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Abstract
Proinflammatory pathways in neuronal and non-neuronal cells are implicated in the acute and chronic effects of alcohol
exposure in animal models and humans. The nuclear factor-�B (NF-�B) family of DNA transcription factors plays important
roles in inflammatory diseases. The kinase IKK� mediates the phosphorylation and subsequent proteasomal degradation of
cytosolic protein inhibitors of NF-�B, leading to activation of NF-�B. The role of IKK� as a potential regulator of excessive
alcohol drinking had not previously been investigated. Based on previous findings that the overactivation of innate
immune/inflammatory signaling promotes ethanol consumption, we hypothesized that inhibiting IKK� would limit/decrease
drinking by preventing the activation of NF-�B. We studied the systemic effects of two pharmacological inhibitors of IKK�,
TPCA-1 and sulfasalazine, on ethanol intake using continuous- and limited-access, two-bottle choice drinking tests in
C57BL/6J mice. In both tests, TPCA-1 and sulfasalazine reduced ethanol intake and preference without changing total fluid
intake or sweet taste preference. A virus expressing Cre recombinase was injected into the nucleus accumbens and central
amygdala to selectively knock down IKK� in mice genetically engineered with a conditional Ikkb deletion (IkkbF/F). Although
IKK� was inhibited to some extent in astrocytes and microglia, neurons were a primary cellular target. Deletion of IKK� in
either brain region reduced ethanol intake and preference in the continuous access two-bottle choice test without altering
the preference for sucrose. Pharmacological and genetic inhibition of IKK� decreased voluntary ethanol consumption,
providing initial support for IKK� as a potential therapeutic target for alcohol abuse.
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Introduction
Alcohol exposure is known to activate peripheral and

central proinflammatory pathways (Robinson et al., 2014;

Crews and Vetreno, 2016). Genomic evidence for alcohol-
induced inflammatory- and immune-related signaling
comes from genetic association studies in alcoholic indi-
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Significance Statement

Alcoholism is a devastating disease with few pharmacological treatment options. The disease pathophysiology is
unknown, but it is increasingly evident that proinflammatory signaling plays a role. Nuclear factor-�B (NF-�B) is a
transcription factor that controls the expression of genes that are involved in inflammation and immunity. IKK� is a
kinase that plays an essential role in regulating the NF-�B signaling pathway. The role of IKK� in alcohol drinking had
not previously been investigated. Our goal was to assess the peripheral and central effects of IKK� on long-term and
binge-like alcohol consumption, and its potential role as a therapeutic target to reduce drinking.

New Research

September/October 2016, 3(5) e0256-16.2016 1–15

http://orcid.org/0000-0002-6459-3541
http://orcid.org/0000-0002-2601-6372
http://orcid.org/0000-0002-8045-1789
http://dx.doi.org/10.1523/ENEURO.0256-16.2016


viduals (Pastor et al., 2000, 2005; Edenberg et al., 2008;
Saiz et al., 2009), gene expression microarray studies
from postmortem brains of alcoholic individuals (Liu et al.,
2006; Ökvist et al., 2007), and transcriptome meta-
analyses in selectively bred mice (Mulligan et al., 2006)
and ethanol-exposed mice (Gorini et al., 2013a,b; Nunez
et al., 2013; Osterndorff-Kahanek et al., 2013). Behavioral
validation studies showed that mice with null mutations of
different immune-related genes drank less ethanol (Bled-
nov et al., 2012), while stimulation of innate immune re-
sponses using lipopolysaccharide produced prolonged
increases in drinking (Blednov et al., 2011). Many of the
inflammatory-related genes implicated in these studies
mediate their effects through nuclear factor-�B (NF-�B).

NF-�B transcription family members are ubiquitously
expressed throughout the body and play important roles
in innate/adaptive immunity, cell survival, and inflamma-
tion (Scheidereit, 2006; Perkins, 2007). NF-�B transcrip-
tional activity is regulated by inhibitory I�B proteins. The
I�B kinase (IKK) complex mediates the phosphorylation
and degradation of I�B, allowing translocation of active
NF-�B to the nucleus, where it acts as a transcription
factor for numerous proinflammatory chemokines/cyto-
kines, such as TNF-� and IL-6 (Schmid and Birbach,
2008; Gamble et al., 2012). The IKK complex represents a
point of convergence for many inflammatory extracellular
signals, and plays a key role in inflammation and disease
(Schmid and Birbach, 2008; Gamble et al., 2012). IKK�
specifically mediates the classical/canonical NF-�B path-
way (Schmid and Birbach, 2008), has a clearly established
role as an intermediate in NF-�B-induced cellular inflam-
mation, and is involved in many inflammatory diseases
(Grivennikov et al., 2010; Sunami et al., 2012).

