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Visual Abstract
The parietal reach region (PRR) in the medial
bank of the macaque intraparietal sulcus has
been a subject of considerable interest in re-
search aimed at the development of brain-
controlled prosthetic arms, but its anatomical
organization remains poorly characterized. We
examined the anatomical organization of the
putative PRR territory based on myeloarchi-
tecture and retrograde tracer injections. We
found that the medial bank includes three ar-
eas: an extension of the dorsal subdivision of
V6A (V6Ad), the medial intraparietal area (MIP),
and a subdivision of area PE (PEip). Analysis
of corticocortical connections revealed that
both V6Ad and MIP receive inputs from visual
area V6; the ventral subdivision of V6A (V6Av);
medial (PGm, 31), superior (PEc), and inferior
(PFG/PF) parietal association areas; and intra-
parietal areas AIP and VIP. They also receive
long-range projections from the superior tem-
poral sulcus (MST, TPO), cingulate area 23,
and the dorsocaudal (area F2) and ventral (ar-
eas F4/F5) premotor areas. In comparison

Significance Statement
The medial bank of the intraparietal sulcus encompasses a parietal reach region (PRR) where neurons are involved in
the planning of visually guided arm movements, which has been the subject of interest in research related to
prosthetic arm control. To clarify the anatomic subdivisions of PRR, we examined the connections of different sites
within and rostral to this region with other areas of the macaque cortex. Based on differences in the density and
modality specificity of connections and histologic characteristics, we propose a subdivision of the medial bank into
areas. This anatomic scheme, which incorporates features of previous proposals but refines the boundaries, may help
guide future studies aimed at clarifying the functions of different medial intraparietal areas.
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with V6Ad, MIP receives denser input from somatosensory areas, the primary motor cortex, and the medial motor
fields, as well as from visual cortex in the ventral precuneate cortex and frontal regions associated with
oculomotor guidance. Unlike MIP, V6Ad receives stronger visual input, from the caudal inferior parietal cortex
(PG/Opt) and V6Av, whereas PEip shows marked emphasis on anterior parietal, primary motor, and ventral
premotor connections. These anatomical results suggest that MIP and V6A have complementary roles in
sensorimotor behavior, with MIP more directly involved in movement planning and execution in comparison with
V6A.
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Introduction
The cortex in the medial bank of the macaque intrapa-

rietal sulcus, originally described as part of Brodmann’s
area 5, has been the subject of several studies, which
attempted to map its subdivisions based on histologic
features, connections and sensory representations (Sakata
et al. 1973; Mountcastle et al. 1975; Pandya and Seltzer,
1982; Pons et al. 1985; Colby et al. 1988; Iwamura, 2000;
Lewis and Van Essen, 2000a; Seelke et al. 2012; Mayer
et al. 2016). According to most current studies, the caudal
part of the medial bank includes a medial intraparietal
area (MIP), first defined on the basis of myeloarchitecture
and connections with extrastriate cortex (Colby et al.
1988). Caudal to MIP is area V6A, which is typically
depicted as being located within and around the parieto-
occipital sulcus, slightly invading the medial bank of the
intraparietal sulcus (Luppino et al. 2005). However, the
anatomic criteria that differentiate MIP from surrounding
cortex have not been explored in detail.

At the same time, the medial bank of the intraparietal
sulcus and the anterior parieto-occipital sulcus have been
the focus of numerous studies related to the planning and
guidance of arm movements (e.g., Colby and Duhamel,
1991; Johnson et al. 1996; Fattori et al. 2001; Battaglia-
Mayer et al. 2003; Gregoriou and Savaki, 2003; Hadjidimi-
trakis et al. 2014b). A wide region, which likely includes
parts of V6A and MIP, is often referred to as the parietal
reach region (PRR; Snyder et al. 1997, 1998; Andersen
et al. 2014a). Neurons in this region also display activity

related to other aspects of visuomotor integration, such
as eye movements (Snyder et al. 1997; Breveglieri et al.
2012; Hadjidimitrakis et al. 2012). Some evidence for
functionally distinct sectors in the medial bank has
emerged, based, for example, on descriptions of variabil-
ity in deficits after permanent or reversible cortical lesions
(Rushworth et al. 1997; Battaglini et al. 2002; Padberg
et al. 2010; Hwang et al. 2012; Yttri et al. 2014). However,
the relationship between sites related to these functions
and anatomically defined areas has remained difficult to
ascertain. In part, this is due to the use of different termi-
nologies by research groups. More fundamentally, how-
ever, the anatomic organization of the medial bank of the
intraparietal sulcus has not been addressed in sufficient
detail. Previous studies in macaques have explored the
cortical connectivity of other posterior parietal areas (Ca-
vada and Goldman-Rakic, 1989a,b; Lewis and Van Essen,
2000b; Marconi et al. 2001; Morecraft et al. 2004; Gam-
berini et al. 2009; Bakola et al. 2010, 2013; Passarelli et al.
2011, 2017), but studies that did target the medial bank
(Pandya and Seltzer, 1982; Blatt et al. 1990; Prevosto
et al. 2011) included relatively few tracer injections, pre-
cluding comparisons of results obtained in different loca-
tions.

In the present study, we examined the afferent cortical
connections and histology of the medial bank of the in-
traparietal sulcus in macaques. Based on these anatomic
features, we propose a tripartite subdivision, which, while
incorporating many features of previous proposals, re-
fines the areal boundaries. This anatomic scheme, which
provides a firm basis for subdivision of the PRR into two
areas (V6A and MIP), may help guide future functional
studies.

Materials and Methods
Fluorescent tracers were injected in the medial bank of

the intraparietal sulcus in six macaque monkeys (Macaca
fascicularis and M. nemestrina; Table 1). Some of these
animals received additional tracer injections (not reported
here) or were also studied in acute sessions of electro-
physiological recordings under anesthesia. Experimental
protocols were approved by the Monash University Ani-
mal Experimentation Ethics Committee and the Bioethical
Committee of the University of Bologna and were updated
during the project according to the most recent institu-
tional regulations. All procedures followed the guidelines
of the Australian Code of Practice for the Care and Use of
Animals for Scientific Purposes and the European Union
Directives 86/609/EEC and 2010/63/EU on the care and
use of laboratory animals.
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Surgical procedures and tissue processing
Surgeries took place in standard aseptic conditions,

and in all cases the heart rate, blood pressure, respiratory
depth, and body temperature were continuously moni-
tored. Animal A9 was pretreated with injections of atro-
pine (0.04 mg/kg, i.m.) and ketamine hydrochloride (15
mg/kg, i.m.) and, after 30 min, anesthetized with sodium
thiopental (8 mg/kg, iv), with additional doses adminis-
tered as required. The other animals were pretreated with
i.m. injections of diazepam (1.0 mg/kg) and atropine (0.04
mg/kg); anesthesia was induced 30 min later with a ket-
amine/Dormitor/butorphanol cocktail (0.1 mg/kg i.m.), af-
ter which the animals were intubated and maintained with
isoflurane (0.5%–2%). Hydration was provided by con-
stant iv infusion of Hartmann’s solution. Dexamethasone
(0.3 mg/kg, i.m.) and Norocillin (25 mg/kg, i.m.) were also
administered at the start of the procedures.

