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Abstract
Individual variations in motor adaptation rate were recently shown to correlate with movement variability or “motor
noise” in a forcefield adaptation task. However, this finding could not be replicated in a meta-analysis of
adaptation experiments. Possibly, this inconsistency stems from noise being composed of distinct components
that relate to adaptation rate in different ways. Indeed, previous modeling and electrophysiological studies have
suggested that motor noise can be factored into planning noise, originating from the brain, and execution noise,
stemming from the periphery. Were the motor system optimally tuned to these noise sources, planning noise
would correlate positively with adaptation rate, and execution noise would correlate negatively with adaptation
rate, a phenomenon familiar in Kalman filters. To test this prediction, we performed a visuomotor adaptation
experiment in 69 subjects. Using a novel Bayesian fitting procedure, we succeeded in applying the well-
established state-space model of adaptation to individual data. We found that adaptation rate correlates
positively with planning noise (� � 0.44; 95% HDI � [0.27 0.59]) and negatively with execution noise (� � –0.39;
95% HDI � [–0.50 –0.30]). In addition, the steady-state Kalman gain calculated from planning and execution
noise correlated positively with adaptation rate (r � 0.54; 95% HDI � [0.38 0.66]). These results suggest that
motor adaptation is tuned to approximate optimal learning, consistent with the “optimal control” framework that
has been used to explain motor control. Since motor adaptation is thought to be a largely cerebellar process, the
results further suggest the sensitivity of the cerebellum to both planning noise and execution noise.
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Introduction
As children we all learned: some of us move with ef-

fortless grace and others are frankly clumsy. Underlying
these differences are natural variations in acquiring, cali-

brating, and executing motor skill, which have been re-
lated to genetic (Frank et al., 2009; Fritsch et al., 2010;
McHughen et al., 2010) and structural (Tomassini et al.,
2011) factors. Recently, it has been suggested that differ-
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Significance Statement

Our study shows that the adaptation rate is optimally tuned to planning noise and execution noise across
individuals. This suggests that motor adaptation is tuned to approximate optimal learning, consistent with
“optimal control” approaches to understanding the motor system. In addition, our results imply sensitivity
of the cerebellum to both planning noise and execution noise, an idea not previously considered. Finally, our
Bayesian statistical approach represents a powerful, novel method for fitting the well-established state-
space models that could have an influence on the methodology of the field.
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ences between individuals in the rate of motor adaptation
(i.e. the component of motor learning responsible for cal-
ibrating acquired motor skills to changes in the body or
environment; Shadmehr et al., 2010), correlate with move-
ment variability, or motor noise (Wu et al., 2014). However,
this finding was not supported by a recent meta-analysis
of adaptation experiments (He et al., 2016). This inconsis-
tency may arise because motor noise has multiple com-
ponents with differing relations to adaptation rate. Our
study characterizes the relationship between adaptation
rate and motor noise and suggests that adaptation rate
varies optimally between individuals in the face of multiple
sources of motor variability.

Motor noise has many physiologic sources, such as
motor preparation noise in (pre)motor networks, motor
execution noise, and afferent sensory noise (Faisal et al.,
2008). Modeling (Cheng and Sabes, 2006, 2007; van
Beers, 2009) and physiologic (Churchland et al., 2006;
Chaisanguanthum et al., 2014) studies have divided the
multiple sources of motor noise into planning noise and
execution noise (see Fig. 1A). Planning noise is believed to
arise from variability in the neuronal processing of sensory
information, as well as computations underlying adapta-
tion and maintenance of the states in time (Cheng and
Sabes, 2006, 2007). Indeed, electrophysiological studies
in macaques show that activity in (pre)motor areas of the
brain is correlated with behavioral movement variability
(Churchland et al., 2006; Chaisanguanthum et al., 2014).
Similar results have also been seen in humans using fMRI
(Haar et al., 2017). In contrast, execution noise apparently
originates in the sensorimotor pathway. In the motor path-
way, noise stems from the recruitment of motor units
(Harris and Wolpert, 1998; Jones et al., 2002; van Beers
et al., 2004). Motor noise is believed to dominate complex
reaching movements with reliable visual information (van
Beers et al., 2004). In addition, sensory noise stems from
the physical limits of the sensory organs and has been
proposed to dictate comparably simpler smooth pursuit
eye movements (Bialek, 1987; Osborne et al., 2005). Plan-
ning and execution noise might affect motor adaptation
rate in different ways.

Motor adaptation has long been suspected to be sen-
sitive to planning noise and execution noise. Models of
visuomotor adaptation incorporating both planning and
execution noise have been shown to provide a better
account of learning than single noise models (Cheng and
Sabes, 2006, 2007; van Beers, 2009). In addition, manip-

ulating the sensory reliability by blurring the error feed-
back, effectively increasing the execution noise, can lower
the adaptation rate (Baddeley et al., 2003; Burge et al.,
2008; Wei and Körding, 2010; van Beers, 2012), whereas
manipulating state estimation uncertainty by temporarily
withholding error feedback, effectively increasing the
planning noise, can elevate the adaptation rate (Wei and
Körding, 2010). These studies not only suggest that ad-
aptation rate is tuned to multiple sources of noise, but
also indicate that this tuning process is optimal and can
therefore be likened to a Kalman filter (Kalman, 1960).
Possibly, differences in adaptation rate between individ-
uals correlate with planning noise and execution noise
according to the same principle, predicting faster adap-
tation for people with more planning noise and slower
adaptation for people with more execution noise (He
et al., 2016; Fig. 1B–D).

To test the relation between adaptation rate and plan-
ning noise and execution noise across individuals, we
performed a visuomotor adaptation experiment in 69
healthy subjects. We fitted a state-space model of trial-
to-trial behavior (Cheng and Sabes, 2006, 2007) using
Bayesian statistics to extract planning noise, execution
noise, and adaptation rate for each subject. We show that
the adaptation rate is sensitive to both types of noise and
that this sensitivity matches predictions based on Kalman
filter theory.

