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Visual Abstract

lateral connections perceived distance Visual space embodies all visual experiences, yet

in visual cortex in visual space what determines the topographical structure of vi-
E S LB S sual space remains unclear. Here we test a novel
S5 S5l )

theoretical framework that proposes intrinsic lateral
connections in the visual cortex as the mechanism
underlying the structure of visual space. The frame-
work suggests that the strength of lateral connec-
tions between neurons in the visual cortex shapes
the experience of spatial relatedness between lo-
cations in the visual field. As such, an increase in
lateral connection strength shall lead to an increase
in perceived relatedness and a contraction in perceived distance. To test this framework through human psychophys-
ics experiments, we used a Hebbian training protocol in which two-point stimuli were flashed in synchrony at separate
locations in the visual field, to strengthen the lateral connections between two separate groups of neurons in the visual
cortex. After training, participants experienced a contraction in perceived distance. Intriguingly, the perceptual
contraction occurred not only between the two training locations that were linked directly by the changed connections,
but also between the outward untrained locations that were linked indirectly through the changed connections.
Moreover, the effect of training greatly decreased if the two training locations were too close together or too far apart
and went beyond the extent of lateral connections. These findings suggest that a local change in the strength of lateral
connections is sufficient to alter the topographical structure of visual space.
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Given that visual space underlies visual perception, it is easy to take its topographical structure for granted.
Indeed, most studies focus on object or feature perception that happens within visual space, without first
considering the structure of visual space itself. Here we studied plasticity in the structure of visual space.
We found that a local strengthening of lateral connections between retinotopically tuned visual cortical
neurons, induced by synchronized, repetitive presentation of two-point stimuli, could lead to a contraction
in perceived distance and a change in visual space structure. We propose lateral connections in the visual
Kcor‘tex as the mechanism that relates locations perceptually and shapes the structure of visual space. /
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Introduction

More than a third of the human cerebral cortex is oc-
cupied by retinotopic maps of the visual field, in which
individual neurons respond to specific locations in the
visual field and nearby neurons to nearby locations
(Sereno et al., 1995; Brewer and Barton, 2012; Katzner
and Weigelt, 2013; Wang et al., 2014). This mapping
between visual field and cortex can explain behavioral
aspects of spatial localization (Rose, 1999). However, it is
unclear what underlies the experience of spatial relations
between locations: why do locations feel ordered in the
specific way they do, apart from our abilities to behavior-
ally localize targets?

Whereas individual neurons in the visual cortex respond
only to limited locations in the visual field, the lateral
connections between these retinotopically tuned neurons
instead allow distinct locations to be related. We hypoth-
esize that the strength of lateral connections between
neurons in the visual cortex determines the degree of
perceived relatedness between locations in the visual field
(Tononi, 2014; Tononi et al., 2016). This hypothesis ex-
plains how the organization of lateral connections, where
the connection strength between neurons decays with
their cortical separation (Clarke, 1994; Das and Gilbert,
1999), naturally gives rise to the topographical structure of
visual space, where the perceived relatedness between
locations decays with their visual field separation. Impor-
tantly, this hypothesis predicts that a change in the
strength of lateral connections should alter the structure
of visual space and affect the perceived relatedness be-
tween locations. Specifically, an increase in lateral con-
nection strength should lead to an increase in perceived
relatedness and a contraction in perceived distance.
Moreover, the hypothesis predicts that the perceptual
changes should occur not only between locations linked
directly by the changed connections, but also between
locations linked indirectly through the changed connec-
tions.

