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Abstract
Neural processing of language is still among the most poorly understood functions of the human brain, whereas
a need to objectively assess the neurocognitive status of the language function in a participant-friendly and
noninvasive fashion arises in various situations. Here, we propose a solution for this based on a short task-free
recording of MEG responses to a set of spoken linguistic contrasts. We used spoken stimuli that diverged lexically
(words/pseudowords), semantically (action-related/abstract), or morphosyntactically (grammatically correct/un-
grammatical). Based on beamformer source reconstruction we investigated intertrial phase coherence (ITPC) in
five canonical bands (�, �, and low, medium, and high �) using multivariate pattern analysis (MVPA). Using this
approach, we could successfully classify brain responses to meaningful words from meaningless pseudowords,
correct from incorrect syntax, as well as semantic differences. The best classification results indicated distributed
patterns of activity dominated by core temporofrontal language circuits and complemented by other areas. They varied
between the different neurolinguistic properties across frequency bands, with lexical processes classified predomi-
nantly by broad �, semantic distinctions by � and �, and syntax by low � feature patterns. Crucially, all types of
processing commenced in a near-parallel fashion from �100 ms after the auditory information allowed for disambig-
uating the spoken input. This shows that individual neurolinguistic processes take place simultaneously and involve
overlapping yet distinct neuronal networks that operate at different frequency bands. This brings further hope that brain
imaging can be used to assess neurolinguistic processes objectively and noninvasively in a range of populations.

Key words: language; magnetoencephalography (MEG); multivariate pattern analysis (MVPA); oscillations;
lexical access; semantics; morphosyntax

Significance Statement

In an MEG study that was optimally designed to test several language features in a non-attend auditory
paradigm, we found that, by analyzing cortical source-level intertrial phase coherence (ITPC) in five
canonical bands (�, �, and low, medium, and high �) with machine-learning classification tools [multivariate
pattern analysis (MVPA)], we could successfully classify meaningful words from meaningless pseudowords,
correct from incorrect syntax, and semantic differences between words, based on passive brain responses
recorded in a task-free fashion. The results show different time courses for the different processes that
involve different frequency bands. It is to our knowledge the first study to simultaneously map and
objectively classify multiple neurolinguistics processes in a comparable manner across language features
and frequency bands.
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Introduction
A neuropsychological assessment of the neurologic

and/or cognitive status of a subject or patient is a routine
required in a variety of situations. This typically involves
elaborate behavioral tests aimed, for instance, at evaluat-
ing the extent of developmental disorders, assessing the
level of neurodegenerative impairment, neurologic dam-
age after a head injury, screening for hearing loss, etc. To
perform such tests successfully, the subject, on the one
hand, must typically have a reasonably clear understand-
ing of what they have to do in a particular procedure; on
the other hand, they must also be able to communicate
their responses to a given task, by giving, e.g., a manual,
facial or oral response. This raises the problem of unco-
operative subjects, such as those suffering from neuro-
logic/organic brain disorders or mental illnesses that
cause patients to become unresponsive. A brain-dama-
ged person may be unable to respond verbally because of
a collateral lesion-related injury (such as akinetic mutism,
paralysis, aphasia). A young child with a developmental
disorder may be unable or unwilling to communicate their
reaction overtly. A locked-in patient, although not neces-
sarily unconscious, is unable to respond due to the total
loss of their motor control function (Ragazzoni et al., 2000;
Laureys et al., 2004). On the other hand, an undetected
language impairment could have drastic consequences
for (mis)diagnosis of language-unrelated disturbances
(Majerus et al., 2009). A range of such situations is wide
and they create a substantial challenge for diagnosis
and assessment of performance, development or re-
covery in various groups. Clearly, techniques that could
reveal the brain processing of language without relying
on the individual’s overt behavior would be helpful in
such cases.

Fast-paced development of non-invasive neuroimaging
techniques in recent years has given hopes of assessing
the brain status of various cognitive functions objectively,
even when overt response may not be possible. Lan-
guage is a complex phenomenon that, to make a coherent
whole, requires multiple information types involving differ-
ent specific features and properties that rapidly unfold in
time with a fine temporal structure and remarkable speed

(Friederici, 2002, 2011; Shtyrov, 2010). This, in turn, sug-
gests that for the capturing of cerebral processing of
linguistic information, a temporally-resolved neuroimag-
ing method is needed that could faithfully track the dy-
namic neural activity during language comprehension
(Hagoort, 2008). At present, two main techniques are able
to provide such high temporal resolution: MEG and EEG,
both capable of registering mass neural activity on a
millisecond scale. Whereas the two methods are highly
similar, MEG has a certain advantage in the ease of
modeling underlying cortical activity, owing to unhindered
spreading of magnetic fields (but not electric currents)
through the head and skull tissues (Baillet et al., 2001).

A body of electrophysiological research done in EEG
and MEG using various linguistic materials has provided a
rich picture of linguistic processing in the brain. Perhaps
the most well-known neurophysiological response to lan-
guage stimuli is the so-called N400 (Kutas and Hillyard,
1980), usually seen as an index of (lexico)semantic pro-
cesses and peaking at �400 ms. Syntactic (grammatical)
processing has been associated with an early ELAN (early
left anterior negativity) response reflecting the stimulus’
grammaticality from �100 ms (Neville et al., 1991; Fried-
erici et al., 1993), as well as later frontal negativities (LAN)
with longer latencies (Münte et al., 1998; Gunter et al.,
2000) and the P600, a late positive shift (Osterhout et al.,
1994).