The animals were secured on the stereotaxic apparatus,
and craniotomies were performed over the posterior parietal
cortex to reveal the intraparietal sulcus. Injection sites were
selected by direct visualization of the sulcal geometry and
were later assigned to architectonic subdivisions after his-
tologic examination of postmortem material. Fluorescent
tracers (Table 1) were injected using a microsyringe that had
a glass micropipette attached to its needle. After the injec-
tion procedures, the cortical surface was covered with Gel-
film, the bone flap was fixed back in place with dental acrylic,
and the muscles and skin were sutured. On recovery from
anesthesia, the animals were returned to their home cages
and closely monitored. For the following 2–3 d, the animals
were maintained on analgesics (A9: Ketorolac, 1 mg/kg, i.m.;
other cases: carprofen 4 mg/kg, s.c., or Temgesic 0.01
mg/kg, i.m.), and antibiotics (erythromycin, 1–15 mL/10 kg,
or norocillin, 0.17 mL/kg).

After a survival period of 14 d, the animals were premed-
icated as above before receiving a lethal injection of sodium
thiopental or pentobarbitone (100 mg/kg, iv). They were first
perfused with heparinized saline or phosphate buffer, and
then with 4% paraformaldehyde in 0.1 M phosphate buffer
at pH 7.4. Case A9 was subsequently perfused with 4 liters
of 5% glycerol in the same buffer. The brains were removed
from the skull, photographed, cryoprotected by immersion
in buffered solutions of 10% and 20% glycerol (A9) or su-
crose (10%–30%, other cases) until they sank, and then
snap-frozen and stored at –80°C. Sections of 50 or 60 �m
were cut in the coronal plane, using a freezing microtome

(A9) or a cryostat (other cases). Every fifth section was left
unstained for observation under the fluorescence micro-
scope, and adjacent series were stained for Nissl substance
and for myelin with the Gallyas method (Gallyas, 1979). All
sections were coverslipped with DPX, after rapid dehydra-
tion in ethanol and clearing with xylene.

Data analysis
Neurons labeled with fluorescent tracers were visual-

ized using a Zeiss Axioskop microscope equipped with
10� and 20� dry objectives. For all sections examined,
the pial and inner boundaries of the cerebral cortex, the
outlines of the injection sites, and the location of labeled
cells were charted using software tools that read the input
of X/Y transducers mounted on the microscope stage.
Digital reconstructions of the cortical surface were gener-
ated with CARET software (http://www.nitrc.org/projects/
caret/, Van Essen et al. 2001), from midthickness section
contours, as described previously (Galletti et al. 2005;
Gamberini et al. 2009). The same software was used to
prepare the density maps of labeled neurons by project-
ing the location of each neuron to the nearest midthick-
ness contour of the 3D reconstruction (Bakola et al. 2010;
Passarelli et al. 2011). A quantitative measure of the
strength of projections from various cortical regions is
reported as the percentage of labeled cells per total num-
ber of labeled cells in each case (Table 2).

To examine the consistency in the pattern of distribu-
tion of label across cases, we used the Kendall coefficient
of concordance (W, evaluated by �2), a nonparametric
statistical measure employed previously in anatomic
studies (Bakola et al. 2013; for detailed discussion, Reser
et al. 2013; Burman et al. 2014a,b). Data from the two
injections in V6Ad were compared with the Spearman
rank correlation (Rs); as described before (Legendre,
2005), for pairwise correlations, W is a linear transforma-
tion of Rs. For the present analysis, we grouped projec-
tions from different source areas into nine cortical sectors
(Table 2), to correct for low or zero cell counts.

Identification of cortical areas containing extrinsic
labeled cells

The nomenclature and boundaries of the cortical areas
that contained labeled cells after injections in the medial
intraparietal region were based on published criteria or

Table 1. Summary of experimental cases

Case Designation Species/sex Weight (kg) Injection site Amount (�l), concentration (%)
1 MF7-DY M. fascicularis/M 3.7 V6Ad 0.3, 1.5
2 NF228-DY M. nemestrina/F 3.0 V6Ad 0.25, 1.5
3 MF7-FR MIP 0.5, 15
4 NM31-FB M. nemestrina/M 7.8 MIP 0.35�l, 1.5
5 MF7-FB MIP 0.3, 1.5
6 A9-CTB M. fascicularis/M 4.1 MIP 2, 1
7 MF8-FE M. fascicularis/M 5.3 MIP 1, 15
8 MF7-FE MIP/PE 0.7, 15
9 MF10-DY M. fascicularis/M 3.6 PEip 0.25, 1.5

CTB, cholera toxin subunit B, conjugated with Alexa 488; DY, diamidino yellow; FB, fast blue; FE, fluoroemerald MW 10,000; FR, fluororuby MW 10,000. For
FE and FR, only retrograde labeling is reported here.
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relative to sulcal landmarks, using previous published
maps as a guide.

Posterior parietal cortex
The architectonic criteria of Pandya and Seltzer (1982)

were used to subdivide the superior parietal lobule into
areas PE and PEc. The inferior parietal lobule was subdi-
vided according to Pandya and Seltzer (1982), Andersen
et al. (1990), and Gregoriou et al. (2006). Area LIP in the
lateral intraparietal sulcus was identified based on de-
scriptions by Blatt et al. (1990) and Medalla and Barbas
(2006). The fundus of the intraparietal sulcus is occupied
by area VIP (Colby et al. 1993); in myelin-stained tissue,
we identified medial and lateral subdivisions (VIPm, VIPl;
Lewis and Van Essen, 2000a), but for analysis, these were
grouped under the term VIP. We recognized parieto-

occipital area V6 (largely coextensive with area PO; Colby
et al. 1988; Galletti et al. 2005) on myeloarchitectonic
grounds (Luppino et al. 2005).