Materials and methods
Subjects

We included 69 right-handed subjects between Octo-
ber 2016 and December 2016, without any medical con-
ditions that might interfere with motor performance (14
men and 55 women; mean age � 21 years, range 18–35
years; mean handedness score � 79; range 45–100).
Subjects were recruited from the Erasmus MC University
Medical Center and received a small financial compensa-
tion. The study was performed in accordance with the
Declaration of Helsinki and approved by the medical eth-
ics committee of the Erasmus MC University Medical
Center.

Experimental procedure
Subjects were seated in front of a horizontal projection

screen while holding a robotic handle in their dominant
right hand (Donchin et al., 2012). The projection screen
displayed the location of the robotic handle (“the cursor”;
yellow circle 5-mm radius), start location of the movement
(“the origin”, white circle 5-mm radius), and target location
of the movement (“the target”, white circle 5-mm radius)
on a black background (see Fig. 2A). The position of the
origin on the screen was fixed throughout the experiment,
�40 cm in front of the subject at elbow height, while the
target was placed 10 cm from the origin at an angle of
–45°, 0°, or 45°. To remove direct visual feedback of hand
position, subjects wore an apron that was attached to the
projection screen around their necks.

Subjects were instructed to make straight shooting
movements from the origin toward the target and to de-
celerate only when they passed the target. A trial started
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with the presentation of the target and ended when the
distance between the origin and cursor was at least 10 cm
or when trial duration exceeded 2 s. At this point, move-
ments were damped with a force cushion (damper con-
stant 3.6 Ns/m, ramped up over 7.5 ms) and the cursor
was displayed at its last position until the start of the next
trial to provide position error feedback. Furthermore, tim-
ing feedback was given to keep trial duration (see defini-
tion below) in a tight range. The target dot turned blue if
trial duration on a particular trial was too long (�600 ms)
and red if trial duration was too short (�400 ms) and
remained white if trial duration was in the correct time

range (400–600 ms). During presentation of position and
velocity feedback, the robot pushed the handle back to
the starting position. Forces were turned off when the
handle was within 0.5 cm from the origin. Concurrently,
the cursor was projected at the position of the handle
again and subjects had to keep the cursor within 0.5 cm
from the origin for 1 s to start the next trial.

The experiment included vision unperturbed, vision per-
turbed, and no-vision trials (see Fig. 2B). In vision unper-
turbed trials, the cursor was shown at the position of the
handle during the movement. The cursor was also visible
in vision perturbed trials but at a predefined angle from
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Figure 1. Planning and execution noise have opposing effects on visuomotor adaptation. A, State-space model of visuomotor
adaptation. The aiming angle on trial 2 x�2� is a linear combination of the aiming angle on the previous trial x�1� multiplied by a retentive
factor A minus the error e�1� on the previous trial multiplied with adaptation rate B. In addition, the aiming angle is distorted by the
random process � (planning noise). The actual movement angle y�2� is the aiming angle x�2� distorted by the random process �
(execution noise). The error e�1� is the sum of the movement direction y�1� and the external perturbation p�1�. B, Planning noise and
optimal adaptation rate BOptimal (defined as the Kalman gain). The optimal adaptation rate increases with planning noise ��. In this
figure, �� was kept constant at 2°. C, Execution noise and optimal adaptation rate BOptimal (defined as the Kalman gain). The optimal
adaptation rate decreases with execution noise ��. In this figure, �� was kept constant at 0.2°. D, Simulated optimal learners. At trial
110, a perturbation (black line) is introduced that requires the optimal learners to adapt their movement. The gray learner has low
planning noise �� � 0.1° and execution noise �� � 1°. The red learner has a higher planning noise �� � 0.3° than the gray learner
�� � 0.1°. This causes the red learner to adapt faster. The green learner has a higher execution noise than the gray learner �� �
3°. This causes the green learner to adapt more slowly. For all learners, the thick line shows the average, and the thin line, a single
noisy realization.
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Figure 2. Measurements of planning and execution noise and adaptation rate in a visuomotor adaptation experiment. A, Setup. The
projection screen displayed the location of the robotic handle (“the cursor”), start location of the movement (“the origin”), and target
of the movement (“the target”) on a black background. The position of the origin on the screen was fixed throughout the experiment,
while the target was placed 10 cm from the origin at an angle of –45°, 0°, or 45°. B, Trial types. The experiment included vision
unperturbed and perturbed trials and no-vision trials. In vision unperturbed trials, the cursor was shown at the position of the handle
during the movement. The cursor was also visible in vision perturbed trials, but at a predefined angle from the vector connecting the
origin and the handle. In no-vision trials, the cursor was turned off when movement onset was detected and therefore only visible at
the start of movement to help subjects keep the cursor at the origin. C, Experimental design. The baseline block consisted of 225
vision unperturbed trials and 225 no-vision trials (indicated by vertical red lines). The perturbation block had 50 no-vision trials and
400 vision trials, with every block of nine trials containing 1 no-vision trial. Most vision trials were perturbed vision trials whose
perturbation magnitudes formed a staircase running from –9° to 9°. D, Simulation of planning noise �� and standard deviation �y of
the movement angle. �y increases with ��. Calculated for A � 0.98 and �� � 2° with B � 0.2 for the solid line and B � 0 for the dashed
line. E, Simulation of planning noise �� and lag-1 autocorrelation R�1� of the movement angle. R�1� increases with ��. Calculated for
A � 0.98 and �� � 2° with B � 0.2 for the solid line and B � 0 for the dashed line. F, Simulation of execution noise �� and standard
deviation �y of the movement angle. �y increases with ��. Calculated for A � 0.98 and �� � 0.2° with B � 0.2 for the solid line and
B � 0 for the dashed line. G, Simulation of execution noise �� and lag-1 autocorrelation R�1� of the movement angle. R�1� decreases
with ��. Calculated for A � 0.98 and �� � 0.2° with B � 0.2 for the solid line and B � 0 for the dashed line. H. Simulated learners
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the vector connecting the origin and the handle. In no-
vision trials, the cursor was turned off when movement
onset was detected (see below) and was visible only at
the start of the trial to help subjects keep the cursor at the
origin.