Most of these responses (except, to an extent, ELAN)
still require at least a degree of overt attention or even
focused task performance from the subject. In terms of
assessing linguistic processing in a more task-free fash-
ion, a number of studies have attempted to use the so-
called passive paradigms, in which the subjects are
presented with linguistic contrasts without having to per-
form an overt task and are usually distracted from the
auditory input by a video or another unrelated activity
(Pulvermüller and Shtyrov, 2006; Näätänen et al., 2007). A
series of studies using this approach established MEG/
EEG correlates of automatic linguistic access including
phonological, lexical, semantic, and syntactic levels of
information processing (Shtyrov, 2010). These have
shown that information-specific linguistic activations can
be recorded noninvasively without an explicit task or even
an instruction to focus on the speech input. For instance,
meaningful native words show stronger activation in the
core language system than meaningless acoustically sim-
ilar pseudowords, which putatively indicates activation of
word-specific memory traces (Pulvermüller et al., 2001).
Furthermore, these activations show both semantic spec-
ificity (e.g., by involving motor cortex activation and de-
activation when presenting action-related words; Hauk
et al., 2008; Moseley et al., 2013; Shtyrov et al., 2014) and
sensitivity to grammatical properties (ELAN-like activity in
response to syntactic violations; Hasting et al., 2007).

Such studies of neurolinguistic processing typically fo-
cus on one single process (e.g., syntax or semantics) at a
time. For this approach to be more practically-oriented, it
would seem essential to develop a task-free paradigm
that can assess multiple types of linguistic information
processing in a single short participant-friendly session.
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Furthermore, previous studies have mostly investigated
neurolinguistic processes using ERP/ERFs, that is,
evoked activity in a rather narrow frequency band (typi-
cally 1–30 Hz), and it would thus appear advantageous to
open up the frequency spectrum to maximize possibilities
for registering brain reflections of language. Oscillations in
different frequency bands have been shown to reflect
multiple cognitive processes and are considered to be a
vehicle for neural communication (Varela et al., 2001;
Fries, 2005). Different frequency bands have been as-
cribed different functional roles in the neocortical informa-
tion processing (Sauseng and Klimesch, 2008; Cannon
et al., 2014), where higher bands could be related to local
computations (Buzsáki and Silva, 2012; Buzsáki and
Schomburg, 2015) and lower bands to longer-range con-
nectivity (Von Stein and Sarnthein, 2000). That different
neurolinguistic processes involve different frequency
bands has been shown in a range of studies. For instance,
Bastiaansen and Hagoort (2006) argued that retrieval of
lexical information and unification of semantic and syn-
tactic information are underpinned by different oscillatory
networks, while Kösem and van Wassenhove (2017) sug-
gested that � oscillations (3–8 Hz) are related to acoustic
properties. Teng et al. (2017) shows that humans can
track spoken language dynamics at both � and � oscilla-
tions. Using electrocorticography (ECoG), Towle et al.
(2008) have shown an increase in high � (70–100 Hz) in
relation to hearing a word compared to a tone. Luo and
Poeppel (2007) showed that phase information in the
oscillatory dynamics can track and discriminate spoken
sentences. However, although the interest in time-
frequency analysis of electrophysiological data has been
steadily rising in recent years, language-related oscillatory
dynamics still remains relatively unexplored, with most
studies in the field focusing on evoked potentials/fields
instead.

In an attempt to close the gap between these research
strands and at the same time bridge this research with
applied/clinical needs, we set out to combine these dif-
ferent approaches and designed a simple short paradigm
that simultaneously includes lexical, semantic, and syn-
tactic contrasts, to assess different levels of linguistic
processing in a single session. This paradigm is tested
here by recording MEG responses in a sample of healthy
adult participants as a first step to establishing its appli-
cability. The participants were presented with spoken
stimuli, which were either meaningless pseudowords or
meaningful words with different semantics (action-related
verb vs concrete visual noun) and that either could
be syntactically correct or included a morphosyntactic
stem-affix violation. These were presented without any
stimulus-related task, while the subjects’ attention was
diverted away from the auditory stimulus stream.

Furthermore, in order not to restrict our results to
narrow-band evoked activity, we analyzed activation in a
wide range of frequency bands, from � to high �. We
focused on the phase part of the oscillatory activity, as
phase synchrony has been theorized to be directly related
to neural computations (Fries, 2005; Palva et al., 2005;
Lopes da Silva, 2006; Varela et al., 2001). To quantify

coordinated neural phase activity related to neurolinguis-
tic processing, we determined phase synchrony by ana-
lyzing intertrial phase coherence (ITPC) of the MEG
responses. ITPC is a measure of how aligned the phase
angles over individual trials are. It therefore provides in-
formation about mass-synchronized neural activation
(and in this sense is to a degree similar to ERP/ERF)
without restricting it to a specific power peak or band.
ITPC can inform us about the phase synchrony over trials;
i.e., if ITPC is high, it means that the phases become
aligned when performing a particular perceptual or cog-
nitive computation. We investigated the ITPC in different
frequency bands allowing for a comprehensive assess-
ment of the neurolinguistic dynamics. To gain anatomic
specificity, single-subject MRIs were used to model cor-
tical source activity, and ITPC values were calculated in
individual source space.

Given the vast amount of information about neural ac-
tivity created by analyzing the ITPC across both time and
frequency bands, we used multivariate pattern analysis
(MVPA) for an unbiased statistical assessment of the data
(Bzdok et al., 2018), where by “unbiased” we mean that
that the researcher does not have to choose when and
where to test for differences. MVPA (for more details, see
Materials and Methods) is a machine learning technique
based on predicting data rather than on parameter esti-
mation (as used in traditional factorial analyses, e.g.,
ANOVA or t tests). The MVPA algorithm will first try to
extract a pattern from a subset of the data, which can
then be used to predict new, previously unseen data. This
allows for a data-driven analysis without a priori hypoth-
eses about spatial or temporal location of the signal of
interest. For instance, we might allow the decoding algo-
rithm to train itself on MEG recording trials of meaningful
versus meaningless word form stimuli (i.e., find specific
patterns of features in the data most valuable for detect-
ing word-pseudoword differences) and then ask whether
it can correctly predict the same distinction in a different
data subset; this can be done both within and across
subjects. Crucially, such an algorithm, if successful, may
in principle be used to estimate data predictability in one
subject (e.g., patient) from another one (e.g., healthy
norm) and thus determine both normal functionality and
functional abnormalities, or assess the same or different
states of a particular processing system in the same
individual.

