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Abstract
The Epilepsy Innovation Institute (Ei2) is a new research program of the Epilepsy Foundation designed to be an
innovation incubator for epilepsy. Ei2 research areas are selected based on community surveys that ask people
impacted by epilepsy what they would like researchers to focus on. In their 2016 survey, unpredictability was
selected as a top issue regardless of seizure frequency or severity. In response to this need, Ei2 launched the My
Seizure Gauge challenge, with the end goal of creating a personalized seizure advisory system device. Prior to
moving forward, Ei2 convened a diverse group of stakeholders from people impacted by epilepsy and clinicians,
to device developers and data scientists, to basic science researchers and regulators, for a state of the science
assessment on seizure forecasting. From the discussions, it was clear that we are at an exciting crossroads. With
the advances in bioengineering, we can utilize digital markers, wearables, and biosensors as parameters for a
seizure-forecasting algorithm. There are also over a thousand individuals who have been implanted with
ambulatory intracranial EEG recording devices. Pairing up peripheral measurements to brain states could identify
new relationships and insights. Another key component is the heterogeneity of the relationships indicating that
pooling findings across groups is suboptimal, and that data collection will need to be done on longer time scales
to allow for individualization of potential seizure-forecasting algorithms.
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Introduction
Epilepsy is a common neurologic condition character-

ized by the occurrence of recurrent spontaneous seizures.

The World Health Organization estimates that there are
over 50 million people living with epilepsy worldwide
(World Health Organization, 2017). About a third of people
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Significance Statement

Unpredictability of seizures is a top issue for those living with epilepsy regardless of seizure frequency and
type. There is the fear of not knowing when a seizure will start and not knowing what triggers the seizure
onset. In August, the Epilepsy Innovation Institute (Ei2) convened a diverse group of stakeholders to assess
the state of the science on seizure-forecasting algorithms. Seizure forecasting shifts away from categorical
seizure prediction assessments of whether a seizure will or will not occur and instead focuses on identifying
the brain state wherein there is a high probability of a seizure occurrence. Here, we discuss the outcomes
of those discussions and next steps.
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living with epilepsy do not have seizure control, and those
whose seizures are controlled are at risk of breakthrough
seizures (Brodie et al., 2012). This staggering number has
not changed in decades, despite over 14 new therapies
for epilepsy entering the market since the 1990s (Löscher
and Schmidt, 2011)

In 2016, the Epilepsy Innovation Institute (Ei2), a re-
search program of the Epilepsy Foundation, released an
online survey asking their community what aspects of
epilepsy impact them the most. Over one thousand indi-
viduals responded from across the United States and
abroad. An overwhelming majority of respondents, re-
gardless of seizure frequency and type, selected unpre-
dictability of seizures as a top issue (Epilepsy Foundation,
2016). Many wrote about the fear of not knowing when a
seizure will start and not knowing what triggers the seizure
onset. In response to this survey, Ei2 developed the My
Seizure Gauge initiative with the end-goal of creating a
seizure risk-assessment system that could evaluate the
likelihood of a seizure on a daily basis. Before moving
forward with the initiative, Ei2 hosted an innovation work-
shop to assess the state of the science on seizure-
forecasting and risk assessment algorithms. Here, we are
defining seizure forecasting as the process of identifying
body states wherein there is a high probability of a seizure
occurrence.

The following scientific themes emerged from the discus-
sions. (1) Seizures have multi-temporal patterns on ultradian,
circadian, and multi-day time scales. (2) Multimodal analysis
of seizure events coupling EEG with non-EEG measures
may enhance seizure-forecasting algorithms. (3) Individual-
ization and personalization of a seizure-forecasting algo-
rithm is necessary. Each of these themes is highlighted in
more detail below.

Seizures Have Multi-Temporal Patterns
on Ultradian, Circadian, and Multi-Day
Time Scales

An overwhelming body of evidence indicates that sei-
zures have nonrandom time-specific patterns (Langdon-
Down and Russell Brain, 1929; Griffiths and Fox, 1938;
Bercel, 2006; Loddenkemper et al., 2011). Recently, these
observations have been replicated in long-term ambula-
tory intracranial recordings from people implanted with
the NeuroVista device (Cook et al., 2013; Karoly et al.,
2016, 2017), and in the Neuropace Rapid Neurostimula-
tion (RNS) device (Spencer et al., 2016; Baud et al., in
press). Ninety-eight percent of people with an implanted
Neuropace RNS device have clear circadian and/or ultra-

dian patterns for electrocordiographic seizures (Spencer
et al., 2016). In addition to circadian rhythms, researchers
also observed multi-day cycle of interictal epileptiform
activity varying between 7 and 35 d across patients, but
relatively stable within each patient (Baud et al., in press).