The entire experiment lasted 900 trials with all three
target directions (angle of –45°, 0°, or 45°) occurring 300
times in random order. The three different trial types were
used to build a baseline and a perturbation block (see Fig.
2C). We designed the baseline block to obtain (1) reliable
estimates of the noise parameters and (2) variance statis-
tics (standard deviation and lag-1 autocorrelation of the
movement angle) related to the noise parameters. There-
fore, we included a large number of no-vision trials (225
no-vision trials) as well as vision unperturbed trials (225
vision unperturbed trials). The order of the vision unper-
turbed trials and no-vision trials was randomized except
for trials 181–210 (no-vision trials) and trials 241–270
(vision unperturbed trials). We designed the perturbation
block to obtain (1) reliable estimates of the adaptation
parameters and (2) variance statistics related to trial-to-
trial adaptation (covariance between perturbation and
movement angle). The perturbation block consisted of a
large number of vision trials (400 vision trials) and a small
number of no-vision trials (50 no-vision trials), with every
block of nine trials containing one no-vision trial. Every 8
to 12 trials, the perturbation angle changed with an incre-
mental 1.5° step. These steps started in the positive
direction until reaching 9° and then switched sign to
continue in the opposite direction until reaching –9°. This
way, a perturbation signal was constructed with three
“staircases” lasting 150 trials each (see Fig. 2C). Design of
the gradual perturbation was optimized to provide a “rich”
input for system identification, without sacrificing the con-
sistency of the signal too much, as this has been shown to
negatively affect the adaptation rate (Gonzalez Castro
et al., 2014; Herzfeld et al., 2014), and is similar to the
perturbation used by Cheng and Sabes (2007). The ex-
periment was briefly paused every 150 trials.

Data collection
The experiment was controlled by a C�� program

developed in-house. Position and velocity of the robot
handle were recorded continuously at a rate of 500 Hz.
Velocity data were smoothed with an exponential moving
average filter (smoothing factor � 0.18 s). Trials were
analyzed from movement start (defined as the time point
when movement velocity exceeds 0.03 m/s) to movement
end (defined as the time point when the distance from the

origin is equal to or larger than 9.5 cm). Reaction time was
defined as the time from trial start until movement start,
movement duration as the time from movement start until
trial end and trial duration as the time from trial start until
trial end. Movement angle was calculated as the signed
(� or –) angle in degrees between the vector connecting
origin and target and the vector connecting robot handle
position at movement start and movement end. The
clockwise direction was defined as positive. Peak velocity
was found by taking the maximum velocity in the trial
interval. Trials with (1) a maximal displacement below 9.5
cm, (2) an absolute movement direction larger than 30°, or
(3) a duration longer than 1 s were removed from further
analysis (2% of data).

Visuomotor adaptation model
Movement angle was modeled with the following state-

space equation (see Fig. 1A; Cheng and Sabes, 2006,
2007):

x�n � 1� � Ax�n� � Be�n� � � (1)

y�n� � x�n� � � (2)

e�n� � y�n� � p�n� (3)

� � N�0, ��
2�, � � N�0, ��

2� (4)

In this model, x�n� is the aiming angle (the movement
plan), and y�n� is the movement angle (the actually exe-
cuted movement). Error e�n� on a particular trial is the sum
of y�n� and the perturbation p�n�. The learning terms are A,
which represents retention of the aiming angle over trials,
and adaptation rate B, the fractional change from error
e�n�. The movement angle is affected by planning noise
process �, modeled as a zero-mean Gaussian with stan-
dard deviation ��, and execution noise process �, mod-
eled as a zero-mean Gaussian with standard deviation ��.

Statistics
Our statistical approach is a Bayesian approach (an

excellent introduction to Bayesian statistics for a nontech-
nical audience can be found in Kruschke (2010)). We used
this approach to fit the state-space model described in
Eqs. (1)–(4) because it offers a number of advantages over
the expectation-maximization algorithm used in previous
studies (Cheng and Sabes, 2006, 2007). Perhaps the most
important advantage of the Bayesian approach is that it
naturally allows hierarchical modeling that shares data

continued
without vision. The green and red traces show a single realization of two learners with either high planning noise (red learner �� �
0.4° and �� � 0°) or high execution noise (green learner �� � 0° and �� � 2°). Both sources increase the movement noise, but planning
noise leads to correlated noise, whereas execution noise leads to uncorrelated noise. This property can be seen from the relation
between sequential trials. For the red learner, sequential trials are often in the same (positive or negative) direction. For the green
learner, sequential trials are in random directions. This is captured by the lag-1 autocorrelation. I, Simulation of �py between the
perturbation p and movement angle y, and adaptation rate B. �py gets more negative for increasing B (simulated with A � 0.98). J,
Simulated learners with perturbation. The gray and blue lines show a simulated slow (A � 0.98, B � 0.05) and fast (A � 0.98, B � 0.2)
learner. The fast learner tracks the perturbation signal more closely than the slow learner. This property is captured by the covariance
between the perturbation and the movement angle.
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across subjects, allowing greater regularization of the
parameter fits for each subject, as well as simultaneous
estimates of the population distribution of the parameters
(Browne and Draper, 2006; Gelman, 2006). In a classic
approach, each subject’s parameters are generally esti-
mated independently, and the uncertainty in those esti-
mates is often not propagated forward when calculating
population estimates. Indeed, the output of a Bayesian
approach is not the best possible estimate of the param-
eter or even a maximum-likelihood estimate with a confi-
dence interval, but rather a sampling from the parameter’s
probability distribution given the data (Kruschke and Lid-
dell, 2018a). This allows the analysis to naturally refocus
on parameter uncertainty rather than focusing on point
estimates (Kruschke, 2013; Wagenmakers et al., 2014;
Kruschke and Liddell, 2018b). The difficulty with point
estimates has been a focus of much debate in the current
discussion of the reproducibility crisis in science (Ioanni-
dis, 2005; Cumming, 2014). The Bayesian approach also
estimates the hidden (state) variables simultaneously with
the parameters, rather than creating a somewhat arbitrary
distinction between imputation and estimation (Carlin
et al., 1992; Carter and Kohn, 1994). This allows analysis
of how the state variable estimates change with the pa-
rameter estimates, an analysis that is tricky to do with an
expectation-maximization approach. Finally, the Bayesian
approach allows great flexibility in specifying the form of
the model (Kruschke and Liddell, 2018a). This can be
useful in defining constraints on the model parameters or
transforming variables to lie in more relevant parameter
spaces, as defined below.