Temporal lobe
We used the collective term cST for dorsal parts of the

caudal superior temporal sulcus, including areas MST and
caudal TPO (TPOc); although the region has been re-
ported to contain distinct architectonic patterns (Desi-
mone and Ungerleider, 1986; Boussaoud et al. 1990;
Lewis and Van Essen, 2000a), we could not consistently
identify these across animals.

Mesial surface
The subdivision of areas on the medial wall and cingu-

late sulcus (PGm, 23, 24) were based on definitions by

Table 2. Percentages of extrinsic projections (% of total) in various cortical areas after injections in the medial bank of the
intraparietal sulcus

Injected area V6Ad MIP MIP/PE PEip

Case 1 2 3 4 5 6 7 8 9
Extrastriate (EXT)

V6 � 3.2 � 0.6 3.4 0.9 � �

Other EXT 0.9 � 2.2 � 5.7 0.7
Medial parietal

V6Av 32.0 43.4 6.9 6.8 12.1 3.5 9.8 � �

V6Ad # # 33.0 19.7 21.1 7.9 11.4 3.7
PGm 3.2 0.6 � 3.1 � � � �

PEci/31 3.0 4.2 3.2 11.3 7.8 � 7.7 �

Superior parietal (SPL)
PE 0.5 � 8.1 9.5 13.0 5.3 17.4 49.4 21.0
PEip � � 1.6 2.7 4.2 9.5 10.2 6.1 #

PEc 22.6 3.2 31.0 15.0 13.2 3.0 2.7 10.6 6.5
Other SPL � 0.5 � � 1.4 � 3.4 28.1

Intraparietal IPS
MIP 15.7 20.0 # # # # # #� 5.8
VIP � 11.2 � 4.1 4.1 12.9 11.3 1.3 9.0
LIP � � � � 0.8 1.2 �

AIP � 1.1 � � � 4.1 1.4 � 1.8
Inferior parietal (IPL)

Opt/PG 5.9 2.4 � � � 1.1 � �

PFG/PF 1.0 3.1 � � � 2.4 0.5 � �

ParOp � � 1.2 0.7 1.3 3.1 3.3 1.1 3.3
Temporal

cST 6.4 1.0 1.9 3.5 4.5 5.7 1.3 � �

Other Temporal � � � � � �

Limbic
23 0.8 0.5 � 1.5 � 1.8 � � �

24 � � � 3.0 � 4.0 1.1 0.8 2.7
Rs � � � � � � �

Motor/premotor
F1 � � 0.9 1.3 1.1 2.3 10.0 3.9 16.6
F2 5.1 3.3 6.0 10.0 5.0 19.3 16.5 9.1 �

F3 � � 0.8 1.2 0.6 � 0.9 0.9 0.6
F5/F4 0.5 � 1.2 � 5.2 1.0 � 1.5
F7 � � � 1.1 � � � �

F6 0.8 0.5 � 1.0 � � � �

Prefrontal (PrFr)
SEM/FEF � � 2.2 � 3.2 1.4
Other PrFr � � � � � � �

n 7276 19,235 4369 15,202 22,129 6808 1239 2230 6457

#Location of injection site; ��0.5% of total projections; �, injection site invaded area PE; n, number of extrinsically labeled cells. “Other EXT” includes com-
bined percentages of labeled neurons in V2, Vis, area prostriata, V4, and DP.
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Matelli et al. (1991), Kobayashi and Amaral (2000), More-
craft et al. (2004), Vogt et al. (2005), and Passarelli et al.
(2017). Difficulties in identifying areas PEci and 31 in the
caudal cingulate sulcus led us to assign a collective area
31/PEci designation for labeled cells in that part of cortex.
Ventromedial parts of the precuneate cortex (ventral to
area PGm) have been tentatively designated “Vis” (Ko-
bayashi and Amaral, 2000). Further ventrally, labeled cells
in rostral parts of the dorsal calcarine sulcus were attrib-
uted to the second visual area (V2; (Gattass et al. 1981;
Rosa et al. 1988) and area prostriata (Yu et al. 2012).

Frontal lobe
The frontal motor and premotor cortices were subdi-

vided into areas F1–F7 according to the criteria of Matelli
et al. (1991) and Belmalih et al. (2007). We used the term
“SEM” for the territory in ventral parts of the posterior
bank and depths of the arcuate sulcus, which contains the
macaque smooth pursuit eye field (Stanton et al. 2005).
Labeled cells in the anterior bank and convexity of the
arcuate sulcus were allocated to the frontal eye fields
(8/FEF; Moschovakis et al. 2004; Gerbella et al. 2010). The
few labeled cells in the dorsolateral prefrontal cortex, near
and in the principal sulcus, were attributed to areas 9/46
(Petrides and Pandya, 1999).

Results
Here we describe the pattern of cortical projections to

the medial bank of the intraparietal sulcus and adjacent
rostral parieto-occipital sulcus, based on data from nine
fluorescent tracer injections in six macaques. As summa-
rized in Table 1, we have assigned six of these injections
to area MIP and two to the dorsal part of area V6A (V6Ad).
The pattern of connections of V6Ad has been previously
described in detail (Gamberini et al. 2009); in the present
study, data from two new cases will be used to contrast
this connectivity with that of MIP, which is located more
rostrally along the medial wall of the intraparietal sulcus.
One additional case (case 9) illustrates the connection
pattern of the medial bank beyond the rostral border of
MIP.

Identification of medial intraparietal sulcus areas
The following descriptions are based on low-power

views of myelin-stained sections, which, in our experi-
ence, proved the most useful for areas in the medial
intraparietal cortex [in agreement with Lewis and Van
Essen (2000a)]. Fig. 1A–D highlights the architectonic
transitions identified in the present study. The same figure
illustrates, on a flat map, the corresponding midthickness
section contours and areal boundaries of a representative
case (case 7). In this and the following maps, architec-
tonic borders illustrate the core of delineated areas (or
zones), as assessed by histologic criteria; uncertainties in
the definition of borders, for example, in Fig. 1A–D, are
marked by white lines.

The medial intraparietal cortex is moderately myelin-
ated and is characterized by the presence of two distinct
bands of Baillarger. In a caudal-to-rostral sequence (Fig.
1A–D), we recognized three architectonic variations: ar-
eas V6A, MIP, and a subdivision of area PE (PEip). The

most caudal pattern (V6A) had a relatively thick inner band
and generally radial orientation (Fig. 1A), whereas MIP
was characterized by a thinner inner band and more
matted appearance (Fig. 1B, C). Dorsal and ventral sub-
divisions of V6A (V6Ad, V6Av) were distinguished in our
material as progressions in myelin staining (Fig. 1A), as
per earlier descriptions (Luppino et al. 2005); according to
previous functional studies, these are best seen as sub-
divisions of a single area, V6A, rather than separate areas
(Gamberini et al. 2011).