Interestingly, in both the 1938 Griffiths and Fox study as
well as in the recent Neurovista and Neuropace studies,
the complexity of detecting time patterns is discussed
(Griffiths and Fox, 1938; Freestone et al., 2017; Baud
et al., in press). Across the whole group, there was a lot of
variability, but within an individual, seizure time patterns
could be very consistent. Understanding these brain
rhythms, why they happen and how they can influence
seizure occurrences may be key to understanding seizure
susceptibility for the individual, and thus to developing a
personalized therapeutic strategy.

Multimodal Analysis of Seizure Events
Coupling EEG with Non-EEG Measures
May Enhance Seizure-Forecasting
Algorithms

The brain is a dynamic organ reacting to internal and
external inputs. The temporal rhythm of seizures suggests
that there may be several metabolic or biophysical mea-
sures that could be detected before a seizure event. For
example, several biophysical parameters are suggested
to change slowly during or preceding a seizure including
extracellular levels of potassium, oxygen, pH, and intra-
cellular NADH/FAD� (Jirsa et al., 2014). Very fast oscilla-
tions (VFOs) have also been observed to precede seizure
onset, and a review of the literature suggests that their
occurrence may be due to gap junctions that are brain pH
dependent (Traub et al., 2010).

With advances in bioengineering, we have the capabil-
ities to measure ionic changes in vivo coupled with intra-
cranial EEG recordings. A recent study demonstrated that
changes in the extracellular composition of potassium,
calcium and magnesium independent of local electrical
activity could distinguish which rodents were in a sleep
brain state versus an awake brain state (Ding et al., 2016).
This study highlights how measuring brain ionic changes
in vivo could enhance our understanding of seizure vul-
nerable brain states.

There may also be multiple ways to capture information
about an individual noninvasively that were previously
impossible. In 2017, Mike Snyder’s group provided the
proof of principle for how commercially wearable biosen-
sors could identify early signs of Lyme disease and in-
flammatory responses (Li et al., 2017). With video and 3D
imaging analysis, we are also now capable of mapping
subsecond units of movement that are indiscernible to the
human eye to analyze behavior (Wiltschko et al., 2015).
Indeed, sweat sensing technologies have advanced rap-
idly in the past five years. It will soon be possible to have
noninvasive continuous monitoring of various metabolites
such as cortisol, something that was not possible previ-
ously (Bandodkar and Wang, 2014; Rose et al., 2015;
Sonner et al., 2015). There are also optical measures of
motion and stress that can recognize heart rate and res-
piration at a distance (Nam et al., 2016). These tools could
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be used to analyze potential physiologic and behavioral
changes occurring hours before a seizure event.

Sheryl Haut’s group has reported that a subset of peo-
ple living with epilepsy are very good at predicting their
seizures up to 6 hours before the seizure event occurs
(Haut et al., 2013). These individuals kept a diary and
reported premonitory features associated with accurate
predicted seizure occurrence. The top ten features in-
cluded blurred vision, light sensitivity, dizziness, feeling
emotional, concentration difficulty, hunger/food cravings,
noise sensitivity, tiredness/weariness, thirst, and difficulty
with thoughts. This all suggests that there may be altera-
tions in body chemistry, associated behaviors, and symp-
toms that could improve seizure forecasting. Some of
these body changes could be picked up through existing
biosensors, mobile devices, or video monitoring. There
are also preliminary findings reported by Dean Freestone,
University of Melbourne, that atmospheric change such
as humidity and pressure may be a variable in seizure
likelihood for people with epilepsy. This intriguing obser-
vation suggests that the surround environments may also
play a role in the analysis. At the Ei2 workshop, multiple
parameters were identified as potential measurements to
consider in addition to EEG recordings when thinking
about creating a seizure prediction device (Table 1).

With the advances in bioengineering and biosensors,
we have the capability to acquire noninvasive multimodal
data that allow us to identify potential lead candidate
signals that inform about seizure probability to circle back
and test.

Individualization and Personalization of a
Seizure-Forecasting Algorithm Is
Necessary

There is a complexity and heterogeneity to understand-
ing the susceptibility of seizures. The International League
Against Epilepsy (ILAE) has stratified the underlying
causes for epilepsy into six categories: genetics, brain
structure abnormalities, metabolism changes, immune
system abnormalities, infectious disease, and unknown
causes (Berg and Millichap, 2013). Not only are there
multiple causes for a seizure, there are also varying re-
sponses to those causes within an individual that could
lead to a seizure vulnerable brain state. Therefore, pooling
data across individuals becomes suboptimal. The need
for individualization also underscores the need for longi-

tudinal data. Seizures are episodic events, and there
needs to be enough seizures for the algorithms to be
optimized over time.