Modern Bayesian approaches rely on a family of algo-
rithms called the Markov chain Monte Carlo (MCMC)
algorithms (Andrieu et al., 2003). These algorithms require
definitions of the likelihood function (how the data would
be generated if we knew the parameters), the prior prob-
ability for the parameters (generally chosen to be broad
and uninformative, but see below), and return samples
from the posterior joint-probability function of the param-
eters. Thus, once the model and priors are specified, the
output of the MCMC algorithm is a large matrix where
each row is a sample and each column is one of the
parameters in the model. These samples can be, then,
summarized in different ways to generate parameter es-
timates (usually the mean of the samples but often the
mode) and regions of uncertainty (very often a 95% region
called the high-density interval (HDI) which contains 95%
of the posterior samples but also obeys the criterion that
every sample in the HDI is more probable than every
sample outside of it). They can also be used to assess
asymmetry in the parameter distributions and covariance
in the parameter estimates.

As outlined above, the Bayesian approach to state-
space modeling we have taken requires us to define priors
on the model parameters. We will justify our choices in the
following section. The adaptation parameters B�s� and
retention parameters A�s� were sampled in the logistic
space instead of the regular 0-1 space:

A�s� � 1
1 � exp ��N�	A, �A

2��
,

B�s� � 1
1 � exp ��N�	B, �B

2��
(5)

The logistic space spreads the range from 0-1 all the
way from � 
 to � 
. This means that the distance be-
tween 0.1 and 0.01 and 0.001 are all similar in the logistic
space, as are the distances between 0.9, 0.99 and 0.999.
This space, thus, reflects much more accurately the real
effects of changes in the parameter than if we sampled in
the untransformed space. This leads to much better sam-
pling behavior and, thus, greater accuracy and less bias in
the results. The priors for A�s� and B�s� were not actually
specified in the description of the model. Only their shape
was determined (normal in the logistic space). The actual
prior was chosen by sampling hyperparameters for these
normal distributions. For the hyperparameters, we did
need to choose a specific prior, and here we choose
highly uninformative priors to allow the posterior distribu-
tion to be influenced primarily by the data:

	A � N�0, 103�, 	B � N�0, 103� (6)

�A
2 � �B

2 � 1/��10�3, 10�3� (7)

The sensitivity analysis (described below) showed that
the choice to sample A�s� and B�s� from a normal distri-
bution in the logistic space had no strong effect on the
results. Following the standard Bayesian approach
(Kruschke, 2010), we sampled the precision (inverse of
the variance) and used a very broad gamma distribution
as a prior for the precision:

��
2�s� � 1/��10�3, 10�3�, ��

2�s� � 1/��10�3, 10�3� (8)

One reason the gamma distribution is a popular prior for
the precision is that it is a conjugate prior which makes the
algorithm more efficient. In any case, other choices of
prior did not change our results in a meaningful way (see
sensitivity analysis below).

MCMC sampling for the Bayesian state-space model
was implemented in OpenBUGS (v. 3.2.3, OpenBUGS
Foundation, available from: http://www.openbugs.net/w/
Downloads) with three 50,000 samples chains and 20,000
burn-in samples. A single estimate per subject s was
made for A�s� and B�s�, ��

2�s� and ��
2�s�. We used all

150,000 MCMC samples that represent the posterior dis-
tribution of the model parameters B�s�, ���s�, and ���s�
given the data to calculate linear regressions and corre-
lations between the model parameters across subjects.
Results were presented as the mode of the effect size
(either the correlation coefficient r or regression coeffi-
cient �) with 95% HDIs. Parameter estimates are plotted
as the mode with 68% HDIs, similar to the standard
deviation interval.

To demonstrate the test-retest properties of the
Bayesian state-space model, we simulated two datasets
with 50 learners on the visuomotor adaptation task
outlined above. The first (optimal) dataset was simulated
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by drawing model parameters from the following
distributions: A�s��N�0.97, 10�4�, ���s��N�0.6,0.04�, and
���s��N�3, 0.5625�, and calculating B�s� as the Kalman gain.
The goal of this analysis was to determine the test-retest cor-
relations of the model parameters B�s�, ���s�, and ���s� and the
ability to correctly estimate the relations between B�s� and the
noise parameters. For the second (permuted) dataset, A[s],
���s�, and ���s� were kept constant but B�s� was permuted
between learners. The motivation for this analysis was to show
that our Bayesian state-space model does not introduce false
relations between B and the noise parameters.