In sum, we present here a short (�30 min) task-free
paradigm in which auditory linguistic stimuli are presented
to MEG subjects, without explicitly requiring their atten-
tion, and the resulting data are analyzed using MVPA-
based machine learning algorithm to classify brain
responses in different frequency bands as reflecting
meaningful lexical input as well as its semantic and syn-
tactic properties.

Materials and Methods
Participants

The experiment was conducted according to the prin-
ciples of the Helsinki Declaration and was approved by
Central Jutland Region Committee on Health Research
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Ethics. MEG data were acquired in seventeen healthy
right-handed (handedness assessed using Oldfield, 1971)
native speakers of Danish (age range 18–27 years, 12
females) with normal hearing and no record of neurologic
impairments. All participants gave written consent before
the start of the experiment and received payment for their
participation.

Stimuli
Since we wished to address a range of different neuro-

linguistic processes, those at lexical, semantic, and syn-
tactic levels, we chose stimulus items which could enable
us to contrast a combination of different linguistic phe-
nomena while controlling for acoustic features (for exam-
ples of the stimuli used, see Fig. 1). To this end, we
followed a previously suggested strategy (Gansonre et al.,
2018) and selected a set of spoken Danish-language
stimuli which (1) belonged to different lexical and seman-
tic categories (action-related verb, abstract verb, object-
related noun and meaningless pseudoword), (2) were
close in terms of phonology so we could compare them
directly with minimal acoustic/phonetic confounds, and
which (3) could be modified morpho-syntactically in the
exact same way and nonetheless exhibit different linguis-
tic properties (i.e., grammatically correct vs incorrect)
such that we could test the very same contrasts in differ-
ent linguistic contexts.

These requirements led to the choice of four main base
stimuli: bide ([biðə], to bite), gide ([giðə], to bother), mide ([miðə],
a mite), �nide ([niðə], �pseudoword). These were presented as
such. Note that they have identical CVCV phonological struc-
ture and only differ in the first consonant. The second syllable
[ðə], which allows recognition of the lexical items, is the same
across all items. To ensure that the full recognition of each
particular word form in the restricted experimental context is
only possible at the second syllable, we also included, in a
1:1ratio with all other stimuli, all four first syllables in isolation:

[bið], [gið], [mið] and [nið]. These served as fillers to ensure
identical acoustic divergence point across the four types, to be
used for time-locking brain activity to, and were not analyzed as
such.

The above quadruplet provided us with a way to ad-
dress both lexical and semantic contrasts. By estimating
the brain activity elicited by the same word-final syllable
[ðə], we could compare, on the one hand, word versus
meaningless pseudoword activation, putatively indicating
lexical access, which we expected to find its reflection in
an automatic activation of the core left temporo-frontal
language system (Tyler and Marslen-Wilson, 2008). On
the other hand, by comparing action versus non-action
items we could address semantically-specific aspects of
these activations. Previous EEG, MEG, and fMRI research
has indicated automatic involvement of the brain’s motor
system in the comprehension of action-related verbs (Pul-
vermüller, 2005; Pulvermüller and Fadiga, 2010); we
therefore expected more pronounced centro-frontal ac-
tivity for the action verb bide, but not the concrete noun
mide.

Based on the above base forms, we produced further
stimuli that included a balanced morphosyntactic con-
trast. We took advantage of Danish morphology and the
fact that the morphemes -(e)t and -(e)n can be used to
express the past participle of verbs and definiteness on
common nouns. This enabled us to compare the inflected
items based on their syntactic congruence or incongru-
ence, e.g., -n in miden vs. �giden, and -t in gidet vs.
�midet (where � indicates a violation of the stem/affix
syntactic agreement). Note that each of these pairs have
identical codas (t/n) that lead to grammatical/morpho-
sytactic violation in a counterbalanced fashion: each of
them is correct in combination with one but not the other
stem. These were presented, in equal proportion along
with the other stimuli above, to make sure syntactic prop-
erties are only recognized at the very last consonant. To

Figure 1. A, Examples of spectrograms of spoken stimuli used in the experiment (adapted from Gansonre et al., (2018)). B, Examples
of waveforms plotted on top of each other.
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balance for these acoustic modifications, we also in-
cluded similar items based on other forms (bide[n/t] and
nide[n/t], all meaningless), which were used to make a
balanced design, but not analyzed as such.

The stimuli were made based on a digital recording of a
male native speaker of Danish in an anechoic chamber
(recording bandwitdh: 44k Hz, 16 bit, stereo). The first and
second syllables of four CVCV stimuli were recorded
independently, to avoid possible coarticulation effects,
and cross-spliced together, such that the second sylla-
bles were physically identical across all items. The second
syllable commenced at 300 ms after the onset of the first
one, and this was the earliest time [the so-called disam-
biguation point (DP)] when any lexical or semantic effects
could be expected in the MEG data.

To produce the morphosyntactic items, ending in [t] or
[n], we cross-spliced recordings of these two morphemes
onto the four main stems, to obtain words either violating
or respecting rules of Danish morphology such that the
exact same phonemes completed syntactic or asyntactic
forms in a counterbalanced fashion. These morphemes
became distinct at 408 ms after the word onset, and this
was therefore the earliest time any morphosyntactic con-
trasts could affect the brain responses.

The sounds were matched for loudness, with a 1.93-dB
drop between the first and the second syllables so that
our stimuli sounded as natural as possible and normalized
to have identical power (measured as root-mean-square,
RMS). All sound editing was done using Adobe Audition
CS6 software (Adobe Inc.).

In sum, the stimulus set included four CV syllables, four
CVCV stems, four CVCV�[t] and four CVCV�[n] forms, all
strictly controlled for phonological and acoustic proper-
ties. These were combined, in a pseudorandom fashion,
in a single auditory sequence ensuring that the stimuli’s
lexical, semantic, and syntactic properties were available
at stringently defined times.

