BIC as a function of AR model

order (number of time delays).
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Figure 6. State sequences in brain activity. A, Time dependence of most probable states from left and right hemispheric brain activity
for three subjects. For each of six brain regions, we selected the most active electrode, fit the ARHMM to the broadband y power on
these six electrodes, and then estimated the sequence of latent brain states that best explains the observed activity. The top shows
states as a trial-by-trial raster, and the bottom shows the fraction of trials on which each state was most probable. B, Interactions
between brain regions during the corresponding named network states, plotted as in Figure 3C. Black arrows indicate state transition
probabilities according to the inferred state transition matrix. C, Dissimilarity between brain states between and within subjects.
Dissimilarity is measured as the difference between integrated PDC magnitude, according to Equation 7. Extended Data Figure 6-1
shows the same analysis, using not the most active electrodes in each region but instead the multi-electrode activity patterns with
greatest variance within each region.

The control condition of scrambled images still pro-
vides a visual stimulus and requires articulation, but
does not bind a specific concept (aside from the gen-
eral category of scrambled). We measured differences
in network dynamics during coherent and scrambled
image naming by inferring the network structure and

July/August 2019, 6(4) ENEURO.0472-18.2019

states for each condition separately. To improve the
ARHMM inference and to make it more robust with
respect to subject-to-subject variability, we combined
trials from both left-hemisphere data sets, effectively
assuming that electrodes in both recordings were ana-
tomically homologous.
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Figure 7. Duration of the active states; (A) visual processing, (B) language processing, and (C) articulation, as well as (D) the
termination of the “language” state, compared to reaction times. Two patients’ left hemispheres (blue and orange) are plotted. The
Pearson correlation coefficient r and p value for the null hypothesis of uncorrelated values are shown.

Neural activity in both stimulus conditions were de-
scribed by comparable networks, but exhibited specific
differences in connectivity between the network nodes
(Fig. 8, left). The differences were most pronounced in

the active states: visual processing, language process-
ing, and articulation. This suggests that the observed
differences are due to condition-specific network activ-
ity.
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Figure 8. Multi-subject integration (anatomic grouping) of the two left-hemispheric recordings for coherent (top left) and scrambled
(bottom left) stimulus condition. Differences in information flow between both stimulus conditions are shown on the right, where
colored and gray arrows denote excess activity in the coherent and scrambled condition, respectively.
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Figure 9. Comparison of AMVAR and ARHMM estimates of activity in Broca’s area during articulation. The ARHMM shows stronger
total interactions than AMVAR analysis, especially for Broca’s area. A, Total incoming and outgoing activity (red and blue, respectively)
for Broca’s pars opercularis (pOp) and pars triangularis (pTr) during articulation, according to AMVAR and ARHMM models. B,
Connectivity graphs for AMVAR (top) and ARHMM (bottom), shown for two left-hemispheric patients for the language processing (red)

and articulation state (green).

The strongest network connections in each state were
generally suppressed when viewing scrambled images.
During the visual processing state for coherent images,
early visual cortex and middle fusiform gyrus had stronger
influences on frontal regions than for scrambled images.
In the language processing state, the superior temporal
gyrus received more input from subcentral gyrus and
Broca's area (pars triangularis and pars opercularis) when
naming coherent images. The articulation state for coher-
ent images shows increased information flow emanating
from superior temporal gyrus, while the same state for
scrambled images shows increased information flow from
subcentral gyrus. This dissociation between auditory and
sensorimotor cortex responses to coherent and scram-
bled images could be driven by learning effects from
consistent repetition of the stereotyped response scram-
bled.