To test this hypothesis, we used a Hebbian training
protocol in which two-point stimuli were flashed in syn-
chrony at separate locations in the visual field, to induce
a short-term increase in the strength of lateral connec-
tions between two separate groups of neurons in the
visual cortex (Yao and Dan, 2001; Fu et al., 2002, 2004;
Caporale and Dan, 2008). A successful induction of syn-
aptic plasticity requires the presence of direct connec-
tions between the two neuronal groups (Ganguly et al.,
2000; Li et al., 2004). It follows that, depending on the
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distribution of lateral connection length, there should be
an optimal separation between the two training locations
at which the net increase in lateral connection strength is
maximal and the contraction in perceived distance is
accordingly maximal. At longer separation, the two neu-
ronal groups would not be effectively connected; at
shorter separation, the two neuronal groups could be
partially overlapping; either way, the number of lateral
connections involved and the net change in lateral con-
nection strength would be less (Fig. 1). We therefore
varied the separation between the two training locations
from run to run and measured the effect of training on the
perceived distance between the training locations and the
perceived distance between the outward untrained loca-
tions.

Materials and Methods

Participants

Thirty healthy young adults (18 female) gave written
informed consent to participate in the experiment that
was approved by the Institutional Review Board of the
University of Wisconsin-Madison. The experiments were
conducted in a dark room with the display (ASUS
PG278Q, 27-inch, 2560 X 1440 pixels, 120 Hz) providing
the only significant source of light. Throughout the exper-
iments, participants maintained central fixation and
viewed the visual stimuli from a chin rest at a distance of
25 cm.

Procedures

Each experiment run began with two testing sessions
and was followed by three alternating cycles of training
and testing sessions. In the training session, we used a
Hebbian training protocol that was adapted from animal
experiments and has been shown to strengthen the lateral
connections in cat primary visual cortex (Yao and Dan,
2001; Fu et al., 2002, 2004; Caporale and Dan, 2008). To
target lateral connections in human primary visual cortex
(V1), we utilized the mirror-symmetry of human retinotopic
organization. V1 is the only early visual cortical region
whose ventral part (representation of upper visual field)
and dorsal part (representation of lower visual field) are
contiguous and are directly connected by lateral connec-
tions (Sereno et al., 1995; Brewer and Barton, 2012; Wang
et al., 2014). In contrast, the ventral and dorsal parts of
other early visual cortical regions (e.g., V2, V3) are segre-
gated by V1 and may have a different organization of
lateral connections. We therefore placed the two training
locations in the upper and lower visual fields, to activate
two separate groups of neurons in the ventral and dorsal
parts of the visual cortex, respectively. Specifically, we
flashed two synchronized, vertically separated point stim-
uli (5-pixel diameter) in the right hemifield at a rate of ON
for 8.33 ms, OFF for 425 ms, and 275 cycles per training
session (120 s). Participants were instructed to passively
view the stimuli and minimize eye blinks.

In the testing session, we used a psychophysical
match-to-standard protocol to measure the perceived
distance between testing locations in the visual field. In
each trial, two pairs of vertically separated dots (2-pixel
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Fig. 1. Experiment design. Each experiment run contained pretraining testing, training, and posttraining testing sessions. In the
training session, we used synchronized, repetitive presentation of two-point stimuli to strengthen the lateral connections between two
retinotopically tuned neuronal groups. Because the successful induction of synaptic plasticity requires the presence of direct
connections between the two neuronal groups, there should be an optimal separation between the two-point stimuli for changing the
lateral connection strength. At longer separation, the two neuronal groups would not be effectively connected; at shorter separation,
the two neuronal groups could be partially overlapping; either way, the number of lateral connections involved and the net change in
lateral connection strength would be less. In the testing session, we used a match-to-standard protocol to measure the perceived
distance. Participants adjusted the physical separation of a dot pair in the untrained hemifield to match the perceived distance of a
dot pair in the trained hemifield. The difference between the pre- and posttraining matches was taken to quantify the change in
perceived distance and the effect of training.