Procedure
The MEG recording was conducted in an electromag-

netically shielded and acoustically attenuated room
(Vacuum Schmelzer GmbH). During the recordings, par-
ticipants were instructed to focus on watching a silent film
and to pay no attention to the sounds. The auditory stimuli
were controlled using Neurobehavioral Systems Presen-
tation v16 (Neurobehavioral Systems) and presented
through in-ear-tubes (Etymotic ER-30) binaurally at 50 dB
above individual auditory threshold.

All sixteen stimuli were presented equiprobably in a
single data acquisition session intermixed in a continuous
manner, with 100 pseudorandom repetitions of each stim-
ulus resulting in 1600 epochs in total. The interstimulus
onset-to-onset interval (stimulus onset asynchrony, SOA),
was fixed at 1000 ms, based on previous studies of
automatic neurolinguistics processing using non-attend
designs, which served as the starting point for the current
paradigm. The total recording time was 28 min.

MEG data were acquired with an Elektra Neuromag
Triux MEG setup (Elekta Neuromag Oy), with 102 magne-
tometers and 204 planar gradiometers; for eye movement

and heartbeat artifact detection two bipolar EOG and one
bipolar ECG recordings were taken. Cardinal landmarks
and additional head points were digitized using a Pol-
hemus FASTRAK setup (Polhemus). Data were recorded
at 1000 Hz, a high pass filter of 0.1 Hz and low pass of 330
Hz were applied online. Head position and head move-
ments were continuously tracked using four head position
indicator coils (HPIs). The participants were lying still on a
non-magnetic patient bed, with their head as close to the
top of the helmet as possible, the MEG dewar being in
supine position.

Data preprocessing
All data were preprocessed using MNE-python version

0.16 software package (Gramfort et al., 2013). First, con-
tinuous data were bandpass filtered from 1 to 95 Hz,
downsampled to 500 Hz, and epoched into single-trial
epochs of 1000-ms duration, starting 100 ms before and
ending 900 ms after stimulus onset. Bad channels were
automatically detected and interpolated, epochs with ex-
cessive bad channels discarded and outlier trials removed
using an automatic approach (as implemented in autore-
ject utility; for details, see Jas et al., 2017). On average per
subject there were 23.24 bad channels (median: 32, SD:
10.93) and 12.9 (SD: 18.66) bad epochs. No signal-space
separation transformation (SSS; also known as maxfilter-
ing) was applied at any stage of the preprocessing.
Thereby cleaned epoch data were bandpass-filtered into
five frequency bands (Dalal et al., 2011): � within 8–12 Hz,
� (13–30 Hz), �-low (30–45 Hz), �-medium (55–70 Hz),
and �-high (70–90 Hz).

Source reconstruction
For each participant, a T1 and T2 structural MRIs were

obtained using a Siemens Tim Trio 3T MR scanner. The
images were segmented with separate surfaces created
for the gray matter, inner skull and skin using SimNIBS
utility (Thielscher et al., 2015). For each subject, individual
three-layer boundary element model (BEM) was calcu-
lated together with individual forward models. A common
template gray matter surface was created by averaging all
of the study participants, using FreeSurfer software (Dale
et al., 1999).

Source reconstruction was conducted using an LCMV
beamformer (Van Veen et al., 1997) using planar gradiom-
eter data and previously developed (Westner, 2017; West-
ner and Dalal, 2017) Hilbert beamformer. The decision to
use only gradiometers was chosen as mixing channel
types is not trivial due to magnetometers and planar
gradiometers producing values of different scales; fur-
thermore planar gradiometers are less sensitive to ex-
ternal magnetic sources and have a better signal-to-
noise ratio compared to magnetometers (Hari et al.,
1988). First, for each frequency band of interest (�, �,
�-low, �-medium, and �-high), the epochs were band-
pass-filtered for each subject without subtracting the
evoked signal from the single trials, as we were inter-
ested in investigating the complete information con-
tained in the responses time locked to the auditory
stimuli. Secondly, an adaptive filter was created by
combining responses to all the stimuli in the paradigm,
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using a three-layer BEM and a cortically constraint
source space. The adaptive filter was computed using a
data covariance matrix based on all time points of the
bandpass-filtered epochs; the covariance matrix was
not regularized before inversion. Source orientation
was optimized by using the orientation of maximum
signal power (Sekihara and Nagarajan, 2008). Neural
activity index (NAI; Sekihara and Nagarajan, 2008),
which incorporates the weight normalization using a
unit-gain beamformer, was selected as the output
value. Third, after the adaptive filters were created, the
single-trial epoched data were Hilbert-transformed and
the adaptive filter was applied to the complex data,
providing a source reconstruction of the Hilbert-
transformed single-trial data. Lastly, we calculated
ITPC of thereby obtained single-trial source space
data. This was done for each time point and in each
source space location independently using the equa-
tion below:

ITPCtf � �n�1 �
r�1

n

eiktfr� ,

where n is the number of trials, eik provides a complex
polar representation of the phase angle k on trial r for the
time-frequency point tf, where frequency is the frequency
band (for review, see Cohen, 2014, chapter 19, especially
pp. 244–245). This resulted in a single ITPC time course
for each point in the source space for each subject.

After the source space ITPC data were calculated for
each subject, the individual data were morphed onto a
common template surface (5124 vertices) created as the
mean over all individual participants for data standardiza-
tion across the group. Finally, the data were smoothed
with a 10-ms rolling window mean in temporal dimension
for each source independently.

MVPA
For each participant, the morphed ITPC time series for

each point in the source space was extracted based on
the contrast in question. Common for all the MVPA was
the classification over time, i.e., for each time point a
classifier pipeline was applied giving a classification score
over time. We used the entire cortical source space for the
classification at each time point. As it was comprised of
5124 vertices, it gave 5124 features per time point.

The classifier pipeline was constructed in MNE-python
using scikit-learn utility (Pedregosa et al., 2011) and com-
posed of three steps. First, the features were standard-
ized (z-scored); the standardization was done across all
vertices in the source space at each time point indepen-
dently using the training set and then applied to the test
set. Second, feature selection was done using cross-
validated Lasso model (stratified folds, n � 4) to create a
sparse feature space that was adaptive for each time
point, i.e., allowing for number of relevant features to be
different for different time points. Lastly, a logistic regres-
sion (C � 1) was used to classify the two contrasts, and
receiver operating characteristic area under the curve
(ROC-AUC) was used as the classification score. The

pipeline was applied across subjects, meaning that we
obtained a decoding score over time for all participants
and, hence, we only looked for effects that could hold
across the subjects in the tested population.