Studies that have examined the effects of ethanol on
IKK� focused on peripheral effects, such as the exacer-
bation of pancreatic and hepatic inflammation by chronic
ethanol (Sunami et al., 2012; Huang et al., 2015). Studies
of the central actions of IKK� have concentrated on neu-
rodegenerative or metabolic disorders, but did not involve
ethanol exposure (Zhang et al., 2008; Maqbool et al.,
2013). Other studies have shown that IKK� gene expres-
sion was altered in postmortem prefrontal cortex (PFC)
from alcoholic individuals (Flatscher-Bader et al., 2005)
and mouse PFC following ethanol exposure and in selec-
tively bred animals predisposed to drink alcohol (Mulligan

et al., 2006; Osterndorff-Kahanek et al., 2015). To date, no
studies have explored the peripheral or central effects of
IKK� on ethanol drinking. IKK� is a compelling target for
study, given its role in inflammatory diseases, and its role
in mediating cocaine sensitization and reward through
plasticity-dependent neuronal signaling in the nucleus ac-
cumbens (NAc; Russo et al., 2009). Furthermore, IKK�
mediated the prodepressant and anxiogenic effects of
chronic stress through neuronal plasticity mechanisms in
the NAc (Christoffel et al., 2011, 2012).

We examined different methods (pharmacological and
genetic) to inhibit IKK�, different brain regions/cell types,
and different two-bottle choice (2BC) ethanol drinking
paradigms in mice. Two different peripherally acting IKK�
inhibitors, TPCA-1 (2-[(aminocarbonyl) amino]-5-(4-
fluorophenyl)-3-thiophenecarboxamide) and sulfasala-
zine, were tested in long-term and binge-like drinking
models. TPCA-1 is a selective small-molecule inhibitor of
IKK� (Podolin et al., 2005). Sulfasalazine does not cross
the blood–brain barrier (BBB; Liu et al., 2012); possesses
strong IKK� inhibitory activity; and is used to treat inflam-
matory bowel disease, ulcerative colitis, and Crohn’s dis-
ease (Lappas et al., 2005). We then examined the effects
of Cre-mediated IKK� knockdown in different cell types in
the NAc or central amygdala (CeA) on voluntary ethanol
consumption. Based on previous studies (Blednov et al.,
2011, 2012), we hypothesized that the inhibition of IKK�
would decrease proinflammatory signaling and reduce
alcohol drinking.

Materials and Methods
Animals

Pharmacological antagonist studies were conducted in
adult male C57BL/6J mice (original breeders were pur-
chased from The Jackson Laboratory). Genetic knock-
down studies were performed in adult male mice with a
floxed Ikkb gene on a C57BL/6J background (i.e.,
C57BL/6J mice with Ikkb flanked by LoxP sites, denoted
as IkkbF/F). Original breeders were acquired from Casey
W. Wright (College of Pharmacy, The University of Texas
at Austin, Austin, TX). The C57BL/6J strain was chosen
because of its propensity for voluntary ethanol consump-
tion (Belknap et al., 1997). Mice were group housed four
or five per cage on a 12 h light/dark cycle (lights on at 7:00
A.M.) with ad libitum access to water and rodent chow
(Prolab RMH 180 5LL2 chow, TestDiet) in temperature-
and humidity-controlled rooms. Behavioral testing began
when the mice were at least 2 months old. Mice were
individually housed at least 2 weeks before beginning the
drinking tests. Experiments were conducted in isolated
behavioral testing rooms in the Animal Resources Center
at The University of Texas at Austin. All experiments were
approved by The University of Texas Institutional Animal
Care and Use Committee and were conducted in accor-
dance with National Institutes of Health guidelines with
regard to the use of animals in research.

Pharmacological inhibitors of IKK�
Sulfasalazine (Sigma-Aldrich) was injected intraperito-

neally, and TPCA-1 (Tocris Bioscience) was administered
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by mouth. Both drugs were freshly prepared as suspen-
sions in saline solution, with four to five drops of Tween-
80, and were injected in a volume of 0.1 ml/10 g of body
weight for intraperitoneal administration, and 0.05 ml/10 g
of body weight for oral administration. Drugs were admin-
istered 30 min prior to ethanol presentation times (see
below). Doses of drugs and routes of administration were
based on published data that showed anti-inflammatory
activity in vivo.