As described above, we find that Broca’s area, pars
triangularis and pars opercularis, strongly interacts with
the overall naming network both immediately following
picture presentation and during articulation (Fig. 9). This is
in contrast to Flinker et al. (2015), where trial-averaged
interaction measures including AMVAR (Ding et al., 2000)
revealed Broca'’s area activity only before articulation on-
set, leading to the conclusion that this region exclusively
supports articulatory planning and not articulatory execu-
tion. While AMVAR also finds no significant interactions
for pars triangularis and opercularis during articulation,
ARHMM reveals incoming information flow during articu-
lation. This fits best with a feedback mechanism in which
each network state terminates activity in the dominant
nodes of the prior network state.

Discussion

We identified meaningful cortical states at the single-
trial level with a simple but powerful nonlinear model of
neuronal interactions, the ARHMM, a dynamical Bayesian
network. We used this model to interpret intracranial
recordings at electrodes distributed across the language-
dominant hemisphere during a classic language produc-
tion paradigm, picture naming. The model revealed a
consistent progression through three network states that
were distinguished by their interaction patterns: visual
processing, language processing, and articulation. This
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analysis of high-resolution intracranial data shows the
ARHMM to be a useful tool for parsing network dynamics
of human language, and more broadly for quantifying
network dynamics during human cognitive function.

Methodological benefits

We have demonstrated that Bayesian dynamical net-
works can extract structure of dynamical and distributed
network interactions from ECoG data and reveal an inter-
pretable sequence of network states unfolding during
language processing. The ARHMM algorithm provides a
principled statistical algorithm that can learn brain states
in an efficient and unsupervised fashion. Some of the
severe limitations of conventional windowed MVAR meth-
ods are alleviated by this kind of analysis. One particular
virtue is that the ARHMM is sensitive to trial-by-trial timing
variations; conventional methods that fail to account for
this variability will dilute their estimates of network struc-
ture over time, lumping distinct states together or wrongly
splitting them. The ARHMM is sensitive to the distribu-
tions of network activity, and this allows more refined
inferences than the usual k-means clustering, which as-
sumes all states have equal, isotropic variability. Further-
more, Bayesian inference of the ARHMM incorporates
uncertainty, which can be used to determine whether any
differences in brain states between subjects, groups, or
conditions are significant. Some of these benefits have
been observed when classifying epileptic activity (Baldas-
sano et al., 2016), identifying processing stages encoded
in task-dependent patterns of electrode activation (Borst
and Anderson, 2013), or studying working memory in
slow, high-dimensional fMRI signals (Taghia et al., 2018).
Here we have demonstrated that these models are useful
also for discriminating between cognitive states in normal
brain function measured at the high temporal resolution
provided by ECoG measurements. All of these advan-
tages could benefit future work in mining and understand-
ing ECoG data about intact brain computation.

Sequence of states

This work reveals a clear and fairly consistent progres-
sion of neural dynamics through three active states in
each picture naming trial, which we associate with visual
processing, language processing, and finally articulation.
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These states appear to be meaningful because they are
well-aligned with observable behavioral events: picture
presentation or articulation. Visual processing was the
dominant mode of neural activity for ~250 ms after pic-
ture presentation; language processing followed until ar-
ticulation onset; and articulatory execution lasted for the
duration of overt speech production.

The serial progression through these three states is in
striking contrast to fully interactive language models,
which expect a relatively homogeneous temporal blend of
all three states from picture presentation through the end
of articulation. Our findings therefore suggest that these
states correspond to discrete cognitive processes without
strong temporal overlap or interaction (Indefrey and Lev-
elt, 2004).

These cognitive processes, visual processing, language
processing, and articulatory execution, are quite broadly
defined. In particular, the language processes for speech
production are thought to invoke separable cognitive pro-
cesses supporting semantic, lexical, and phonological
elements (Levelt, 1989). Similarly, articulation could be
expected to invoke additional stages relating to phono-
articulatory loops. The ARHMM did not identify additional
distinct states within the language processing interval that
might correspond to such elemental processes. If these
elemental processes are highly interactive (Dell, 1986),
then these elemental processes may effectively blend
together into the single state in an ARHMM with record-
ings at a handful of distributed electrodes. Otherwise,
more trials may make it easier to find evidence of such
brief processes. The disambiguation of these additional
intermediary states is a focus of ongoing work.