MVPA can easily overfit data (i.e., become biased to-
ward a specific response) and, to prevent that from hap-
pening, cross-validation was used for the pipeline. Simply
put, cross-validation makes use of all the data by first
splitting the data into two smaller data sets. One set,
called the training set, is used for standardizing the fea-
tures and fitting (training) the MVPA model. The other data
set, called the test set, is then used to test accuracy of the
fitted model (i.e., trained model) by trying to predict the
class of the new label and, by comparing the prediction to
the actual class of the test set, we can calculate the
ROC-AUC for the model. By creating new training and
test sets from the full data set, it is possible to use all the
data for both training and testing (for more details and
strategies for cross-validating brain imaging data, see
Varoquaux et al., 2017).

All the steps in the pipeline were cross-validated with
stratified folds (n � 5). Stratified folds imply that ratio of
classes in the all the data are maintained in all the cross-
validated folds; e.g., in the lexical condition there are three
real words and one pseudoword for each participant, so
in the stratified folds the ratio 3:1 would remain such that
even when shuffled there will always be a 3:1 ratio. For the
semantic condition and morphosyntax comparison the
ratio was 1:1, i.e., 50%. We had 17 participants in
the study and it was, therefore, impossible to have an
equal number in each of the cross-validation folds and to
make cross-validation splits that have the exact same
number of participants in all folds and keep the ratio the
same. However, by using stratified folds we kept the
balance between the folds as equal as possible.

To test for statistical significance of the classification
we used permutation tests (Ojala and Garriga, 2010). A
permutation test was performed for each time point inde-
pendently. First, the arrangement of the labels was shuf-
fled, e.g., action verb and object noun in the semantic
condition, such that the data might be from an action verb
but the label tell the MVPA algorithm that it is an object
noun. By repeatedly shuffling the labels and running the
classification (n � 2000), we can build a null distribution of
random ROC-AUC scores. This null distribution is inter-
preted as the distribution of what the ROC-AUC score
could be just by chance. Hence, we can then assess the
classification score we had from the real labels by com-
paring to the null distribution. If number of random scores
that are better than the actual classification score is less
than or equal 5%, the classification score is said to be
better than chance, where 5% is the � level chosen.

To optimize the computational time, only classification
scores that surpassed the threshold (calculated, for each
frequency band independently, as the mean score of the
baseline plus 1.5 SDs of the baseline) were tested for
statistical significance. So, for each time point where the
ROC-AUC score was above the threshold we made a
permutation test (n � 2000). As the minimum p value that
can be obtained with a permutation test is dependent on
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the number of permutations run, the p value is defined as
pu � �b � 1� / �m � 1� , where b is the number of times the
permutation was equal or more extreme then the ob-
served classification value and m is the number of per-
mutations, and 1 is added to b and to m to ensure that the
estimated p value is not zero and to avoid division by zero
(Phipson and Smyth, 2010; Puolivali et al., 2018). So, the
p value in a permutation test does not behave in the same
way as a p values in a parametric test, it is rather a
description of observed probability that the given classi-
fier is better than chance. Since we perform a series of
permutations, i.e., one for each time point, we need to
consider the multiple comparison problem, i.e., the prob-
lem that some tests will be significant purely by chance
and not be a true effect. We opted to apply cluster thresh-
old correction, i.e., there needs to be a continuous range
of significant time points (at least 10 ms or longer) to
accept it as a non-random effect. The 10-ms threshold is
based on previous language and auditory research (Ha-
goort and Brown, 2000; Wang et al., 2012; Edmonds and
Krumbholz, 2014), typically using 10 ms as the shortest
bin duration to test. It should be noted that only two of the
thirteen clusters reported as significant at 10 ms, the rest
are longer, ranging from 12 to 42 ms.

For each linguistic contrast we fitted the classification
pipeline independently. For the lexical contrast, we tested
whether we could classify lexical features, i.e., if the par-
ticipant heard a real word versus an acoustically similar
pseudoword (see above, Stimuli). In the semantic con-
trast, we tested classification of the action verb versus
object noun. In the syntactic contrast, we tested whether
we could correctly classify ungrammatical versus gram-
matically correct items (irrespective of their acoustic fea-
tures, i.e., �midet, �giden vs miden, gidet). Each contrast
was tested from the relevant DP (300 ms for lexis and
semantics and 408 ms for morphosyntax) through the end
of the epoch. Latencies reported in Results below are
measured relative to DP.

Results
Lexical contrast

For the lexical contrast (Figs. 2–4; Table 1), we found
that it was possible to significantly decode words versus
pseudowords in the �, �-low, �-medium, and �-high
bands. The earliest significant decoding was achieved in
the �-medium band already at 62–76 ms after the DP. The

pattern of classifier-selected features in the left hemi-
sphere included the frontal lobe (BA 44, border of BA
6/BA 8, BA 4), parietal BA 7, junction of BA 7/39, and BA
39/19. In the right hemisphere, features in temporal lobe
BA 22 and frontal BA 9, BA4 were selected. The highest
ROC-AUC score was in the �-low band at 224 ms after DP
(ROC-AUC: 94.35%, SD: 4.5%). The cluster including this
AUC-ROC peak spanned from 222 to 238 ms and in-
volved a broad pattern of features including, in the left
hemisphere, temporal lobe (BA 22), frontal areas (BA 11,
border of BA10/47, BA44 dorsal/posterior), and parietal
areas (BA 40, BA 7 as well as BA 3/1/2). In the right
hemisphere, it included the temporal lobe (BA 22, BA 23,
BA 43), frontal areas (BA 11, border of BA 9/10/46, pos-
terior dorsal BA44), and parietal areas (BA 39, BA 40, BA
7, BA 1/2). No significant classification results were ob-
tained in the � band.