Brain region-specific lentiviral-mediated knockdown
of IKK�

IkkbF/F mice were injected bilaterally (into the NAc or
CeA) with either a vesicular stomatitis virus glycoprotein
(VSV-G) pseudotyped lentivirus (LV) expressing Cre re-
combinase fused to enhanced green fluorescent protein
(EGFP) under the control of a cytomegalovirus (CMV)
promoter (LV-Cre-EGFP) or an “empty” VSV-G pseu-
dotyped lentiviral vector expressing only the EGFP trans-
gene under a CMV promoter. Mice were anesthetized by
isoflurane inhalation, were placed in a stereotaxic appa-
ratus (model 1900, David Kopf Instruments), and were
administered a preoperative analgesic (Rimadyl 5 mg/kg).
The skull was exposed, and bregma and lambda were
visualized with a dissecting microscope. A digitizer at-
tached to the micromanipulator of the stereotaxic appa-
ratus was used to locate coordinates relative to bregma.
Burr holes were drilled bilaterally above the injection sites
in the skull using a drill equipped with a #75 carbide bit
(David Kopf Instruments). The injection sites targeted ei-
ther the NAc [using the following coordinates relative to
bregma: anteroposterior (AP) �1.49 mm, mediolateral
(ML) �0.9 mm, dorsoventral (DV) �4.8 mm] or the CeA
(using the following coordinates: AP �1.14 mm, ML
�2.84 mm, DV �4.8 mm). Injections were performed
using a 10 �l microsyringe (model #1701, Hamilton) and a
30 gauge needle. The needle of the syringe was lowered
to the DV coordinate and retracted 0.2 mm. Virus solu-
tions (1.0 �l with a titer of 1.8 � 108 viral particles/ml in
PBS) were injected into each site at a rate of 200 nl/min.
After each injection, the syringe was left in place for 5 min
before being retracted over a period of 3 min. Incisions
were closed with tissue adhesive (Vetbond, 3M). Mice
were individually housed after surgery and given a 4 week
recovery period before starting the ethanol drinking tests.

Behavioral testing
The following three different ethanol-drinking models

were used in this study: (1) continuous 24 h 2BC with
access to water and ethanol (15%, v/v); (2) 2BC drinking-
in-the-dark (DID) with limited 3 h access to 15% ethanol
(2BC-DID); and (3) 2BC using ascending concentrations
of ethanol solutions (3–16%; see below).

Pharmacological inhibitors of IKK�
The effects IKK� antagonists on ethanol intake were

measured in adult male C57BL/6J mice in two different
drinking paradigms: 2BC with 15% ethanol and 2BC-DID
per the protocols previously described (Blednov et al.,
2003, 2014). For both tests, mice were pretrained to
consume 15% ethanol for at least 3 weeks to provide

stable consumption. Ethanol intake was measured after
saline injection (intraperitoneally or by mouth, corre-
sponding to the route of administration for the antago-
nists) for 2 d, and mice were grouped to provide similar
levels of ethanol intake and preference. In the 2BC test,
measurements of ethanol intake were made 6 and 24 h
after beginning the drinking test, which began immedi-
ately after lights off. In the 2BC-DID test, drinking began 3
h after lights off and lasted for 3 h. Ethanol intake was
measured once at the end of the 3 h drinking period. The
position of the drinking tubes was changed daily to con-
trol for side preferences. Mice were weighed every 4 d.
For both experiments, ethanol consumption (in grams per
kilogram), preference (ratio of alcohol consumption to
total fluid consumption), and total fluid intake (in grams
per kilogram) were measured at the appropriate time
points.

Brain region-specific lentiviral-mediated knockdown of
IKK�

The effects of IKK� knockdown in the NAc or CeA on
ethanol consumption were measured in adult male IkkbF/F

mice using the 24 h 2BC test. Mice treated with either
LV-Cre-EGFP or LV-EGFP-Empty were given continuous
access to water and ascending concentrations of ethanol
solutions (3%, 6%, 8%, 10%, 12%, 14%, and 16%, v/v)
at 2 d intervals (Blednov et al., 2014). The position of
administration tubes was changed daily to control for
position preferences. Mice were weighed every 4 d.

Preference for saccharin
One month after completion of the 2BC ethanol test

described above, IkkbF/F mice were tested for saccharin
preference using the 2BC protocol. Mice were offered
saccharin in increasing concentrations (0.008%, 0.016%,
and 0.033%), and 24 h intake was calculated. Each con-
centration was offered for 2 d, and bottle positions were
changed daily. The low concentration was presented first,
followed by the higher concentrations.