diameter) were presented simultaneously for 200 ms in  should be minimal (Van Essen et al., 1984; Harvey and
the two hemifields. Participants were instructed to report  Dumoulin, 2011), thereby favoring the activation of dis-
which dot pair appeared more separated or whether the  tinct groups of neurons. The choices of training parame-
two dot pairs appeared equally separated. The separation  ters were determined from pilot experiments, where we
between the dot pair in the right hemifield was fixed at a  tested the effect of stimulus eccentricity (4, 6, 8 degrees),
standard value, and that in the left hemifield was adjusted  size (5-, 15-, 30-pixel diameter), pattern (two-point, two
by a one-up one-down double-interleaved staircase with  patches of dots, two checkboard wedges), and flashing
a step size of 0.1 degrees. A total of 108 trials were  profile (in synchrony or with interstimulus interval of 8.33,
obtained in two sessions of 54 trials each for the pretrain-  16.67, 25.00, 33.33, 41.67, 50.00, 58.33, 66.67, 216.67
ing testing and three sessions of 36 trials each for the = ms), through 276 experiment runs in three participants. Of
posttraining testing. The data were fitted with a logistic  the pilot parameters, those that favored focal activation of
psychometric function to measure the point of subjective  two separate groups of neurons (e.g., two-point as op-
equality (PSE) where the two dot pairs appeared equally  posed to two patches of dots or two checkboard wedges)
separated. The difference between the pre- and posttrain-  were used for formal experiments.
ing PSEs was taken to quantify the training-induced
change in perceived distance. Analysis

Each participant took part in seven experiment runs. A We quantified the training induced changes in the per-
single experiment run lasted 10 min and was followed by  ceived distance between testing locations, and the de-
a 10-min compulsory rest to facilitate the recovery of pendence of training effects on the separation between
pretraining baseline and minimize the accumulation of training locations. We first performed repeated-measures
training effect across runs. In different experiment runs,  ANOVA on the raw data, with pre-/posttraining and train-
we used training locations separated by 3.2, 3.6, 4.0, 4.4, ing separation as the within-subject factors. We then
4.8, 5.2, or 5.6 degrees (one run each in random order) at  estimated how the training effect and its dependence on
a horizontal eccentricity of 6 degrees. The separations  training separation differed across participants, presum-
between testing locations were 0, 0.4, or 0.8 degrees ably as a consequence of interindividual differences in
larger than the separations between training locations.  visual cortical architecture (Andrews et al., 1997; Dough-
These visual field separations correspond to a cortical erty et al.,, 2003; Schwarzkopf et al., 2011, 2012; Song
separation of 10-14 mm in human V1 (Schira et al., 2007) et al., 2011, 2013a, 2013b, 2015). For each patrticipant, we
and overlap with the reported extent of lateral connec- fitted the training effect with a Gaussian function of the
tions in primate visual cortex (Ringo, 1991; Burkhalter training separation and took the separation closest to the
et al., 1993; Kaas, 2000; Levitt and Lund, 2002; Voges, Gaussian peak as the optimal training separation. This
et al., 2010; Ahmed et al., 2012; Lyon et al., 2014). More-  procedure allowed us to calculate the group average after
over, at an eccentricity of 6 degrees, the number of neu-  aligning each participant’s data to their optimal training
rons activated by a point stimulus (cortical point image) separation.

May/June 2017, 4(3) e0080-17.2017 eNeuro.org



Meuro

Training at shorter separation

no change in no change in changed
connectivity  perception connectivity
3L

Change in perceived distance (%)
&
T

9L

Training at optimal separation

New Research 4 0of 7

Training at longer separation

changed
perception

no change in no change in
connectivity  perception

1 1 |
1.2 degree 0.8 degree 0.4 degree
shorter shorter shorter

|
optimal

| 1 1
0.4 degree 0.8 degree 1.2 degree
longer longer longer

Separation between the training locations

Fig. 2. Change in perceived distance depends on training separation. The induction of synaptic plasticity and the change in lateral
connection strength should be dependent on the separation between training locations. We measured the effect of training for a range
of training separations. We observed a maximal contraction in perceived distance when training at a separation of 4.4 degrees. The
contraction declined when training at shorter or longer separations. Black line, group average; shaded area, SEM (n = 30).