In more rostral parts of the medial bank (approximately
at the coronal level corresponding to the dorsal tip of the
central sulcus; Fig. 1D), the myelin density becomes
lighter and the bands of Baillarger become less easily
discerned. We termed this region, which falls within the
architectural designation of area 5 (Lewis and Van Essen
2000a), as PEip, noting that it comprises only a subset of
the original larger portion of the medial bank forming
corticospinal connections (Matelli et al. 1998).

The adjacent cortex near the fundus, and continuing
into the lateral bank, has been previously designated as
the anterior intraparietal area, AIP (Preuss and Goldman-
Rakic, 1991; Lewis and Van Essen, 2000a). However, the
same term has been employed by physiologic (Sakata
et al. 1995; Murata et al. 2000) and connectional (Borra
et al. 2008) studies that targeted rostral parts of the lateral
bank of the intraparietal sulcus, in relation to grasping
manipulations. These conflicting definitions of AIP differ in
their connectivity profiles (Lewis and Van Essen, 2000b),
but a comparative anatomic study is still lacking. Pending
further investigations, we retained the term AIP for rostral
parts around the fundus and in the lateral bank of the
intraparietal sulcus.

Comparison of this partitioning scheme with that pro-
posed by Lewis and Van Essen (2000a) suggests that the
observed differences are a reflection of the chosen termi-
nology (Fig. 2). In particular, architectural field V6Ad of the
present nomenclature appears to partially overlap with
field MIP of the earlier study, whereas the presently de-
fined MIP substantially overlaps with field 5V. The cortical
territory assigned to MIP in the present study also over-
laps, at least partially, with area PEa of previous proposals
(Pandya and Seltzer, 1982; Morecraft et al. 2004). Overall,
the present partitioning scheme appears more similar to
that put forward earlier by Tanné-Gariépy et al. (2002). We
recognize that the use of multiple terminologies assigned
to overlapping cortical regions could confound the inter-
pretation of results, but considering the much more ex-
tensive current information about the anatomy and
physiology of V6A (Gamberini et al. 2009, 2011; Passarelli
et al. 2011), the original definition of area MIP by Colby
et al. (1988), and the results of tracer injections (see
below), we believe that the present nomenclature pro-
vides an accurate synthesis of current knowledge.

Overview of connections
Fig. 3 reports the locations of the nine injection sites

included in the present study, shown in coronal sections.
To facilitate orientation, the estimated locations are pro-
jected on the surface of a representative “unfolded” ma-
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caque hemisphere, together with the boundaries of
posterior parietal areas (Fig. 3, middle panel). The quan-
titative findings from individual cases are reported in
Table 2. For the purposes of a summary, in the table we

have combined regions that contained few labeled cells
into groups based on anatomic location or functional
similarities. In the following sections, we report on the
corticocortical connections of the above myeloarchitec-

Figure 1. Top: Myeloarchitecture of the medial intraparietal region shown in four coronal sections (A–D) of a representative case (case
7). White lines mark uncertainties in the definition of areal boundaries. Areas V6A (A) and MIP (B, C) were characterized by
well-separated bands of Baillarger, with V6A showing a thicker inner band and overall radial organization; rostral area PEip was
identified by relatively light myelination (D). Bottom: Boundaries (in white) of medial intraparietal and neighboring divisions projected
on a flat map. Midthickness contours of sections A–D are shown in black lines. In this and following unfolded maps, the gray shading
represents cortical curvature: convex surfaces (e.g., “lips” of sulci) appear lighter, whereas concave surfaces (e.g., banks of sulci) are
darker. AIP, anterior intraparietal subdivision; LIPv, ventral subdivision of LIP; MIP, medial intraparietal area; PE, PEip, subdivisions
of area 5; PF, subdivision of inferior parietal cortex; V6Ad, V6Av, dorsal and ventral subdivisions of area V6A; VIPl, VIPm, lateral and
medial subdivisions of area VIP; sulci: as, arcuate; cgs, cingulate; cs, central; ips, intraparietal; lf, lateral fissure; pom, medial
parieto-occipital; pos, parieto-occipital; ps, principal; sts, superior temporal. M, medial; R, rostral.
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tural fields in the medial bank of the intraparietal sulcus,
from caudal to rostral, with the focus on identifying their
shared and distinguishing patterns of connections.

V6Ad connections
Two injections were placed in the caudalmost parts of

the intraparietal sulcus, near the location where this sul-
cus merges with the anterior bank of the parieto-occipital
sulcus (cases 1 and 2; Fig. 3). These injections were within
the currently recognized borders of area V6A (subdivision
V6Ad), an assessment that was supported by application
of the myeloarchitectural criteria of Luppino et al. (2005)
and by the consistency in the pattern of projections (Rs �
0.733, df � 7, p � 0.02). The injection in case 1 was near
the dorsal border of V6Ad with superior parietal lobule
area PEc, whereas that in case 2 was located near the
ventral border of V6Ad with V6Av. In case 2, there was a

minor spill of tracer in the dorsal part of the lateral bank of
the intraparietal sulcus (area LIP, Fig. 4B; white oval on
the flat map of Fig. 4). However, we observed no evidence
of the long-range transport typical of LIP, as shown by the
lack of labeled neurons in the middle temporal area, MT,
and the temporal area TEO (Blatt et al. 1990). Fig. 4
illustrates the distribution of retrograde label in case 2 in
representative coronal sections and an unfolded view of
the reconstructed cortical surface; a comparison of the
connectional patterns after V6A (case 1) and MIP (case 3)
injections is shown in Fig. 6A.

Both injections in V6Ad revealed substantial numbers of
labeled neurons in V6Av (Fig. 4A, B) and, rostrally, in MIP
(Fig. 4C), in addition to moderate input from the caudal
(PG/Opt, Fig. 4B, C) and rostral (PFG) cytoarchitectural
areas of the inferior parietal lobule. Much weaker parietal
lobe projections originated in the dorsal parietal convexity
(area PE), and in lateral intraparietal areas LIP and AIP
(Fig. 4D). Label from area PEc (Fig. 4B) followed a dorso-
ventral trend; it was strong in case 1, but weak in case 2
(Table 2). The reverse trend was observed with respect to
the connections of area VIP (primarily the medial subdivi-
sion, VIPm; Fig. 4C, D) along the fundus of the intrapari-
etal sulcus (Table 2). Finally, the lateral somatosensory
association areas [PGop, Fig. 4C, and Ri; grouped under
parietal operculum (ParOp) in Table 2 and on the unfolded
maps] contained a small number of neurons in both
cases.