RNA isolation
After the completion of behavioral testing, mice were

killed by cervical dislocation and decapitated. The brains
were quickly removed, flash frozen in liquid nitrogen, and
later embedded in Optimal Cutting Temperature (OCT)
media in isopentane on dry ice. Brains were then stored at
�80°C for future processing. Brains were transferred to a
cryostat set at �6°C for at least 1 h before sectioning.
Sections (300 �m) were collected from �1.80 to �0.60
mm (AP) relative to bregma and transferred to precooled
glass slides on dry ice. Micropunch sampling was per-
formed on a frozen stage (�25°C) using Dual Fluorescent
Protein Flashlight (Nightsea), and a mouse stereotaxic
atlas to identify the GFP expression and anatomical loca-
tion of the injection site. Microdissection punches (Stoelt-
ing Co.) with an inner diameter of 0.75 mm were used to
obtain samples of NAc. This inner diameter fit within the
viral spread around the injection site and minimized con-
tamination from other tissue. Punches were taken bilater-
ally from 4–300 �m sections and were stored at �80°C
until RNA extraction. Micropunches were washed with
100% ethanol and RNaseZap (Life Technologies) be-
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tween each animal. All equipment used to obtain tissue
was treated with RNaseZap (Life Technologies) to prevent
RNA degradation. Total RNA was extracted using the
MagMAX-96 for Microarrays Total RNA Isolation Kit (Life
Technologies) according to the manufacturer instructions.
RNA yields and purity were assessed using a NanoDrop
8000 spectrophotometer (Thermo Fisher Scientific). Both
the 260:230 and 260:280 ratios were �2.0. RNA quality
was determined using the Agilent 2200 TapeStation (Agi-
lent) with RNA integrity numbers averaging �8.0.

Quantitative PCR
To verify Ikkb mRNA knockdown, single-stranded

cDNA was synthesized from total RNA using the Taq-
Man High Capacity RNA-to-cDNA Kit (Life Technolo-
gies). Following reverse transcription, quantitative real-
time PCR was performed in triplicate using TaqMan
Gene Expression Assays together with the TaqMan
Gene Expression Master Mix (Life Technologies), per
the manufacturer instructions. The TaqMan Gene Ex-
pression Assays used were Ikbkb (ID #Mm01222247_m1),
Tnfa (ID #Mm00443258_m1), Il6 (ID #Mm00446190_m1),
and EGFP (ID #Mr04097229_mr). Gapdh (Mm99999915_g1;
glyceraldehyde-3-phosphate dehydrogenase) was used as
a reference gene, and relative mRNA levels were determined
using the 2���CT method (Schmittgen and Livak, 2008).
Gapdh was used as the endogenous control because of its
low variability between samples. Reactions were performed
in a CFX384 Real-Time PCR Detection System (Bio-Rad),
and data were collected using CFX Manger (Bio-Rad). All
genes were normalized to the endogenous housekeeping
gene Gapdh and expressed relative to the respective LV-
EGFP-Empty control treatment.

Immunohistochemistry
Tissue harvesting

Animals were killed, transcardially perfused with PBS
and 4% paraformaldehyde (PFA); and brains were har-
vested, postfixed for 24 h in 4% PFA at 4°C, and cryo-
protected for 24 h in 20% sucrose in PBS at 4°C. Brains
were placed in molds containing OCT compound (VWR)
and frozen in isopentane on dry ice. The brains were
equilibrated in a �12 to �14°C cryostat (Thermo Fisher
Scientific) for at least 1 h, and coronal sections of 30 �m
were taken from the NAc and CeA and placed in sterile
PBS.

Immunostaining
Sections were penetrated with 0.1% Triton X-100 (2 �

10 min at 25°C); washed in PBS (3 � 5 min at 25°C);
blocked with 10% goat or donkey serum (30 min at 25°C);
treated with 1:250 anti-IKK� (Millipore), 1:500 anti-NeuN
(Santa Cruz Biotechnology), 1:300 anti-GFAP (Santa Cruz
Biotechnology), 1:1000 anti-IBA1 (Dako), and 1:1000 anti-
GFP (Santa Cruz Biotechnology) antibodies (4°C over-
night); washed in PBS (3 � 10 min at 25°C); and then
subjected to reaction with fluorescence-conjugated sec-
ondary antibodies of 1:1000 Alexa Fluor 488 and 1:1000
Alexa Fluor 568 (Invitrogen; 2 h at 25°C); and rinsed with
PBS (3 � 10 min at 25°C). The sections were mounted on
slides using sterile 0.2% gelatin and DAPI mounting me-

dia (Vector Laboratories) and coverslipped. Images were
taken using either an Axiovert 200M Fluorescent Micro-
scope (Zeiss) equipped with a 20� objective or an LSM
710 Confocal Microscope (Zeiss) equipped with a 63�
objective. For the immunohistochemistry, the following
two sets of control experiments were performed to test
specificity: (1) replacement of the primary antibody with
only the serum of the appropriate species; and (2) omis-
sion of secondary antibodies. No immunostaining was
detected under either of these conditions.