Semantic contrast
In the semantic contrast (Figs. 2, 5, 6; Table 2), the peak

classification score was found in the � band at 106 ms
after DP (ROC-AUC: 91.11%, SD: 12.96%). The cluster
including the peak ROC-AUC was between 80 and 122
ms after the onset of the second syllable disambiguating
the semantics of the particular form. The cluster com-
prised a pattern of features including both temporal (BA
22) and frontal areas (BA 9, BA 44, BA 45, BA46) of the left
hemisphere. In the right hemisphere, in addition to the
temporal (BA 21, BA 22, BA 38, BA 42) and the frontal lobe
(BA 6, BA 9, BA 11, BA 44), it also involved parietal areas
(BA 7 and BA 2).

(Morpho)syntactic contrast
The results of MVPA classification of grammatically

correct versus incorrect inflections (Figs. 2, 7, 8; Table 3)
showed the peak ROC-AUC score in the �-low band at 90
ms after the syntactic DP (ROC-AUC: 69.22%, SD:
13.05%). The significant classification cluster on the left
hemisphere included the temporal lobe (BA 21, BA 22, BA
37, BA 41), frontal areas (BA 4, BA 9 BA 10, BA 11), as well
as parietal areas (BA 40/7/2), and occipital area BA 19. In
the right hemisphere, it involved temporal (BA 21, 22, 38,
42), frontal (BA 44, 11, 4, 6, 9), parietal (BA 39, BA 40, 2,
1, 7), and occipital (BA 18, 9) areas.

Table 1. Table of significant clusters in the lexical condition sorted by time from the divergence point

Lexical

Band Peak (%)
Peak

SD (%)
Peak

time (ms)
Cluster

start (ms)
Cluster

end (ms)
Cluster

length (ms)
Cluster

mean (%)
Cluster
SD (%)

�-Medium 88.53 6.43 66 62 76 14 83.20 4.57
�-Low 94.35 4.50 224 222 238 16 85.02 9.68
�-High 87.88 9.29 358 350 366 16 80.19 4.95
�-Low 87.65 11.08 440 432 448 16 81.34 4.99
�-Low 87.71 8.83 516 510 534 24 81.34 4.36
� 85.97 14.95 538 530 546 16 80.25 4.32

Peak is highest ROC-AUC scores of the cluster. Peak SD is the standard deviation (SD) of cross-validation folds for the peak ROC-AUC score. Peak time is
the time of the peak from DP. Cluster start is the start time of the cluster from DP. Cluster end is the end time of the cluster from DP. Cluster length is the
length of the cluster. Cluster mean is the mean ROC-AUC score of the cluster. Cluster SD is the SD of the cluster mean across cross-validation folds.
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Classification of amplitude data
We also tested ad hoc whether we could decode lan-

guage properties using amplitude data. We only found
significant clusters in semantic in the �-medium band
from 500 to 512 ms after DP. For the morphosyntactic
condition, we found that we could classify correctly in the
�-high bands (from 114 to 128 ms after DP) and � band
(from 248 to 262 ms after DP). As we were not able to
decode all conditions successfully, we have left out the
amplitude results from further discussion.

Discussion
In this study, we suggested and tested a paradigm

which, in the absence of focused attention on the auditory
input or any explicit stimulus-focused behavioral task,
addressed different levels of neurolinguistic information
processing in the brain using a carefully crafted set of
spoken stimuli with strictly controlled acoustic/psycholin-
guistic contrasts. We registered the brain’s activity
elicited by these speech stimuli using high-density whole-
head MEG set-up, and analyzed it using machine
learning-based MVPA techniques applied to inter-rial
phase coherence in a range of frequency bands, at the
level of cortical sources calculated using individual MRIs.
The results indicated that, by using this approach, we
were able to successfully classify lexical, semantic, and
morphosyntactic contrasts (for an overview of results, see
Table 4). These effects were exhibited in different fre-
quency bands and at different times. Below, we will briefly
discuss these results in more detail.

Lexical contrast
In the lexical contrast, we found clusters of significant

decoding performance (with a peak classification score of
�94%) over the entire duration of the analysis epoch
starting from �60 ms after the divergence point. These
predominantly occurred in the � range (including all three
sub-bands tested) and were underpinned by activity in
bilateral temporo-parietal and frontal clusters. This early

onset of lexical effects here is in line with previous ERF
and ERP studies that used similar non-attend auditory
designs (Pulvermüller and Shtyrov, 2006; MacGregor
et al., 2012; Shtyrov and Lenzen, 2017) and showed that
the brain responds differently to meaningful words versus
meaningless pseudoword stimuli from �50 to 80 ms
after the acoustic input allows to identify the lexicality
of stimuli, with additional lexicality-driven activity span-
ning across peaks until �400 ms. Such ERP/ERF results
(Shtyrov et al., 2010; see also Shtyrov et al., 2005) have
reported similar perisylvian configuration of bilateral
source activations; importantly, here we find them for
higher-frequency phase coherence values, not reported
previously.

Increased activity in the � band (quantified as spectral
power or as event-related synchronization) has previously
been linked to lexical access possibly underpinning syn-
chronization of neural elements making up distributed
word memory circuits (Lutzenberger et al., 1994; Pulver-
müller et al., 1996; see also Tavabi et al., 2011). What our
findings suggest is that this process may involve multiple
synchronization steps expressed as phase resetting (an
important mechanisms in information processing; Cana-
vier, 2015) at different times, frequencies and neuroanat-
omical locations.