In the temporal lobe, both cases revealed relatively
sparse but consistent projections from the superior tem-
poral sulcus areas MST and TPOc [Fig. 4; in Table 2, these
appear grouped under caudal superior temporal (cST)]. In
addition, the rostral sector of polysensory area TPO
(TPOr; Lewis and Van Essen, 2000a; Fig. 3B) included
labeled neurons in case 2. Further caudally, visual cortex
connections were evidenced by projections from area V6
(Fig. 4A) and in the dorsal part of the prelunate cortex
(dorsal prelunate area, DP).

The mesial surface of the brain revealed moderate to
low numbers of labeled cells in area PGm (e.g., Fig. 4B), in
subdivisions of caudal (areas 31/PEci, Fig. 4C; 23, Fig. 4)
and rostral (area 24; Fig. 4) cingulate cortex, and in the
retrosplenial region (Rs; areas 29 and 30; Fig. 4D). The
injection in case 1 resulted in sparse labeled cells in the
ventromedial cortex near visual area V2 (Vis; Fig. 6A).

In the frontal cortex, moderate projections originated in
dorsocaudal premotor area F2 (Fig. 4E), with smaller num-
bers of labeled neurons observed in other premotor sub-
divisions (F7, F5, F3/SMA, F6/preSMA; Figs. 4 and 6) and
in the primary motor cortex (F1; Fig. 4). Other frontal lobe
areas were devoid of label, except for a few neurons near
the fundus of the dorsal branch of the arcuate sulcus
(putatively in SEM; Fig. 4E) and in the dorsal periprincipal
region (caudal area 9/46, case 2; Fig. 4F).

The pattern of label we observed after injections in
lateral (caudal intraparietal) parts of V6Ad followed the
general connectivity trend for this area, observed in an
earlier study in which injections were located in the
parieto-occipital sulcus and on the mesial surface (Gam-
berini et al. 2009), confirming characteristic input from

Figure 2. Architectonic divisions of the medial intraparietal and
adjacent regions by different authors (A–E). Solid lines, outlines
of unfolded sulci; dotted lines, fundus of sulci (medial bank of the
intraparietal sulcus on top); dashed line, division between pari-
etal areas 5D and 5V. PO, parieto-occipital area. Top right: 3D
reconstruction of a macaque brain illustrating parietal subdivi-
sions identified in the present study.
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parietal, dorsal premotor, and caudo-dorsal temporal re-
gions. The few differences between the present and pre-
vious study were mainly quantitative: projections from the
ventral parieto-occipital cortex (V6Av and V6) were some-
what denser than in the previous report, whereas those
from the prefrontal cortex were less substantial.

MIP connections
In six cases (cases 3–8; Table 1, Fig. 3), injections were

contained fully or partly within area MIP, as defined here
on the basis of myeloarchitecture. The injections in cases
3–5 targeted caudal and dorsal parts of MIP and were
likely contained in the region designated dorsal part of
MIP (dMIP) in our previous study (Bakola et al. 2010). The
proximity of the injection sites to V6A/PEc cortex and the
tissue damage that occurred as a result of the syringe
penetration reduced the degree of certainty in identifying
the boundaries of MIP based on myeloarchitecture in
cases 3–5. Nonetheless, the connectional patterns of
these cases differed in a number of ways from those of
cases 1 and 2 (injections in V6Ad), and from previous

reports on the connections of V6Ad (Gamberini et al.
2009) and PEc (Bakola et al. 2010). In addition, our sta-
tistical analysis showed that the pattern of projections
across cases 3–7 was highly concordant (W � 0.724, �2 �
28.96, df � 8, p � 3 � 10�4). In case 8, the injection
involved area MIP but extended into area PE; data from
this case are reported in Table 2 and Fig. 7 but were
excluded from further analyses. Results from the MIP
injections are presented in serial coronal sections of an
example case (Fig. 5), and in the flat maps of Figs. 5–7.

Projections from V6Av were present after injections in
MIP, albeit in smaller numbers than those observed after
V6Ad injections (Table 2); however, V6Av projections to
MIP originated from sites located more medial than those
that projected to V6Ad (compare flat maps in Figs. 4 and
5). In contrast with cases 1 and 2, there was a marked
emphasis on projections that originated from superior
parietal areas (PE, PEc; Table 2), including sparse label
from the anterior somatosensory cortex (areas 2 and 3a;
see Figs. 5–7). Many labeled cells were located in rostral

Figure 3. Summary of locations of injection sites. Coronal sections showing the centers (black) and halos (white) of injection sites for
each of the cases presented in this study. The boundaries of areas are also shown. A summary of the injection sites for V6Ad (cases
1 and 2), MIP (cases 3–8), and PEip (case 9) is presented on the unfolded reconstruction of a macaque left hemisphere (expanded
view in the center). Other abbreviations as in Fig. 1.
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parts of the parietal convexity and in the medial bank of
the intraparietal sulcus (PE, PEip); by comparison, the
medial bank beyond the limits of MIP was practically
devoid of label after V6Ad injections (Figs. 4 and 6). More
laterally, labeled cells were more numerous in the parietal
operculum and the lateral fissure (ParOp; Table 2; Fig.
5C), whereas the inferior parietal areas were more sparsely
labeled, compared with the V6Ad injection cases. We noted
a preference for VIP projections to target MIP locations in
relatively ventral portions in the bank (Table 2, cases 6 and
7), reminiscent of the differences between V6Ad injections
described above. Label in the lateral bank of the intrapa-
rietal sulcus (areas LIP and AIP) was weak (Fig. 5C–E,
Table 2).

Visual projections to MIP originated from V6 (Fig. 5A),
peripheral representations of extrastriate area V2 (Figs.
5B, 6, and 7), area prostriata (ProSt, Figs. 5 and 6), parts
of the ventromedial cortex (Vis; Figs. 5B and 6), and the
dorsal prelunate gyrus (DP/V4; Figs. 5–7). Consistent label
in the temporal lobe was confined to areas MST and TPO,
although scattered labeled cells were occasionally ob-
served in Tpt (Fig. 5), TPOr (Figs. 6 and 7), and the
parahippocampal cortex (TH/TF; Figs. 5 and 6).