Target verification
Serial sections (30 �m) of NAc (AP, �2.00 to 0.00 mm)

and CeA (AP 0.00 to �2.00 mm) were mounted on slides
with DAPI mounting media (Vector Laboratories) and vi-
sualized using an Axiovert 200M Fluorescent Microscope
(Zeiss) equipped with a 10� objective to assess the loca-
tion of the injection site. The quality of injection was
quantitatively scored based of the strength of EGFP viral
expression, injection location relative to target, and the
spread of the virus. The injection was considered to be on
target if the needle placement was within 0.3 mm of the
desired stereotaxic coordinates and the virus EGFP ex-
pression covered at least one-third of the brain region of
interest (i.e., NAc and CeA) on at least one side of the
brain.

Image analysis
Brain sections were prepared as described in the Im-

munohistochemistry subsection. Epifluorescent images
were acquired using an Axiovert 200M Fluorescent Micro-
scope (Zeiss) equipped with a 20� objective and an
automated stage. Images of the brain region of interest
were captured (multiple 20� images in red, green, and
blue channels) then were stitched together creating a
composite view for further analysis. Images were taken
without saturating the signal and digitized at 8 bits using
the full intensity range of 0–256, and imported into the
ImageJ software package (http://imagej.nih.gov/ij/). Com-
posite images were split into individual channels and
overlaid with a grid, and colocalized cells were counted.
An LSM 710 Confocal Microscope (Zeiss) equipped with a
63� objective was used to take representative images for
IKK� cell-type specificity viral trophism.

Statistical analysis
Numerical data are shown as the mean � SEM, and n

represents the number of animals tested. Data were an-
alyzed using either ANOVA with repeated measures fol-
lowed by Bonferroni post hoc tests or Student’s t tests, as
appropriate (GraphPad Software). Calculated p values
�0.05 were considered to be statistically significant.

Results
Pharmacological inhibitors of IKK� reduce ethanol
consumption and preference in the continuous 24 h
2BC test

We first investigated the effects of systemic IKK� inhi-
bition on voluntary ethanol drinking. A pharmacological
approach was selected because IKK� genetic deletion
causes embryonic lethality due to liver degeneration and
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apoptosis (Tanaka et al., 1999). Low and high doses of
TPCA-1 or sulfasalazine were administered to adult male
C57BL/6J mice on a daily basis. Voluntary ethanol (15%)
drinking was evaluated using a continuous 24-h 2BC test.
The lower dose of TPCA-1 (30 mg/kg) did not significantly
alter ethanol intake, but the higher dose (50 mg/kg) re-
duced ethanol intake (F(1,18) � 6.9, p � 0.05) and prefer-
ence (F(1,18) � 8.3, p � 0.01) 6 h after administration (Fig.
1A,B). Both doses of sulfasalazine reduced ethanol intake
(Student’s t test, p � 0.05 and F(1,10) � 24.1, p � 0.001)
and preference (Student’s t test, p � 0.05 and F(1,10) �
12.4, p � 0.01; Fig. 1D,E). No changes in total fluid intake
were observed after the administration of either drug (Fig.
1C,F). There were no differences in ethanol intake or
preference between drug- and saline-treated groups 18 h
post-treatment for either drug (data not shown).

Pharmacological inhibitors of IKK� reduce ethanol
consumption and preference in the limited-access
drinking-in-the-dark 2BC test

We administered TPCA-1 (50 mg/kg) or sulfasalazine
(100 mg/kg) daily to a different cohort of adult male
C57BL/6J mice and performed a 2BC test with limited 3 h
access to 15% ethanol during the dark phase of the
light/dark cycle, referred to as the 2BC-DID test. Com-
pared with the continuous 2BC test, the 2BC-DID para-
digm more closely replicates binge drinking, where mice
typically consume higher levels of ethanol and exhibit
behavioral evidence of intoxication (Thiele and Navarro,
2014). In this model, TPCA-1 reduced ethanol consump-
tion (F(1,10) � 14.0, p � 0.01) and preference (F(1,10) �
21.6, p � 0.01) without affecting total fluid intake (Fig.
2A–C). Sulfasalazine, however, did not significantly alter
ethanol or total fluid intake, but did reduce ethanol pref-

erence (F(1,14) � 31.7, p � 0.001; Fig. 2D–F). There was a
significant interaction between treatment and the time of
ethanol consumption with a gradual time-dependent de-
crease in the effect of sulfasalazine (Fig. 2D).