Network interactions

ARHMMs are state-switching models driven by linear,
pairwise, directional interactions between network nodes.
Consequently, each state is defined by a unique interac-
tion structure. We found that networks in left and right
hemispheres had similar structures during visual process-
ing and articulatory execution. Visual processing featured
strong interactions between early visual cortex and the
rest of the language network. In articulatory execution,
interactions were strongest between perisylvian regions:
pars triangularis, pars opercularis, subcentral gyrus, and
superior temporal gyrus. Prearticulatory language pro-
cessing showed a distributed set of interactions across
ventral temporal and lateral frontal cortex limited to the
language-dominant hemisphere. This evidence is consis-
tent with a bilateral visual processing system (Salmelin
et al., 1994) that converges for picture naming to a later-
alized language network (Frost et al., 1999), which in turn
drives a bilateral articulatory system (Hickok and Poeppel,
2007).

The contrast between interactions during coherent and
scrambled naming trials revealed specific cognitive pro-
cesses supported by discrete sub-networks. Coherent
images induced stronger interactions from ventral tempo-
ral to lateral frontal regions during visual and language
processing, as well as from superior temporal gyrus to the
rest of the network during articulation. Scrambled images
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do not evoke a specific object representation in the brain,
requiring only a stereotyped response (scrambled). These
two functional distinctions between the coherent and
scrambled conditions imply that language planning pro-
cesses are subserved by temporal-to-frontal connections,
while phonological motor processes are subserved by
frontal-to-temporal connections (Whaley et al., 2016).

Switching linear dynamics versus nonlinear
dynamics

General nonlinear dynamical systems are too uncon-
strained to be a viable model for brain activity. Two ap-
proaches to constraining the nonlinear dynamics are to
use a model that represents smooth nonlinear dependen-
cies, or to use a switching model which combines simpler
local representations. Our model is an example of the
latter type. One could use hard switches between distinct
models, as we and others do (Sahani, 1999b; Ghahramani
and Hinton, 2000; Fox et al., 2009; Linderman et al.,
2017); or one could use smooth interpolations between
them (Wang et al., 2006; Yu et al., 2007). Each system will
have computational advantages and disadvantages, and
it would be beneficial to compare these methods in future
work.

Activity-dependent switching versus activity-
independent switching, and recognition models
versus generative models

Our method is based on a generative model, an as-
sumed Bayesian network that is credited with generating
our observed data. One feature of this generative model
from Equations 2, 3 is latent brain states that transition
independently of neural activity. This model therefore can-
not generate context- or activity-dependent interactions.
Furthermore, the assumed Markov structure enforces
exponentially-distributed transitions between network
states, which may not reflect the real dynamics of com-
putations. Finally, some of the temporal dynamics of brain
states should reflect the interactions’ explicit dependence
on sensory input, which is neglected in our model.

There are two properties of our model that mitigate
these concerns. First, if multiple latent states produce
the same observations, then this could produce non-
exponentially-distributed transitions between distinct ob-
servable states (Limnios and Oprisan, 2012). Second,
even if the model itself corresponds to a prior distribution
that does not quite have the desired properties, when fit
to data the posterior distribution can nonetheless exhibit
context-dependence and non-exponential transitions be-
tween latent states. Essentially, the model’s prior provides
enough structure to eliminate many bad fits, while remain-
ing flexible enough to accommodate relevant dynamic
neural interactions.

There are many opportunities to generalize the ARHMM
to accommodate more desired features. While one always
must balance model complexity against data availability,
which is typically highly limited for human patients, one
can fruitfully gain statistical power by combining data
from different subjects to create models with some com-
mon behaviors and some individual differences. When
applied to common tasks, such models could automati-
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cally identify universal properties of neural processing
across subjects and even across different tasks.
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