Similar to the V6Ad cases, weak to moderate projec-
tions arrived from medial cortex areas (PGm, 31, 23, 24,
Rs; Table 2). In cases 3 and 5, a few labeled cells were
found in areas PEci/31 (Figs. 5C and 6). Frontal projec-

tions to MIP originated from the same complement of
areas that projects to V6Ad but were denser overall
(Table 2). F2 projections stemmed from nearly the entire
extent of this area (e.g., Fig. 5F, G). Finally, after injections
in MIP, some labeled neurons were present, perhaps
surprisingly, in the depths of the posterior bank and floor
of the arcuate sulcus (SEM; Figs. 5F, 6B, and 7A), extend-
ing to the classic FEF region on the arcuate convexity
(FEF; Figs. 6 and 7), and in the periprincipal region (Figs.
5–7).

Injection in cortex rostral to MIP
In one case, we placed a diamidino yellow injection in

cortex rostral to the myeloarchitectural border of MIP
(PEip, case 9; Fig. 3). The pattern of connections (Figs. 7
and 8 and Table 2) differed in substantial ways from the
above descriptions, showing marked emphasis on input
from the somatosensory areas of the anterior (area 2, Fig.
8A, B; area 3a, Fig. 8C, D) and lateral (ParOp; Fig. 7)
parietal cortex and the primary motor cortex (F1; Figs. 8C,
D). In the intraparietal sulcus, significant numbers of la-
beled cells were found in the rostral half of the medial
bank, extending into lateral locations (area AIP; Fig. 8D)
and ventrally in VIP (Fig. 8A–C), whereas input from me-
dial parietal areas was limited. Unlike the cases with
injections in V6Ad and MIP, projections from the premotor
cortex were shifted laterally and originated mainly from
ventral subdivisions F4 (Figs. 7 and 8E ) and F5 (Fig. 7).

Figure 4. Cortical distribution of retrogradely labeled cells in case 2 (NF228-DY, injection in V6Ad). A–F, Coronal sections were taken
at the levels indicated on the flat map of the reconstructed hemisphere. Each black point represents a labeled cell. The quantitative
distribution of labeled cells is shown on the two-dimensional reconstruction of the brain (middle panel). Boundaries for major
architectonic divisions are reported on the series of coronal sections and on the flat map (gray lines). In the flat map, the location of
the center of the injection site is shown in black. cal, calcarine sulcus. Other abbreviations as in Fig. 1.
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The differential connections with the lateral premotor cor-
tex alone appear to be reliable anatomic indicators of
caudal and rostral parts of the medial bank (see also
Tanné-Gariépy et al. 2002).

Comparison between V6Ad and MIP
Areas V6Ad and MIP overlap at least in part with the

territory of the physiologically defined PRR, so it is of
interest to define common and distinctive anatomic fea-
tures of these areas. V6Ad and MIP connect to each other
(Table 2) and share a defined set of projections from the
same complement of parietal association, caudal frontal,
temporal, and medial areas. On average, reciprocal V6Ad-
MIP and common extrinsic projections accounted for
�90% of the total labeled neurons (82%–98% across indi-
vidual cases; Table 2). Statistical analysis of the distribution

of label across cases 1–7 suggests a moderate degree of
concordance (W � 0.594, �2 � 33.29, df � 8, p � 5 � 10�5).
Areas that sent substantial projections to both V6Ad and
MIP (�0.5% of total average label for each area; Fig. 9)
included V6, the ventral subdivision of V6A (V6Av), caudal
superior parietal area PEc, medial parietal areas (PGm, PEci/
31), and the fundus (area VIP) and lateral bank (area AIP) of
the intraparietal sulcus. Additional projections that targeted
both V6Ad and MIP originated from rostral (PFG/PF) inferior
parietal areas, caudal parts of the temporal lobe in areas
MST and TPO (cST; Table 2), cingulate area 23, the cau-
dodorsal premotor area F2, and the ventral premotor cortex
(subdivisions F4/F5).

Despite these commonalities, specific variations in the
density and modality specificity of projections were ob-

Figure 5. Cortical distribution of retrogradely labeled cells in case 5 (MF7-FB, injection in MIP). A–G, Coronal sections were taken at
the levels indicated on the flat map of the reconstructed hemisphere. The quantitative distribution of labeled cells is shown on the
two-dimensional reconstruction of the brain (bottom right). Other abbreviations as in Figs. 1 and 4.
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served (Table 2). Thus, V6Ad received overall visual asso-
ciation input (from inferior parietal cortex, Rozzi et al.
2008; from V6Av, Gamberini et al. 2011). In comparison,
MIP received denser somatic-related input from superior
parietal areas and motor input from premotor areas, the
primary motor cortex (F1), and motor cingulate area 24d
(Luppino et al. 1991). MIP received additional minor input
from the ventromedial visual cortex (including peripheral
parts of area V2) and the frontal oculomotor areas. These
differences are reflected as gradual shifts in the spatial
arrangement of projections to the two parietal areas; the
example of the single hemisphere reconstruction of cases
1 (injection in V6Ad) and 3 (injection in MIP) of Fig. 6A
illustrates this point.

We examined the laminar distribution of projection neu-
rons to MIP and V6A by calculating the proportion of
labeled neurons located in the supragranular layers
(%SLN) as a percentage of the total number of labeled
neurons in each projection area (Felleman and Van Essen,
1991). In this analysis, we included projections that com-
prised 50 or more neurons per area in at least two cases
and pooled the results from different cases to avoid bias
introduced by small samples (Burman et al. 2014a). For
MIP, most projections fell between 32% and 58% (Table 3)
and were labeled as bilaminar; in contrast, projections
from cingulate area 23 originated from infragranular layers
(descending type). The pooled results from the two V6A
cases revealed that the projections were of a bilaminar or
infragranular type. However, we have refrained from
drawing any strong conclusions about the direction of
information flow based solely on the retrograde labeling

patterns between connected areas (Felleman and Van
Essen, 1991; Rozzi et al. 2006; Hackett et al. 2014).

Based on rigorous definitions of areal laminar organiza-
tion, it has been suggested that projection neurons to
frontal cortex stem from the upper layers of eulaminated
fields, and, conversely, from progressively deeper layers
of less differentiated fields (Barbas, 1986). Although a full
analysis cannot be applied to the present data, due to the
lack of structural classification of many of the source
areas and of anterograde labeling data, there is some
support for the view that structural characteristics influ-
ence connectivity. In our data. frontal projections to MIP
originated in different cortical layers, depending on the
laminar composition of each source area (Table 3). In
particular, after injections in MIP, the proportion of labeled
neurons in supragranular layers increased systematically
with the architectonic differentiation of frontal motor ar-
eas, from areas 24 and F3 to the dorsal premotor and the
primary motor cortex (Barbas and Pandya, 1987; More-
craft et al. 2012; Barbas and García-Cabezas, 2015),
suggesting that connectional patterns vary systematically
with cortical structure.