Brain region-specific knockdown of IKK� in the NAc
or CeA reduces ethanol consumption and
preference in the continuous 24 h 2BC test

We next examined the role of IKK� in two key areas of
the brain implicated in the pathogenesis of alcohol use
disorder (AUD). The NAc was chosen because it is part of
the mesolimbic dopamine reward system that positively
reinforces addictive behavior (Koob and Volkow, 2010;
Koob, 2014). The NAc has also been implicated in IKK�-
mediated rewarding effects of cocaine (Russo et al.,
2009). The CeA was selected because it is in involved in
activating brain stress systems through the release of
corticotropin-releasing factor and it negatively reinforces
addictive behaviors (Koob and Le Moal, 2008; Koob and
Volkow, 2010; Koob, 2014). Mice genetically engineered
with a conditional Ikkb deletion (IkkbF/F) were injected
bilaterally in the brain region of interest with a lentivirus
expressing either Cre fused to EGFP (LV-EGFP-Cre) or
only EGFP (LV-EGFP-Empty). The transgenes of both viral
vectors were under the control of a CMV promoter and
were pseudotyped with VSV-G. Expression of Cre results
in the excision of Ikkb. This method of targeted IKK�
deletion was validated by injecting LV-EGFP-Cre (n � 8)
and LV-EGFP-Empty (n � 8) in the NAc of adult male
IkkbF/F mice followed by a 3- or 8-week incubation period.
The time points were selected based on previous work in
mouse brain showing maximal changes in expression 2 to
4 weeks post-injection (Ahmed et al., 2004). In addition,
the 3- and 8-week post-injection time points were chosen

Figure 1. Effect of systemic administration of IKK� inhibitors on ethanol (EtOH) intake and preference after 6 h of a continuous 24 h
two-bottle choice test in C57BL/6J mice. A–C, TPCA-1 (30 and 50 mg/kg) vs saline treated (n � 13 per group). D–F, Sulfasalazine
(50 and 100 mg/kg) vs saline treated (n � 6 per group). A, D, 15% ethanol consumption (g/kg/6 h). B, E, Preference for ethanol. C,
F, Total fluid intake (g/kg/6 h). Day 2 in each panel shows the averages of 2 d of saline injections for each group � SEM. Remaining
time points are the 2 d drinking averages in the presence of saline or drug � SEM. Significant main effect of drug treatment is shown
by the p value beneath the treatment dose (two-way ANOVA with repeated measures). Significant post hoc effect of each drug
compared with the corresponding saline group is indicated by the symbols above each time point (Bonferroni test for multiple
comparisons, �p � 0.05, ��p � 0.01, ���p � 0.001; or Student’s t test, #p � 0.05).
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to assess the level of IKK� knockdown near the beginning
(4 weeks post-injection) and end (8 weeks post-injection)
of the drinking studies. At the appropriate time points,
brains were perfused, harvested, sectioned, and immu-
nostained with anti-IKK� and anti-EGFP. The number of
cells with the viral EGFP that colocalized with IKK� were
measured and compared between the LV-EGFP-Cre and
LV-EGFP-Empty treatments at each time point. The rela-
tive expression of IKK� in Cre-treated animals versus
controls was 0.596 � 0.012 (p � 0.01) at 3 weeks and
0.099 � 0.023 (p � 0.001) at 8 weeks (Fig. 3). These
represent a 40% and 90% decrease in IKK� after 3 and 8
weeks, respectively.

Subsequently, IkkbF/F mice were injected bilaterally with
LV-EGFP-Cre or LV-EGFP-Empty into either the NAc or
CeA. After 4 weeks, the 2BC drinking test, in which mice
could drink either water or a series of increasing ethanol
concentrations ranging from 3% to 16%, was adminis-
tered. Similar to the results after peripheral inhibition of
IKK�, targeted deletion of IKK� in the NAc also reduced
ethanol consumption (F(1,50) � 10.0, p � 0.005) and pref-
erence (F(1,50) � 8.3, p � 0.01) without affecting total fluid
intake (Fig. 4A–C). Likewise, local deletion of IKK� in the
CeA reduced ethanol consumption (F(1,196) � 19.1, p �
0.0001) and preference (F(1,196) � 23.9, p � 0.0001) with
no change in total fluid intake (Fig. 5A–C). At the higher
ethanol concentrations, consumption and preference
were reduced by �40% and 25%, respectively, after
targeted knockdown in both regions (Figs. 4, 5).

Because ethanol drinking behavior in the 2BC test de-
pends partly on taste (Bachmanov et al., 2003), we inves-
tigated the effect of the lentiviral-mediated knockdown of
IKK� in the NAc and CeA on preference for sweet/non-
caloric (saccharin) solutions. After the ethanol drinking

experiments, we administered a 2BC test using three
different concentrations of saccharin versus water. Anal-
ysis of preference for saccharin indicated a significant
main effect of concentration in both the NAc (F(2,56) �
69.97, p � 0.0001) and CeA (F(2,56) � 53.43, p � 0.0001),
but no effect of treatment (LV-EGFP-Cre, LV-EGFP-
Empty) or treatment � concentration interaction (Figs. 6A,
7C , respectively). Analysis of total fluid intake revealed no
significant differences between the LV-EGFP-Cre and LV-
EGFP treatment groups (Figs. 6B, 7D ). Thus, the knock-
down of IKK� in either the NAc or CeA did not change the
preference for saccharin.