Results

After training, we observed a significant contraction
in the perceived distance between the training loca-
tions, with the degree of contraction dependent on the
training separation (repeated-measures ANOVA; effect
of training on perceived distance: F(1,29) = 41.473,p <
107%; quadratic trend in interaction between training
effect and training separation: F(1,29) = 7.632, p =
0.010. The contraction was maximal at a training sep-
aration of 4.4 degrees, which corresponds to a cortical
separation of 12 mm in human V1 (Schira et al., 2007)
and falls within the extent of V1 lateral connections
(Ringo, 1991; Burkhalter et al., 1993; Kaas, 2000; Levitt
and Lund, 2002; Voges, et al., 2010; Ahmed et al., 2012;
Lyon et al., 2014). Because of the mirror-symmetry of

May/June 2017, 4(3) e0080-17.2017

human retinotopic organization, V1 is the only early
visual cortical region whose ventral part (representation
of upper visual field) and dorsal part (representation of
lower visual field) are contiguous, whereas the ventral
and dorsal parts of other early visual cortical regions
(e.g., V2, V3) are segregated by V1 (Sereno et al., 1995;
Brewer and Barton, 2012; Wang et al., 2014). In these
regions (e.g., V2, V3), a visual field separation of 4.4
degrees across horizontal midline would correspond to
a cortical separation much larger than 12 mm and
would fall outside the extent of lateral connections. The
observation of a maximal training effect at a 4.4-degree
visual field separation thus suggests the existence of an
optimal separation at which the net increase in V1
lateral connection strength is maximal.
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Fig. 3. Change in perceived distance between untrained locations. A change in the strength of lateral connections should affect the
perceived distance, not only between the training locations, but also between the untrained locations that span the training locations.
We measured the effect of training for a range of testing locations. After training at the optimal separation, the perceived distance
between the testing locations at 0.4 and 0.8 degrees outward from the training locations was significantly contracted. Black line,
group average with SEM (n = 30); colored lines, individual participants. Paired-sample t tests are shown.

Because the surface area of V1 and the length of V1
lateral connections both exhibit considerable interindi-
vidual variability (Andrews et al., 1997; Dougherty et al.,
2003; Schwarzkopf et al., 2011, 2012; Song et al., 2011,
2013a, 2013b, 2015), we expected the optimal training
separation to vary from participant to participant. To ac-
count for the influence of this interindividual variability on
the calculation of group average, we aligned each partic-
ipant’s data to their optimal separation. The aligned group
average (Fig. 2) revealed a 7.2% contraction of perceived
distance when training at the optimal separation, which
decreased to 2.6% when training at =0.4 degrees from
the optimal separation and 0.8% when training at 0.8
degrees from the optimal separation. Similar results were
obtained from the prealigned raw data, which revealed a
group average of 3.5% contraction at the training sepa-
ration of 4.4 degrees and a significant decrease to 1.1%
when training at =1.2 degrees away (as reflected by the
significant quadratic trend in the ANOVA).

The hypothesis that lateral connections underlie the
structure of visual space further suggests that the per-
ceived distance should be changed not only between

May/June 2017, 4(3) e0080-17.2017

training locations, but also between outward untrained
locations that are linked indirectly by the changed con-
nections (Fig. 3). In line with this prediction, after training
at the optimal separation, the perceived distance between
the testing locations at 0.4 and 0.8 degrees outward from
the training locations was contracted by a significant
amount of 4.2% (t(29) = 7.3, p < 107 7) and 3.6% (t(29) =
5.3, p < 107°), respectively. Moreover, the contraction
(4.2%, 3.6%) produced by training at the optimal separa-
tion was even larger than the contraction (2.6%, 0.8%)
produced by training at these testing locations, illustrating
again that the effect of training is very weak at nonoptimal
training separation.