These previous studies have typically found a single
power peak in low � dynamics, whereas we here find a
series of activations at frequencies up to 90 Hz, potentially
reflecting the specific advantages of machine learning
techniques in classifying distributed clusters of activity.
We also found a single significant � cluster at the end of
the epoch (�500 ms post-DP). This is fully in line with
previous research highlighting the role of � oscillations in
lexicosemantic storage and processing (Brennan et al.,
2014; Bakker et al., 2015), although our data suggest that
this � activity is secondary in relation to the almost im-
mediate phase resetting in the � band. Note that while a
number of above studies have also identified � band

Figure 2. Top, Heatmap of significant clusters across three linguistic contrasts, five frequency bands, and time. Lexical condition in
blue colors, semantic in green, and syntax in red. Bottom, Surface topography of significant effects. For all conditions, colors go from
lighter to darker as latency becomes longer.
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Figure 3. A, Model patterns: interpreting coefficients of a machine learning model is not trivial and a high coefficient value does not
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activity in relation to some aspects of speech processing
(e.g., syllable tracking; Luo and Poeppel, 2007, 2012), we
optimized our recording for time (with a view of potential
applied use) that led to short baselines not suitable for �
analysis. There is, however, compelling evidence of a
relation between � and � band activity (Canolty et al.,
2006), and future research using similar paradigms could
investigate whether the current ITPC findings may also
have a counterpart in the � range.

Semantic contrast
The semantic contrast between the action verb and

non-action noun has indicated activity from �100 ms
after the divergence point in �, � and, to a smaller degree,
in a lower � range, with peak classification scores of �91,
75 and 85%, respectively. This mostly involved temporo-
frontal cortices, largely overlapping with the core lan-
guage systems, but importantly, indicated elevated frontal
involvement, including clusters of activity in inferior-
frontal (BA44, 45) and motor (BA6) areas, which is com-
patible with the motor system involvement in action word
processing, posited previously (Pulvermüller et al., 2006).
Previous EEG and MEG research into the brain basis of
action-related semantics has found ERF and ERP corre-
lates between 80 and 200 ms, indicating near-immediate
and largely automated activation of the motor strip in
action word comprehension (Shtyrov et al., 2004, 2014).
In line with this previous research, the features indicated
here by the semantic contrast did not include many in the
temporal lobe but mostly in the inferior-frontal and pre-
frontal areas in the left and right hemispheres. While the

timing of this activation was generally similar, and thus
largely parallel, to the lexical processes above, the spec-
tral composition was different, with significant ITPC find-
ings in a lower frequency range. Changes in � and
especially � power have previously been reported as
related to single word semantics, including action word
semantics in particular (Vukovic and Shtyrov, 2014; Bak-
ker et al., 2015). What we show here is that the phase
resetting likely linked to these changes can reliably clas-
sify words with different meaning. In oscillatory space our
results are in line with those previously reported by Ma-
mashli et al. (2019) who investigated functional connec-
tivity across regions of interest and found activity in the �,
� and low � bands, while Haarmann and Cameron (2005)
reported a change of coherence in the 10- to 14-Hz range
when retaining a sentence.

Syntax contrast
Successful classification of the morphosyntactic con-

trast was achieved in the �-low range exclusively and was
found to commence at �100 ms after the syntactic diver-
gence point. While, in terms of the absolute stimulus
timing, this difference was later than the lexical and se-
mantic findings above, it is important to note the syntactic
disambiguation in the stimulus itself was also possible at
a later time, as it was determined by the final consonant
(n/t). Thus, in terms of the relative timing, the syntactic
properties appear to be assessed roughly in parallel to
other tested features, overall in line with the view positing
near-simultaneous onset of neurolinguistics processing of
different information types (Marslen-Wilson, 1987; Ha-

continued
necessitate a high signal value in the MEG data (for details, see Haufe et al., 2014). “Model patterns” are a way to highlight the signal
in a neurophysiological sensible way that is directly interpretable compared to the raw coefficients (Haufe et al., 2014). We show top
and bottom 5% of the patterns in the �-low band from 222 to 238 ms. Blue colors are areas of activation able to predict real words
and yellow/red are areas used to predict pseudo word. B, Average top and bottom 5% of ITPC difference; blue colors indicate higher
ITPC for real words and yellow/red colors indicate higher ITPC for pseudo word �-low band from 222 to 238 ms. C, Average ITPC
over time; solid lines are the average of the selected features, dashed lines are the average of all vertices in the source space. Time
0 is the divergence point, when stimuli could be recognized from the available acoustic information.

Figure 4. Heatmap of ROC-AUC scores for all bands in lexical condition. Note that chance in this condition is 75%. Time is relative
to DP.
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Figure 5. A, Model patterns (see also Fig. 4 legend): top and bottom 5% of the patterns in the the � band from 80 to 122 ms. Blue
colors are areas used to predict action verb and yellow/red are areas used to predict object noun. B, Average top and bottom 5%
of ITPC difference, blue colors indicating higher ITPC for action verb and yellow/red indicating higher ITPC for object noun from 80
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goort, 2004). The timing is in line with the findings of ELAN
literature that suggested syntactic parsing to sometimes
start as early as 50 ms in an automatic fashion (Herrmann
et al., 2011). Findings of links between � band activity and
syntactic parsing have been reported in the literature
previously (Lewis et al., 2015), including morphosyntactic
processing of the kind broadly similar to that required in
comprehension of complex words used here (Levy et al.,
2014). Importantly, we used a fully balanced set of con-
trasts, with highly matched word stimuli in which morpho-
syntactic (in)correctness was carried by physically the
same phonemes, i.e., [n] and [t] equally employed in both
sets. This activation was underpinned by broad temporo-
frontal networks in both hemispheres, in line with previous
literature (Hickok and Poeppel, 2007; Friederici, 2011;
Bozic et al., 2015). We have also found activity in parietal
and occipital areas, not commonly reported in syntax
studies and therefore requiring validation in future re-
search; notably, the values here do not reflect absolute
activity (e.g., activity) as such but rather reliable classifi-
cation of activation, however small it may be. Some stud-
ies investigating oscillatory neural activity in relation to
syntactic processing have found that there is a link be-
tween � power and syntactic properties of phrases
(Leiberg et al., 2006). While we do not find any similar

activity in the � range for our morphosyntactic condition,
that may be due to the use of single word stimuli with
morphosyntactic modifications (rather than phrases with
more elaborate syntax) in our paradigm.