Discussion
The focus of this study was to clarify the organization of

the medial bank of the intraparietal sulcus in the macaque,
on the basis of architectonic characteristics and corticocor-
tical connections. Our starting point was the fragmented,
and somewhat contradictory, available information regard-
ing the location, extent and histologic characteristics of
area MIP (Colby et al. 1988; Lewis and Van Essen, 2000a;
Cavada, 2001) and its border with adjoining area V6A.

Figure 6. A, Comparison of the topographical distribution of label for V6Ad (MF7-DY, case 1, green) and MIP (MF7-FR, case 3, red)
on the same hemisphere. Shared projection fields are shown in yellow. B, Distribution of labeled cells after an injection in MIP in case
4 (NM31-FB). Scale bars � 1 cm. Other abbreviations as in Fig. 1.
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These areas are often considered to overlap the physio-
logically defined PRR (Snyder et al. 1997), which has been
studied in relation to visually guided arm movements and
has become a subject of research aimed at the control of
artificial limbs based on brain–computer interfaces (An-
dersen et al. 2014b).

Subdivisions of the medial bank
Our observations of myelin-stained coronal sections

refined prior findings in showing that approximately the
caudal half of the medial bank of the intraparietal sulcus
comprises two main subdivisions, which we refer to as
V6Ad and MIP. The lip of the medial bank included ex-
tensions of superior parietal lobule areas (PE, PEc; Pan-
dya and Seltzer, 1982; Morecraft et al. 2004), whereas
ventrally, near the fundus, we confirmed the presence of
subdivisions of area VIP, which exhibit distinct myelo-
architecture (Lewis and Van Essen, 2000a).

Although definitions of borders between association
cortex areas are intrinsically criterion dependent (Rosa
and Tweedale, 2005; Palmer and Rosa, 2006; Burman
et al. 2008, 2014b; Gamberini et al. 2011), the present
scheme seems to better conform to the expectation that
cortical areas have uniform architectural appearance and
connections. Nonetheless, as in other parietal areas (Ba-
kola et al. 2010; Passarelli et al. 2017), there is the sug-
gestion of a gradient of connections, whereby dorsal
injections in the medial bank tend to reveal stronger con-
nections with superior parietal areas PE and PEc, whereas
injections in the ventral part of the medial bank reveal
stronger connections with area VIP. Indeed, given the
degree of commonality in connections between V6Ad and
MIP, another interpretation of our data are that a large
section of the medial bank of the intraparietal sulcus is
formed by a single area, within which patterns of connec-

Figure 7. Distribution of labeled cells after injections in MIP (A, case 6, A9-CTB; B, case 7, MF8-FE), MIP/PE (C, case 8, MF7-FE),
and PEip (D, case 9, MF10-DY). Scale bars � 1 cm. Other abbreviations as in Fig. 1.
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tions change in a gradual manner. Here, the relatively
clear change in myeloarchitectural pattern has per-
suaded us to retain the subdivision of this region into
V6Ad and MIP, but this is clearly a topic that deserves
further study. In particular, it will be important to define
which physiologic properties distinguish these subdivi-
sions and to what extent they encompass the entirety of
the PRR.

The connectivity pattern at even more rostral locations
in the medial bank (PEip; Fig. 1), which is generally con-
sidered to be outside the PRR, emphasizes inputs from
the anterior somatosensory, primary motor, and ventral
premotor cortices, suggesting a functional zone distinct
from V6A and MIP. This region is likely part of the parietal
field containing large representations of the distal forelimb
(Seelke et al. 2012; Rathelot et al. 2017). Rostral parts of
the posterior parietal cortex, around both banks of the
intraparietal sulcus, have been studied in the context of
limb movements aimed at object acquisition (Gardner
et al. 2007; Baumann et al. 2009), even when these move-
ments are highly stereotypical and performed in the ab-
sence of visual information (Evangeliou et al. 2009;
Nelissen and Vanduffel, 2011).

Comparison with previous studies
Nomenclature issues aside, many of the sources of

projections to MIP described here have been reported by
studies in which tracer injections were placed in other
areas. Among these, the most conspicuous connections
are with the dorsocaudal premotor cortex (e.g., Matelli

et al. 1998; Tanné-Gariépy et al. 2002). Other studies have
revealed projections from the region presently defined as
MIP to areas V6 and V6A (Colby et al. 1988; Shipp et al.
1998; Galletti et al. 2001; Marconi et al. 2001; Gamberini
et al. 2009; Passarelli et al. 2011), the superior and inferior
parietal cortices (Rozzi et al. 2006; Bakola et al. 2010,
2013), medial parietal areas PGm and 31/PEci (Morecraft
et al. 2004; Passarelli et al. 2017), and area VIP (Lewis and
Van Essen, 2000b). As we have shown, the above areas
provide the majority of the projections to both MIP and
V6Ad. The observed overall scarcity of connections with
areas LIP and AIP (Table 2) is also in agreement with
previous reports (Blatt et al. 1990; Lewis and Van Essen,
2000b; Borra et al. 2008).

On the other hand, reports of extrinsic connections
largely or exclusively directed to the currently defined MIP
region, but not adjacent areas, are rare. Among the few
such instances are the selective connections with area PE
(present results) the lateral parietal region (PGop, Ri; Ci-
polloni and Pandya, 1999; ParOp in Table 2), and with the
medial and ventral premotor (in particular, area F5) cortex
(Petrides and Pandya, 1984; Luppino et al. 1993; Gerbella
et al. 2011). Although we did not attempt to subdivide
area F5 (Belmalih et al. 2009), our data appear in agree-
ment with those of Gerbella et al. (2011) in showing that
MIP connections are restricted to the posterior subdivi-
sion, which contains a hand representation field (Raos
et al. 2006).