Upon completion of the behavioral experiments (	8
weeks post-injection), the knockdown of IKK� in the NAc
and CeA was verified by (1) anatomical assessment of
needle placement and viral spread, (2) confirmation of
IKK� protein knockdown, and (3) exploration of changes
in mRNA levels of Ikkb and downstream proinflammatory
cytokines in the NF-�B canonical pathway. To assess
needle placement and viral spread, animals were per-
fused and brains harvested from a subset of the lentiviral-
treated IkkbF/F mice used in the brain region-specific IKK�
knock-down experiments (NAc: n � 22, LV-EGFP-Cre; n
� 14, LV-EGFP-Empty; CeA: n � 15, LV-EGFP-Cre; n �
5, LV-EGFP-Empty). Injection coordinates and coverage
of the NAc and CeA were verified using immunofluores-
cence to detect EGFP. Figure 7, A and C, shows repre-
sentative images of coronal sections in the NAc (AP
�1.49 mm) and CeA (AP �1.14 mm), respectively, of the
IkkbF/F mice treated with either LV-EGFP-Cre or LV-
EGFP-Empty. The left side of the fluorescent image
shows the EGFP signal (surrogate marker for lentiviral
transduction) in green and DAPI (a stain that visualizes the
nuclei of all cells) in blue. The right side of the image is a

Figure 2. Effect of IKK� inhibitors on ethanol (EtOH) intake and preference after 3 h in a limited access two-bottle choice
drinking-in-the-dark test in C57BL/6J mice. A–C, 50 mg/kg TPCA-1 vs saline treated (n � 6 per group). D–F, 100 mg/kg sulfasalazine
vs saline treated (n � 8 per group). A, D, 15% ethanol consumption (g/kg/3 h). B, E, Preference for ethanol. C, F, Total fluid intake
(g/kg/3 h). Day 2 in each panel shows the averages of 2 d of saline injections for each group � SEM. Remaining time points are the
2 d drinking averages in the presence of saline or drug � SEM. Significant main effect of drug treatment is shown by the p value
(two-way ANOVA with repeated measures). Significant post hoc effect of each drug compared with the corresponding saline group
is indicated by the symbols above each time point (Bonferroni test for multiple comparisons, �p � 0.05, ��p � 0.01, ���p � 0.001).

New Research 6 of 15

September/October 2016, 3(5) e0256-16.2016 eNeuro.org



bright-field image used to better visualize the neuroanat-
omical landmarks. Figure 7, C and D, shows coronal
sections from a mouse brain atlas in the area of the
desired target coordinates with the blue circles showing
the NAc and CeA, and the green ovals demonstrating the
typical area where the LV-EGFP-Cre and LV-EGFP-Empty
treatments were expressed. After completion of the drink-
ing tests, the analysis of brain sections from knockdowns
in NAc and CeA revealed that 100% of the samples met
the criteria of (1) needle placement in at least one side
within �0.3 mm of the desired stereotaxic coordinates

and (2) viral expression coverage that was greater than
one-third of the area in the brain region of interest. The
average viral coverage per injection site as indicated by
the EGFP signal was 37.8% � 4.8 in the NAc and 50.9%
� 5.7 in the CeA (mean � SEM).

After the 2BC drinking tests, IKK� protein knockdown
was confirmed in a subset of mice from the NAc and
CeA experiments using immunohistochemistry (n � 5,
LV-EGFP-Cre; n � 5, LV-EGFP-Empty). Brains were
prepared, immunostained, and analyzed in the same
manner as the IKK� knock-down experiment (after 3

Figure 3. IKK� protein knockdown (3 and 8 weeks post-injection) in NAc of IkkbF/F mice. A fluorescent light microscope image of a
representative stain from the 3 week post-injection time point in NAc is shown. A, Anti-IKK� fluorescently labeled antibody. B,
Anti-EGFP fluorescently labeled antibody. C, Overlay of A and B (“IKK�–” represents transduced cells without IKK�, and “IKK��”
represents transduced cells with IKK�). D, Knockdown of IKK� (LV-EGFP-Cre) measured by IKK�-positive cells colocalized with
EGFP-positive cells relative to their time-matched control (LV-EGFP-Empty). The mean � SEM of eight fields of view (20�) per mouse
for four mice are shown (n � 4 for each group: 3 weeks after LV-EGFP-Cre, 3 weeks after LV-EGFP-Empty, 8 weeks after
LV-EGFP-Cre, 8 weeks after LV-EGFP-Empty). Student’s t test: ��p � 0.01, ���p � 0.001.