Of the three linguistic contrasts tested, the morphosyn-
tactic one had the lowest decoding percentage (peak at
�69%). One possible reason for this is that it used two
acoustically different stimuli, words ending in [n] and [t],
with the grammatical correctness independent of the
word ending. The different acoustic properties, later onset
of [t] than [n] and different amplitude envelopes of the two,
may have smeared the effect in time leading to poorer (but
nevertheless significant) classification results. Future
studies could use other contrasts and different languages
to improve classification results.

MVPA of MEG ITPC data as a tool for objective
assessment of neurolinguistics processes

Previous literature has shown that passive paradigms
can be used to investigate language processing (Shtyrov
et al., 2012; Gansonre et al., 2018), an important first step
toward assessing participants and patient groups that
have difficulties responding verbally or in other behavioral
ways. However, the next necessary step is to optimize the
analysis of data obtained in such paradigms. Important

continued
to 122 ms. C, Average ITPC over time, solid lines are the average of the selected features, dashed lines are the average of all vertices
in the source space. Time 0 is the divergence point, when stimuli could be recognized from the available acoustic information.

Figure 6. Heatmap of ROC-AUC scores for all bands in semantic condition.

Table 2. Table of significant clusters in the semantic condition sorted by time from the divergence point

Semantics

Band Peak (%)
Peak

SD (%)
Peak

time (ms)
Cluster

start (ms)
Cluster

end (ms)
Cluster

length (ms)
Cluster

mean (%)
Cluster
SD (%)

� 91.11 12.96 106 80 122 42 68.21 9.77
� 75.00 19.08 138 134 146 12 69.62 5.25
�-Low 84.58 9.01 224 220 230 10 71.85 7.06
� 70.00 13.43 256 254 264 10 66.53 3.37
� 85.83 3.74 584 574 590 16 71.71 7.62

See the legend of Table 1 for an explanation of the columns.
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Figure 7. A, Model patterns: top and bottom 5% of the patterns in the �-low band from 84 to 98 ms. Blue colors are areas used to
predict correct syntax and yellow/red are areas used to predict incorrect syntax. B, Average top and bottom 5% of ITPC difference.
Blue colors indicate higher ITPC for correct syntax and yellow/red colors indicate higher ITPC �-low band from 84 to 98 ms. C,
Average ITPC over time; solid lines are the average of the selected features, dashed lines are the average of all vertices in the source
space. Time is relative to the divergence point.
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issues arise when trying to automate MEG analysis both
at preprocessing stage and at the level of identifying
significant effects and differences either within or be-
tween groups. What we present here is a tentative pro-
posal to solve these issues. By using the automated data
cleanup protocol combined with a single-trial beamformer
reconstruction, we reduce the number of manual steps
needed; and further, by applying MVPA we avoid having
to a priori select time and regions of interest (ROIs) for the
statistical assessment of the difference between groups.
The focus on oscillatory dynamics and ITPC provides us
the ability to assess activity in different frequency bands
simultaneously, resulting in a more detailed picture of the
neural activity related to neurolinguistic processing. Pre-
viously, such analyses have been hampered by the num-
ber of tests that are needed to statistically evaluate the
differences across groups/conditions. To solve this prob-
lem, we used MVPA, as this approach makes use of the
powerful machine learning techniques capable of assess-

ing the effects statistically in an unbiased fashion. So, by
combining ITPC and MVPA we have the possibility to
assess data in a detailed and yet exploratory manner.

Common to the effects across all conditions is that they
last a relatively short time compared to the length of the
trials. It is worth remembering that we are looking for
clusters of time where we can decode a difference in the
signals that are compared, which may help explain tem-
porally sparse results. It is also worth noting that one
cannot from a significant cluster alone conclude what
exact processes underpin it. However, comparing the
ITPC data and the patterns of the MVPA models together
may provide an overall picture of the activity underlining
the process at hand.

Conclusions
Using a passive paradigm, we probed several different

neurolinguistic properties. Separating the data into differ-
ent frequency bands and looking at ITPC, we found that,

Figure 8. Heatmap of ROC-AUC scores for all bands in syntax condition.

Table 3. Table of significant clusters in the syntax condition sorted by time from the divergence point

Syntax

Band Peak (%)
Peak

SD (%)
Peak

time (ms)
Cluster

start (ms)
Cluster

end (ms)
Cluster

length (ms)
Cluster

mean (%)
Cluster
SD (%)

�-Low 69.22 13.05 90 85 98 12 62.57 9.16
�-Low 68.36 11.57 302 300 314 14 64.04 5.10

See the legend of Table 1 for an explanation of the columns.

Table 4. Table of peak scores for each bands and condition, dash (-) indicates no significant cluster

Condition
Lexical condition Semantic condition Syntax condition

Band
Peak
score

Peak
SD

Peak
time

Peak
score

Peak
SD

Peak
time

Peak
score

Peak
SD

Peak
time

� - - - 91.11 12.96 106 - - -
� 85.97 14.95 538 75.00 19.08 138 - - -
�-Low 94.35 4.50 224 84.58 9.01 224 69.22 13.05 90
�-Medium 88.53 6.43 66 - - - - - -
�-High 87.88 9.29 358 - - - - - -

Peak score is highest ROC-AUC scores of the cluster. Peak SD is the SD of cross-validation folds for the peak ROC-AUC score. Peak time is the time of the
peak from DP.
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by using MVPA, we could classify lexical, semantic, and
syntactic information processing. The best classification
results varied between the different neurolinguistic prop-
erties both in time and, importantly, frequency bands, with
lexical processes classified predominantly by broad �,
semantic distinctions by � and �, and morphosyntax by
low � feature patterns. Crucially, all types of processing
commenced in a near-parallel fashion from �100 ms after
the auditory information allowed for disambiguating the
spoken input. This shows that individual neurolinguistic
processes take place near-simultaneously and involve
overlapping yet distinct neuronal networks that operate at
different frequency bands. Further investigations are
needed to understand the precise relation of the time
courses, frequency bands, neuronal substrates and neu-
rolinguistic properties, and to test the applicability of this
approach to detecting linguistic anomalies in various pop-
ulations.
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