The presence of some of the minor long-distance pro-
jections to MIP is more difficult to ascertain based on

Figure 8. Cortical distribution of retrogradely labeled cells in case 9 (MF10-DY) with an injection in PEip, rostral to MIP. A–F, Coronal
sections were taken at the levels indicated on the brain figurine. ias, sas, inferior and superior limbs of the arcuate sulcus, respectively.
Other abbreviations as in Fig. 1.
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previous studies. These projections reflect only limited
contributions to the overall MIP connectivity (Table 2) and,
as such, might have been undetected in previous studies
due to methodological factors (sensitivity of tracers, area
coverage of injections, sampling), biological variability, or
the existence of unidirectional pathways. For example,
connections with the upper superior temporal cortex and
the dorsal calcarine sulcus were either not reported by
earlier tracing studies (Boussaoud et al. 1990; Seltzer and
Pandya, 1991) or cannot be unequivocally inferred based
on illustrations (Gattass et al. 1997). Likewise, connec-
tions with the periarcuate region have been shown in a
few instances (Petrides and Pandya, 1999; Stanton et al.
2005). The projection detected in our study likely included
the premotor oculomotor region (Baker et al. 2006; Savaki
et al. 2015), which comprises the smooth-pursuit eye field
(Stanton et al. 2005), with minor involvement of area
8/FEF on the prearcuate convexity. In New World marmo-
set monkeys, connections between divisions of area 8
and likely homologous dorsal parietal cortex have been
consistently demonstrated (Reser et al. 2013; Burman
et al. 2015). The macaque periarcuate region contains
neurons with effector (eye or hand)-dependent or effector-
independent discharges (Neromyliotis and Moschovakis,
2017) and constitutes a potential source of eye–hand coor-
dination mechanisms downstream of parietal cortex (Yttri
et al. 2013).

Figure 9. Summary view of the main projections (�0.5%) to MIP (A) and V6Ad (B) in the present study. Parietal areas identified in the
present study are shown on the brain reconstruction on the bottom left of the figure.

Table 3. Percentage of labeled neurons in supragranular lay-
ers after injections in V6Ad and MIP.

Area V6Ad MIP
V6 37
V6Av 36 53
V6Ad # 52
PEci/31 46 54
PE � 50
PEip � 46
PEc 33 46
MIP 29 #

VIP 26 43
AIP � 47
Opt/PG 30 43
PFG/PF 48 �

ParOp � 45
cST 22 42
23 44 26
24 � 39
F1 � 58
F2 40 53
F3 � 32
F6 19 �

The table includes projections that comprised at least 50 labeled neurons
projecting to an area, pooled across two cases (1, 2) with injections in V6Ad
and five cases (3-7) with injections in MIP. #Location of injection site; �insuf-
ficient sample size (�50 neurons per case in at least two cases).
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Functional considerations relative to sensorimotor
actions

The largely overlapping connectivity profiles of MIP and
V6A, including input from the same territory of dorsocau-
dal premotor cortex, argue against strict functional seg-
regation in the medial bank. This notion resonates with
primate neurophysiological findings that show comple-
mentary activations in a wide extent of the medial intra-
parietal and parieto-occipital cortices related to events in
peripersonal space (Colby and Duhamel, 1991; Hadjidimi-
trakis et al. 2011) and to different paradigms of visually
guided reaching (e.g., Kalaska and Crammond, 1995;
Johnson et al. 1996; Battaglia-Mayer et al. 2001; Calton
et al. 2002; Fattori et al. 2005; Breveglieri et al. 2014;
Rajalingham and Musallam, 2017). Anatomic and func-
tional overlap does not appear to be unique to the medial
parietal areas: similar division of labor during simple tasks
occurs among neuronal populations in distinct, intercon-
nected frontal motor regions (Russo et al. 2002; Crutcher
et al. 2004) and posterior parietal-prefrontal regions (Kat-
suki and Constantinidis, 2012). The distribution of repre-
sentations of spatial and movement parameters across
different neuronal populations likely reflects the flexible
strategies for problem solving (Battaglia-Mayer et al.
2003), according to available (e.g., visual) resources or the
preferred effector.

A detailed comparison between the present anatomic
scheme and functional localization remains unattainable,
largely because of variability in areal definitions and dif-
ferences in task priorities among laboratory groups. MIP
is a site of convergent visual, somatic-related, and direct
projections from the primary motor cortex, whereas visual
input is more robust caudally, in V6A. The different
weights of sensorimotor input likely exert different influ-
ences on the activity of V6A and MIP, with MIP more
directly involved in representations of movement param-
eters (Caminiti et al. 2017) and in decision-related pro-
cesses when decisions are communicated by hand
movements (de Lafuente et al. 2015). Neurophysiological
evidence indicates that MIP contains neurons that signal
the direction of a planned movement and not the location
of the visual target (Eskandar and Assad, 2002; Hamel-
Pâquet et al. 2006; Kuang et al. 2016). In addition to
goal-directed actions, MIP neurons display modulations
to self-generated arm movements in the absence of an
external trigger (Maimon and Assad, 2006). By compari-
son, neuronal modulations in V6A appear to reflect both
spatial and reach-related information (Breveglieri et al.
2014; Hadjidimitrakis et al. 2014a). It becomes obvious,
however, that any differences are subtle and that reliable
attribution of regional specialization is still lacking.

Although the anatomic areas of the posterior parietal
cortex have been traditionally considered specializations
for effector-specific movements, recent advances in hu-
man (Hinkley et al. 2009; Leoné et al. 2014; Zhang et al.
2017) and nonhuman primate (Cooke et al. 2003; Ghar-
bawie et al. 2011; Kaas et al. 2011) research provide new
insights into the rich functional organization of different
parietal fields, including charting of the temporal dynam-
ics during actions across various cortical areas (Filimon,

2010; Vesia and Crawford, 2012; Verhagen et al. 2013;
Cui, 2014; Caminiti et al. 2015; Gallivan and Culham,
2015). In this context, consistent connections of posterior
temporal fields with MIP/V6A, but not with dorsal parietal
areas (Bakola et al. 2010, 2013), appear to have a func-
tional counterpart in operations relevant to covert shifts of
spatial attention (Caspari et al. 2015). Likewise, studies
involving nonhuman primate physiologic mapping (Taoka
et al. 1998, 2000; Breveglieri et al. 2008) and connections
(including subcortical input, Impieri et al. 2018), and hu-
man imaging (Abdollahi et al. 2013; Heed et al. 2016) point
to a more general role for superior parietal areas PE/PEc
in whole-body movements such as locomotion and climb-
ing. Our results offer some evidence for functional mod-
ules within the medial intraparietal networks for arm and
hand movements; future research guided by the present
anatomic scheme may identify the full spectrum of dis-
tinct parietal contributions in the guidance of sensorimo-
tor behavior.
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