To evaluate the sensitivity of the main results to alter-
nate prior distributions for the Bayesian state-space
model, we repeated the entire analysis with (alternative
priors 1) t-distributions with the hyperparameter for the
degrees of freedom sampled from an exponential distri-
bution (in line with recommendations from Kruschke
(2013)) as priors for A�s� and B�s�; (alternative priors 2)
t-distributions as priors for A�s� and B�s�, and uniform
distributions in the range �0, 20� as priors for �� and �� (in
line with recommendations from Gelman (2006)); and (al-
ternative priors 3) beta distributions with hyperparameters
sampled from gamma distributions as priors for A�s� and
B�s� and uniform distributions as priors for �� and ��.
Finally, we addressed the concern that the between-
subjects correlations of the model parameters might arise
from within-subject correlations of the model parameters
by permuting the MCMC samples differently for each
parameter and recalculating the correlation and regres-
sion coefficients. The permuted distribution of the model
parameters has the property that all correlations between
the parameters within subjects are zero.

Code accessibility
BUGS/JAGS code for the Bayesian state-space model

can be accessed without restrictions at: https://
github.com/rickvandervliet/Bayesian-state-space.

Results
Simulations

We designed a visuomotor adaptation task (Tseng
et al., 2007) to (1) fit the state-space model of adaptation
and (2) investigate the validity of the parameter estimates
B�s�, ���s�, and ���s� by correlating the estimates with the
variance statistics of the data (see Fig. 2A–C).

The baseline block was designed to extract the stan-
dard deviation and the lag-1 autocorrelation of the move-
ment direction and relate these measures to the
parameter estimates of ���s� and ���s�. The standard
deviation and lag-1 autocorrelation in our baseline block
are well approximated by the following expressions:

�y � ����
2 � 	

k�0




�A � B�2k��
2 � 	

k�0




�A � B�2kB2��
2


(9)

R�1� �

	
k�0




�A � B�2k�1��
2 � B��

2 � 	
k�0




�A � B�2k�1B2��
2

	
k�0




Ak�A � B�k��
2 � ��

2 � 	
k�0




Ak�A � B�kB2��
2

(10)

In addition, we included a control segment of 30 trials
without vision (B � 0), to calculate estimates of the stan-
dard deviation and lag-1 autocorrelation which are inde-
pendent of the adaptation rate B:

�y � ����
2 � 	

k�0




A2k��
2
 (11)

R�1� �
	
k�0




�A2k�1��
2�

��
2 � 	

k�0




A2k��
2

(12)

For both the expressions with vision (9)–(10) (solid lines)
and without vision (11)–(12) (dashed lines), standard de-
viation �y increases with planning noise �� (see simula-
tions in Fig. 2D) and execution noise �� (see simulations in
Fig. 2F) whereas lag-1 autocorrelation R�1� increases with
planning noise �� (see simulations in Fig. 2E) but de-
creases with execution noise �� (see simulations in Fig.
2G), with the strongest correlations between �y and ��,
and R�1� and ��. We therefore expected similar relations
between the noise parameters ���s� and ���s�, and the
standard deviation �y, baseline�s� and lag-1 autocorrelation
RBaseline�1��s� of the baseline block (see simulations of
planning and execution noise in the baseline block in Fig.
2H).

The perturbation block was designed to extract the
covariance �py between the perturbation and the move-
ment angle from the data and relate this parameter to the
adaptation rate B. The covariance �py depends solely on
the learning parameters A and B and becomes increas-
ingly negative for higher adaptation rates because learn-
ing is compensatory (see simulations in Fig. 2I). Therefore,
we expected a similar relation between the covariance
�py�s� and adaptation rate B�s� in the perturbation block of
our experiment (see simulations of two learners with a low
or high adaptation rate in Fig. 2J).

Next, we designed a Bayesian state-space model to
estimate the model parameters. To demonstrate the test-
retest properties of this approach, we simulated one da-
taset with optimal learners and one dataset wherein the
adaptation rate of the optimal dataset was permuted
across learners. Excellent test-retest correlations were
found in both the optimal dataset (B�s� r � 1.00; 95% HDI
� [1.00 1.00], ���s� r � 0.89; 95% HDI � [0.85 0.93], and
���s� r � 0.99; 95% HDI � [0.98 0.99]) and the permuted
dataset (B�s� r � 1.00; 95% HDI � [1.00 1.00], ���s� r �
0.90; 95% HDI � [0.86 0.93], and ���s� r � 0.99; 95% HDI
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� [0.98 0.99]). In the optimal dataset, the Bayesian state-
space model was able to uncover the relations between
B�s� and the noise parameters ���s� � � 0.73; 95% HDI �
[0.68 0.77] (see Fig. 3A) and ���s� � � –0.44; 95% HDI �
[–0.51 –0.38]), which were 0.81 and –0.53 in the simu-
lated data (see Fig. 3B). In the permuted dataset, the
Bayesian state-space model did not falsely introduce re-
lations between B�s� and the noise parameters ���s� � �
0; 95% HDI � [–0.09 0.08] (see Fig. 3C) and ���s� � �
–0.01; 95% HDI � [–0.04 0.02]), as they were –0.01 and
–0.04 in the original dataset (see Fig. 3D). Therefore, the
Bayesian state-space model can reliably estimate the
model parameters and the regression coefficients be-
tween the noise terms and the adaptation rate.

Experimental results
Sixty-nine subjects performed the visuomotor adapta-

tion task outlined above. Overall, participants started
moving 230 ms, IQR � [211 254] ms, after target presen-
tation and completed the movement in 290 ms, IQR �
[251 320] ms, resulting in a trial duration of 520 ms, IQR �
[500 534] ms with 87% of trials IQR � [84 95]% in the
correct time window between 400 and 600 ms. Standard
deviation of movement angle calculated across the 69
subjects illustrates the differences in movement behavior
between people (Fig. 4A). The group average aiming angle
x�n�, calculated from 1,000 samples of the posterior dis-
tribution using the model (green dotted line), shows good
agreement with the group average movement angle cal-
culated directly from the data (brown solid line).