Previously, we only had short-term intracranial EEG
data (typically up to one week) for analysis from presur-
gical monitoring units (Mormann et al., 2007). The short-
term recordings are of too limited a time span with
insufficient interictal and ictal data to build patient-
specific models for seizure likelihood. There are now over
a thousand individuals who have ambulatory intracranial
EEG systems through the FDA approved Neuropace RNS
system or through the Activa PC system by Medtronic in
clinical trials. There are also less invasive seizure monitoring
devices in development from ambulatory surface EEG caps to
subscalp EEG implants. This allows us to have access to
real-time longitudinal data (on the magnitude of years) of EEG
recordings. We can use these devices to link measured brain
states with peripheral measures to improve our ability to assess
seizure likelihood.

One approach could be to use machine learning. Deep
learning has proven to be highly successful at automated
complicated pattern recognition tasks in EEG (Nurse
et al., 2016; Kiral-Kornek et al., 2017) and multimodal data
and, therefore, constitutes a generalizable technique for a
seizure prediction system that can be tuned to an individ-
ual’s unique seizure data signature. Machine learning is
not the answer for all problems, but it works well with
unstructured data. However, for such an approach to be
meaningful, subject matter expertise will be critical to
ensure accurate classifications of the data and interpre-
table results. For example, mathematical modeling of
electrophysiological signatures of seizures evolutionarily
conserved across species from flies to humans has
yielded 16 distinct electrocardiographic seizure profiles
(Jirsa et al., 2014). This new taxonomy may spur potential
new insights into seizure mechanism that could help in-
terpret the data findings and find correlations in body
chemistry associated with these different seizure classifi-
cations. Moreover, insights into seizure onset mecha-
nisms from a dynamical systems perspective may help
identify useful data features (Meisel and Kuehn, 2012) to
integrate into machine learning algorithms.

Once an algorithm is developed, it will also be important
to consider the ability to personalize the algorithm. There
are different utilities for knowing when someone is at risk
for seizures. For example, some individuals may want to

Table 1. Potential measurements discussed at the Ei
2

workshop that could enhance a seizure-forecasting algorithm

� Mood�
� Cortisol
� Orexin
� Patient self-prediction�
� Electrical dermal activity
� Heart rate
� Temperature/weather
� Respiration
� Sleep cycle changes (sleep/wake staging)
� Sleep quality

� Stress�
� Fatigue�
� Irritability�
� Sex hormones
� pH (brain)
� Time of day�
� Antiepileptic drug levels
� Blood oxygen
� Inflammatory markers
� Glucose
� External environment

� Compliance
� Illness�
� Food/alcohol intake
� Orientation (cognitive)
� Gait
� Finer movements
� Ketones
� Speech
� Body Temperature

These measurements could be collected in numerous ways. An asterisk indicates those that could be captured by patient diary, others could be measured
through smartphone, biosensors, or through sweat collection.
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know when they are likely to have a subclinical seizure (an
electrographical seizure without any outward symptoms)
while others may only want to know when they are likely
to be experiencing a tonic-clonic seizures (convulsions) or
loss of consciousness. Some are troubled more than
others by false positive warnings, which can elevate anx-
iety levels. There should also be considerations about
what forecasting ranges are useful and what forecasting
probabilities would be meaningful. Lessons learned from
the Neurovista trial were that, although it was a mathe-
matically sound way to characterize performance, a pa-
tient might have a different assessment of what a good
performance algorithm means. Therefore, for any algo-
rithm, a patient feedback loop is critical to ensure speci-
ficity of the algorithm, successful adoption and good
performance. One of the workshop participants likened it
to a Pandora Music algorithm, where the user would hit
like or don’t like to the forecasting to ensure that the
forecasting algorithm could be optimized and fine-tuned
to the individual.

Next Steps
The overarching goal of Ei2 is to lead an effort that

would create an individualized seizure gauge that will
allow a person with epilepsy to monitor the likelihood of
a seizure on a daily basis. The word likelihood is em-
phasized as it shifts the focus from 100% certainty to
assessing probability states. Anecdotally, there are some
patients who report that after decades of living with epi-
lepsy they can know when they are likely to have a seizure
event. Our goal is to speed that process up for the com-
munity. From the Innovation Workshop, it became clear
that we need to focus on identifying and better under-
standing the changes in the body that may precede the
onset of a seizure, at a time course that may be hours or
days before the clinical (observable) seizure. Therefore,
linking an ambulatory long-term seizure monitoring ap-
proach (from already implanted in-depth intracranial
EEGs, subscalp EEGs, to wearable surface EEG caps, or
video monitoring) to a host of non-EEG-based methods from
emerging biosensors, wearable device technology, and digital
markers on a longitudinal time scale would help us identify new
relationships between brain state and noninvasive or minimally
invasive readouts. Insights from this study can then be used to
design less invasive approaches to a future seizure gauge
device for forecasting seizures.
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