Discussion

Taken together, these findings suggest that a local
strengthening of lateral connections induced by synchro-
nized, repetitive presentation of two-point stimuli can lead
to a contraction in perceived distance. More broadly, they
suggest that lateral connections may underlie the topo-
graphical structure of visual space. The training protocol
used in our study was adapted from animal studies and

eNeuro.org
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has been shown to strengthen lateral connection between
neurons in cat V1 (Yao and Dan, 2001; Fu et al., 2002,
2004; Caporale and Dan, 2008). Because of the fine spa-
tial scale over which the changes are expected to happen
(~10 mm) and the coarse spatial resolution of neurcimaging
measures, it is difficult to ascertain the exact neural-level
changes induced by the protocol in human participants.
The protocol may have affected feedforward thalamo-
cortical connections and changed receptive fields or
response gains at the training locations (Kohler and Wal-
lach, 1944; DeAngelis et al., 1995; Ganguly et al., 2000;
Eyding et al., 2002; Hisakata et al., 2016). Similarly, we
cannot rule out the training-induced changes in attention
and feedback connections from fronto-parietal cortices to
visual cortex (Anton-Erxleben et al., 2007; Klein et al.,
2016).

Such feedforward or feedback mechanisms have been
proposed to account for the perceptual changes induced
by repetitive exposure to a visual stimulus and the transfer
of perceptual effects across locations, features, or tasks
(Fahle et al., 1995; Dill and Fahle, 1997; Goldstone, 1998;
Sasaki et al.,, 2010; Zhang and Li, 2010). Usually, the
transfer of perceptual effects to an untrained location is
taken to indicate a feedback mechanism, whereas the
dependence of perceptual effects on a retinotopic frame
is taken to support a feedforward mechanism. However,
neither feedforward nor feedback mechanisms can ac-
count for a U-shaped relation between the degree of
perceptual changes and the separation of training loca-
tions, as was found here (Fig. 2). Moreover, a feedforward
mechanism cannot explain the contraction in perceived
distance between the untrained locations, as we also
found (Fig. 3). Instead, our findings are exactly as pre-
dicted by the hypothesis that lateral connections linking
neighboring neurons in the visual cortex shape the struc-
ture of experienced space (Fig. 1).

Given that visual space underlies visual perception, it is
easy to take its topographical structure for granted. In-
deed, most studies of visual perception focus on object or
feature perception that happens within visual space, with-
out considering the structure of space itself. One excep-
tion is a recent report of a paradoxical co-occurrence
between decreased perceived density of dot textures and
contracted perceived distance between dot pairs after
adaptation to a large-field random dot stimulus (Hisakata
et al., 2016). This finding cannot be explained by changes
in neuronal response properties, and the authors instead
proposed the scaling of an “internal metric” in the visual
cortical system that relates distinct locations and speci-
fies perceived distance (Hisakata et al., 2016). Our study
suggests that this internal metric is provided by the orga-
nization and strength of lateral connections in retinotopic
visual cortex.

Although the lateral connections are present throughout
the visual cortex (Kaas, 2000; Levitt and Lund, 2002),
different visual cortical regions may play different roles in
the structure of visual space. Because of the cortical
convergence, regions higher up in the visual hierarchy
usually occupy less cortical area and have fewer neurons
(Haug, 1987; Dougherty et al., 2003). Moreover, individual

May/June 2017, 4(3) e0080-17.2017
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neurons in these visual cortical regions inherit the aggre-
gate receptive fields of their multiple feedforward inputs
(Sereno et al., 1995; Brewer and Barton, 2012; Katzner
and Weigelt, 2013; Wang et al., 2014). By contrast, V1 at
the bottom of the visual hierarchy has the largest cortical
surface area, the largest number of neurons, and the
smallest receptive fields (Andrews et al., 1997; Dougherty
et al., 2003; Schwarzkopf et al., 2011, 2012; Song et al.,
2011, 2013a, 2013b, 2015). The lateral connections in
higher-up visual cortical regions will therefore span larger
separations in the visual field and specify a coarser visual
space, whereas the lateral connections in V1 will specify a
finer visual space. These different spatial scales may
jointly ensure a robust structure of visual space. Following
on this proposal, an important next step would be to apply
protocols that can target different visual cortical regions
and selectively strengthen or weaken connections, such
as theta burst transcranial magnetic stimulation (Huang
et al.,, 2005; Salminen-Vaparanta et al., 2012; Rahnev
et al., 2013; Silson et al., 2013), to examine the roles of
individual visual cortical regions in the structure of visual
space.
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