Fig. 4B, C show example subjects with low or high
planning noise ���s� (see Fig. 4B) and low or high execu-

tion noise ���s� (see Fig. 4C). We calculated the standard
deviation and lag-1 autocorrelation using all trials in the
baseline block and regressed these estimates onto ���s�
and ���s�. Agreeing with our group-level predictions (see
Fig. 2D–G), we found a positive relation between planning
noise ���s� and standard deviation �y, baseline�s� (� � 0.18;
95% HDI � [0.11 0.24]; see Fig. 4D), between planning
noise ���s� and lag-1 autocorrelation RBaseline�1��s� (� �
0.42; 95% HDI � [0.29 0.55]; see Fig. 4E) and between
execution noise ��[s] and standard deviation �y, baseline�s�
(� � 0.91; 95% HDI � [0.87 0.94]; see Fig. 4F) and a
negative relation between execution noise ���s� and lag-1
autocorrelation RBaseline�1��s� (� � –0.14; 95% HDI �
[–0.24 –0.07]; see Fig. 4G). Next, we calculated the stan-
dard deviation and lag-1 autocorrelation of trials 181–210
only, which are no-vision trials where adaptation rate B �
0. Here, we found similar correlations between (1) plan-
ning noise ���s� and standard deviation�y, novision�s� (� �
0.12; 95% HDI � [–0.04 0.27]; (2) planning noise ���s� and
lag-1 autocorrelation RNovision�1��s� (� � 0.22; 95% HDI �
[0.07 0.35]; (3) execution noise ��[s] and standard devia-
tion �y, novision�s� (� � 0.44; 95% HDI � [0.39 0.49]), and (4)
execution noise ���s� and lag-1 autocorrelation RNovision�1��s� (�
� –0.04; 95% HDI � [–0.10 –0.01]). Example subjects
with a low and high adaptation rate are shown in Fig. 4H.
Again, according to the model prediction (see Fig. 2I), we
found a negative relation between adaptation rate B�s�
and covariance �py�s� on a group level (r � –0.69; 95%
HDI � [–0.78 –0.60]; see Fig. 4I).

Next, we investigated the relation between adaptation
rate and the noise terms. The results are illustrated with
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Figure 3. Test-retest properties of the Bayesian state-space model. A, B, Regression of B�s� onto ���s� (A) and ���s� (B) for the
simulated optimal dataset. C, D, Regression of B�s� onto ���s� (C) and ���s� (D) for the simulated permuted dataset. Parameter
estimates with 68% HDIs are shown for every simulated learner as a dot with error bars. The black solid line shows the regression
on the model parameters estimated with the Bayesian state-space model, the green dashed line the regression on the original model
parameters.
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scatterplots of the parameter estimates for individual sub-
jects (Fig. 5, left column), heatmaps of the parameter
estimate distributions for the entire population (Fig. 5,
middle column), and line plots of the regression and cor-
relation coefficient densities (Fig. 5, right column). We

regressed B�s� onto ���s� and ���s� and found a positive
relation between ���s� and B�s� (� � 0.44; 95% HDI �
[0.27 0.59]; see Fig. 5A–C) and a negative relation be-
tween ���s� and B�s� (� � –0.39; 95% HDI � [–0.50
–0.30]; see Fig. 5D–F) with a variance explained of 0.32;
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Figure 4. State-space model of visuomotor adaptation. A, Visuomotor adaptation. Average movement angle of the 69 subjects with
standard deviations are shown in brown tone colors. The black line indicates the average perturbation signal, and the green line, the
average posterior estimate of the aiming angle. B, Planning noise examples. The gray line shows a subject with low planning noise
(�� � 0.15° �� � 4.6°), and the red line, a subject with high planning noise (�� � 0.65° �� � 4.6°). C, Execution noise examples. The
gray line shows a subject with low execution noise (�� � 0.36° �� � 2.3°), and the green line, a subject with high execution noise
(�� � 0.29° �� � 5.0°). D, Relation between the parameter estimate �� and baseline measure �y, baseline. The black line is a linear
regression of �y, baseline�s� onto ���s� and ���s� for average ���s�. E, Relation between the parameter estimate �� and baseline measure R
�1�baseline. The black line is a linear regression of R�1�baseline�s� onto ���s� and ���s� for average ���s�. F, Relation between the parameter
estimate �� and baseline measure �y, baseline. The black line is a linear regression of �y, baseline�s� onto ���s� and ���s� for average ���s�. G,
Relation between the parameter estimate �� and baseline measure R�1�baseline. The black line is a linear regression of R�1�baseline�s� onto ���s�
and ���s� for average ���s�. H, Adaptation rate examples. The thick lines show a slow (gray, B � 0.055) and fast (blue, B � 0.14) subject
smoothed with a 6th-order Butterworth filter. The black shows the perturbation signal for the fast subject. I, Relation between the parameter
estimate B�s� and perturbation block estimate �py�s�. Parameter estimates and 68% HDIs are shown for every subject as a dot with error
bars.
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95% HDI � [0.19 0.45]. This finding indicates that a
significant proportion of the difference in adaptation rate
between individuals can be explained from differences in
their planning and execution noise with the direction of
the correlations in agreement with Kalman filter theory
(see Fig. 1B, C). In addition, we determined the steady-
state Kalman gain for every subject from A�s�, ���s�, and
���s� and correlated the steady-state Kalman gain with
B�s�. Steady-state Kalman gain was calculated by solving
the Riccati equation for the steady-state covariance
P
�s�:

A�s�TP
�s�A�s� � P
�s� � A�s�TP
�s��P
�s�

� ���s�2��1P
�s�A�s� � ���s�2 � 0 (13)

K�s� � P
�s��P
�s� � ���s�2��1 (14)

On a group level, the Kalman gain was a good approx-
imation for the adaptation rate as the difference between
the mean K�s�, and the mean B�s� normalized with respect
to the mean B�s� was 10%; 95% HDI � [6.6 14]%. On an
individual level, we found a positive correlation between
steady-state Kalman gain K�s� and B�s� (r � 0.54; 95%
HDI � [0.38 0.66]; see Fig. 5G–I), adding support to the
claim that individual differences in adaptation rate can be
explained from differences in noise according to an opti-
mal learning rule. To assess the robustness of our find-
ings, we performed a sensitivity analysis for the model

Figure 5. Relation between noise and adaptation rate. A, D, G, Scatter plots of individual parameter estimates. Parameter estimates
and 68% HDIs are shown for every subject as a dot with error bars. The black line is a linear regression of B�s� onto ���s� and
���s� for average ���s��A�, a linear regression of B�s� onto ���s� and ���s� for average ���s� (D) and the correlation between K�s� and
B�s� (G). B, E, H, Heatmaps of the parameter estimate distributions. The heatmaps illustrate the distribution of the parameter
estimates for the entire population of 69 subjects. The intensity represents the percentage of samples in a specific range for (B) ���s�
and B�s� (B), ���s� and B�s� (E), and K�s� and B�s� (H). C, F, I, Effect size densities. The black line represents the probability density
of the regression coefficient for B�s� and ���s� (C), the regression coefficient for B�s� and ���s� (F), and the correlation coefficient for
B�s� and K�s� (I). The green lines indicate the 95% HDIs. The red line shows the mode.
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priors (see Table 1: alternative priors 1–3) and a control
analysis for within-subject correlations (see Table 1: per-
muted samples) and found consistent results.

Finally, we investigated how planning and execution
noise correlated with movement peak velocity. Execution
noise originates from muscle activity and should increase
with vigorous contraction when larger motor units are
recruited which fire at a lower frequency and produce
more unfused twitches (Harris and Wolpert, 1998; Jones
et al., 2002). Indeed, by regressing peak velocity onto the
noise terms, we found a negligible correlation between
peak velocity and planning noise � � –0.12; 95% HDI �
[–0.27 0.02] and a small positive correlation between peak
velocity and execution noise � � 0.22; 95% HDI � [0.18
0.28].

Discussion
We investigated the relation between components of

motor noise and visuomotor adaptation rate across indi-
viduals. If adaptation approximates optimal learning from
movement error, it can be predicted from Kalman filter
theory that planning noise correlates positively and exe-
cution noise negatively with adaptation rate (Kalman,
1960). To test this hypothesis, we performed a visuomotor
adaptation experiment in 69 subjects and extracted plan-
ning noise, execution noise, and adaptation rate using a
state-space model of trial-to-trial behavior. Indeed, we
found that adaptation rate correlates positively with plan-
ning noise (� � 0.44; 95% HDI � [0.27 0.59]) and nega-
tively with execution noise (� � –0.39; 95% HDI � [–0.50
–0.30]). In addition, the steady-state Kalman gain calcu-
lated from planning and execution noise correlated posi-
tively with adaptation rate (r � 0.54; 95% HDI � [0.38
0.66]). We discuss implications of our findings for the
optimal control model of movement and cerebellar mod-
els of adaptation and identify future applications of
Bayesian state-space model fitting.

Optimal control model of movement
The optimal control model of movement has been suc-

cessful in providing a unified explanation of motor control
and motor learning (Todorov and Jordan, 2002). In this
framework, the motor system sets a motor goal (possibly
in the prefrontal cortex) and judges its value based on
expected costs and rewards in the basal ganglia (Shad-
mehr and Krakauer, 2008). Selected movements are ex-

ecuted in a feedback control loop involving the motor
cortex and the muscles which runs on an estimate of the
system’s states (Shadmehr and Krakauer, 2008). Both the
feedback controller and the state estimator are optimal in
a mathematical sense, the feedback controller because it
calculates optimal feedback parameters for minimizing
motor costs and maximizing performance, given pre-
scribed weighting of these two criteria (Åström and Mur-
ray, 2008), and the state estimator because it optimally
combines sensory predictions from a forward model (cer-
ebellum) with sensory feedback from the periphery (pari-
etal cortex), similar to a Kalman filter (Kalman, 1960;
Wolpert et al., 1995). In the optimal control model of
movement, motor adaptation is defined as calibrating the
forward model, which is optimal in the same sense as the
state estimator (Shadmehr et al., 2010).

Wu et al. (2014) is one of the first studies to suggest that
there may be a positive relationship between motor noise
and motor adaptation. They outlined two apparent chal-
lenges of their findings to the optimal control approach:
first, they claimed that optimal motor control is inconsis-
tent with a positive relation between motor noise and
adaptation rate; second, they claimed that optimal motor
control does not account for the possibility that the motor
system shapes motor noise to optimize adaptation. We
take a different view. Because we find that only the plan-
ning component correlates positively with adaptation rate,
our results are predicted by Kalman filter theory (Kalman,
1960) and consistent with optimal control models of
movement (Todorov and Jordan, 2002; Åström and Mur-
ray, 2008). However, we do agree that the mathematical
structure used to express the optimal control approach
does not provide a clear way to discuss shaping noise to
optimize adaptation. While this may be a technical diffi-
culty from the point of view of optimal feedback ap-
proaches, it is apparent that there is electrophysiological
evidence that some animals do shape noise to optimize
adaptation. This evidence can be found in monkeys
(Mandelblat-Cerf et al., 2009). In addition, studies in Ben-
galese finches show that a basal ganglia-premotor loop
learns a melody from reward (Charlesworth et al., 2012) by
injecting noise (Kao et al., 2005) to promote exploration
(Tumer and Brainard, 2007) during training (Stepanek and
Doupe, 2010) and development (Olveczky et al., 2005).
We suggest that a similar mechanism operates in humans

Table 1. Sensitivity and control analyses.

���s� ��� � � �s� ��� K�s� �r�
Main analysis 0.44 [0.27 0.59] –0.39 [–0.50 –0.30] 0.54 [0.38 0.66]
Alternative priors 1 0.44 [0.26 0.60] –0.40 [–0.50 –0.29] 0.53 [0.38 0.66]
Alternative priors 2 0.45 [0.27 0.61] –0.40 [–0.51 –0.30] 0.53 [0.37 0.66]
Alternative priors 3 0.44 [0.28 0.60] –0.40 [–0.51 –0.30] 0.53 [0.38 0.66]
Permuted samples 0.29 [0.10 0.45] –0.38 [–0.50 –0.24] 0.38 [0.21 0.66]

For the main analysis, we used logistic normal distributions with hyperparameters sampled from normal and gamma distributions as priors for A�s� and B�s�
and inverse gamma distributions as priors for ��

2�s� and ��
2�s�. For the sensitivity analysis, we used (alternative priors 1) t-distributions with the hyperparameter

for the degrees of freedom sampled from an exponential distribution as priors for A�s� and B�s� (alternative priors 2) t-distributions as priors for A�s� and B�s�
and uniform distributions in the range �0, 20� as priors for �� and ��, and (alternative priors 3) beta distributions with hyperparameters sampled from gamma
distributions as priors for A�s� and B�s� and uniform distributions as priors for �� and ��. Finally, as a control analysis for within-subjects correlations of the
model parameters, we recalculated the correlation and regressions coefficients after permuting the samples of the main analysis differently for each
parameter.
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during adaptation. This additional tuning mechanism
could be an interesting topic of future studies into optimal
control models of movement.

Cerebellar model of motor adaptation
Motor adaptation is the learning process which fine

tunes the forward model and is believed to take place in
the olivocerebellar system (De Zeeuw et al., 2011). How
could this learning process be sensitive to planning noise
and execution noise on a neuronal level?

Central to the forward model is the cerebellar Purkinje
cell, which responds to selected sensory (Chabrol et al.,
2015) and motor (Kelly and Strick, 2003) parallel fiber
input with a firing pattern reflecting kinematic properties
of upcoming movements (Pasalar et al., 2006; Herzfeld
et al., 2015). When Purkinje cell predictions of the upcom-
ing kinematic properties are inaccurate, activity of neu-
rons in the cerebellar nuclei is proportional to the
prediction error. This is apparently because inhibitory Pur-
kinje cell input cannot cancel the excitatory input from
mossy fibers and the inferior olive (Brooks et al., 2015).
The sensory prediction error calculated by the cerebellar
nuclei could be used to update either (1) motor com-
mands in a feedback loop with (pre)motor areas (Kelly and
Strick, 2003) or (2) state estimates of the limb in the
parietal cortex (Grafton et al., 1999; Clower et al., 2001).
During adaptation, parallel fibers to Purkinje cell synapses
associated with predictive signals are strengthened and
parallel fibers to Purkinje cell synapses associated with
nonpredictive signals are silenced (Dean et al., 2010).
These plasticity mechanisms are affected by climbing
fibers originating from the inferior olive, which integrate
input from the sensorimotor system and the cerebellar
nuclei and act as a teaching signal in the olivocerebellar
system (De Zeeuw et al., 1998; Ohmae and Medina,
2015).

No previous experimental or modeling work has con-
sidered how planning or execution noise might be con-
veyed to the cerebellum or how they might influence
plasticity. We speculate that planning noise is reflected in
synaptic variability of the parallel fiber to Purkinje cell
synapse. Electrophysiological studies of CA1 hippocam-
pal neurons have shown that synaptic noise can improve
detection of weak signals through stochastic resonance
(Stacey and Durand, 2000). Such a mechanism might help
form appropriate connections at the parallel fiber to Pur-
kinje cell synapse during adaptation. In addition, theoret-
ical studies on deep learning networks have shown that
gradient descent algorithms, which can be likened to
error-based learning, benefit from adding noise to the
gradient at every training step (Neelakantan et al., 2015).
Furthermore, we speculate that execution noise affects
adaptation through climbing fiber firing modulation. Exe-
cution noise will decrease reliability of sensory prediction
errors because (1) the motor plan is not executed faithfully
(motor noise; van Beers et al., 2004) and (2) the sensory
feedback is inaccurate (sensory noise; Osborne et al.,
2005). Therefore, when sensory information for a specific
movement plan has been unreliable in the past, the olivo-
cerebellar system might decrease its response to sensory

prediction error, for example by decreasing climbing fiber
firing in the inferior olive (De Zeeuw et al., 1998), which
would lower the adaptation rate. The existence of such a
mechanism has also been suggested by a recent behav-
ioral study that showed a specific decline in adaptation
rate for movement perturbations that had been inconsis-
tent in the past (Herzfeld et al., 2014).

Two-rate models of adaptation
Our results are based on a one-rate learning model of

adaptation (Cheng and Sabes, 2006, 2007; van Beers,
2009). However, recent studies have suggested that a
two-rate model composed of a slow but retentive and a
fast but forgetting learning system provides a better ex-
planation for learning phenomena such as savings and
anterograde interference (Smith et al., 2006). The fast
learning system might represent an explicit process,
which could be located in the cortex, and the slow learn-
ing system an implicit process, which could be located in
subcortical areas such as the cerebellum (Mazzoni and
Krakauer, 2006; Taylor et al., 2014; McDougle et al.,
2015). How could we interpret our results in light of these
two-rate models? In a two-rate state-space model, the
two systems will add to produce the movement output
(Smith et al., 2006). That is, the total adaptation rate is
equal to the sum of the adaptation rates of the two
systems, and the same goes for the planning noise. Of
course, a two-rate model will still include only one term for
execution noise. Therefore, a two-rate model can repro-
duce our results either if both systems are optimally tuned
or if only one system is optimally tuned but is relatively
dominant. With our current experimental design, we can-
not differentiate between these two options. Future stud-
ies combining reporting-based approaches to discern the
contributions of the implicit and explicit processes and
the Bayesian statistical approach to state-space model-
ing presented in this paper could further unravel this
question.
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