Figure 4. Effect of IKK� knockdown in NAc on ethanol (EtOH) intake and preference during the 24 h two-bottle choice test in IkkbF/F

mice. A, Ethanol consumption (g/kg/24 h). B, Preference for ethanol. C, Total fluid intake (g/kg/24 h). Each point is the average of 2
d of drinking � SEM. Significant main effect of treatment is shown by the p value (two-way ANOVA with repeated measures).
Significant post hoc effect of LV-EGFP-Cre compared with LV-EGFP-Empty treatment is indicated by symbols above each time point
(Bonferroni test for multiple comparisons �p � 0.05, ��p � 0.01). n � 32 animals injected with LV-Cre-EGFP; n � 20 injected with
LV-Cre-Empty.
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and 8 weeks) previously described. The relative expres-
sion of IKK� in Cre-treated animals versus control was
0.122 � 0.026 (p � 0.001) in the NAc and 0.141 � 0.028
(p � 0.001) in the CeA (mean � SEM; Fig. 8A). These
represent an 88% and 86% decrease, respectively, in
the NAc and CeA. These results were consistent with
those obtained in pilot IKK� knock-down experiments 8
weeks post-injection.

To determine changes in mRNA levels of Ikkb and
downstream cytokines in the NF-�B canonical pathway,
we performed quantitative PCR on micropunches from
the NAc and CeA. A subset of slices from NAc (n � 10,
LV-EGFP-Cre; n � 6, LV-EGFP-Empty) and CeA (n � 5,
LV-EGFP-Cre; n � 5, LV-EGFP-Empty) experiments were
harvested, flash frozen, sectioned, and micropunches
were collected at the injection site. The relative expres-

Figure 5. Effect of IKK� knockdown in CeA on ethanol (EtOH) intake and preference during the 24 h two-bottle choice test in IkkbF/F

mice. A, Ethanol consumption (g/kg/24 h). B, Preference for ethanol. C, Total fluid intake (g/kg/24 h). Significant main effect of
treatment is shown by the p value (two-way ANOVA with repeated measures). Significant post hoc effect of LV-EGFP-Cre compared
with LV-EGFP-Empty treatment is indicated by �p � 0.05 (Bonferroni test for multiple comparisons). n � 20 injected with
LV-EGFP-Cre; n � 10 injected with LV-EGFP-Empty.

Figure 6. Lentiviral-mediated knockdown of IKK� in the NAc and CeA had no effect on saccharin preference or total fluid intake in
the 24 h two-bottle choice test in IkkbF/F mice. A, B, The effect of IKK� knockdown in NAc (n � 32, LV-EGFP-Cre; n � 20,
LV-EGFP-Empty) is shown in A (preference for saccharin) and B (total fluid intake (g/kg/24 h). C, D, The effect of IKK� knockdown
in CeA (n � 20, LV-EGFP-Cre; n � 10, LV-EGFP-Empty) is shown in C (preference for saccharin) and D (total fluid intake (g/kg/24 h).
Each point is the average of 2 d of drinking � SEM.
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sion of Ikkb was 0.321 � 0.049 (p � 0.001) in the NAc and
0.360 � 0.056 (p � 0.001) in the CeA; Tnf expression was
0.568 � 0.059 (p � 0.01) in the NAc and 0.488 � 0.084 (p
� 0.01) in the CeA; and Il6 expression was 0.595 � 0.055
(p � 0.01) in the NAc and 0.641 � 0.060 (p � 0.01) in the
CeA (mean � SEM). These values indicate 	68% and
64% decrease in Ikkb mRNA in the NAc and CeA, respec-
tively, and �35% knockdown of Tnf and Il6 mRNA in both
brain regions (Fig. 8).

IKK� was expressed primarily in neurons in the NAc
and CeA

To further investigate the specificity of IKK� in these
regions, we determined the cell-type localization of IKK�
in the NAc and CeA. Brain slices were costained using
antibodies against IKK�, and three common cell-type
markers in the brain (neurons, anti-NeuN; astrocytes, anti-
GFAP; microglia, anti-IBA1) from three adult male alcohol-
naive C57BL/6J mice. Using fluorescent light microcopy
to visualize IKK� signal colocalization, we observed that
in both the NAc and CeA, IKK� was expressed in all three
cell types to some degree, but was primarily expressed in
neurons (Fig. 9).

Subsequently, we examined the trophism of the viral
vector delivery system by costaining brain slices from
LV-EGFP-Cre-treated animals in the NAc and CeA (n � 2,
NAc LV-EGFP-Cre; n � 2, CeA LV-EGFP-Cre) using an
antibody to target EGFP and the same three cell-specific
markers described above. EGFP under the control of a
CMV promoter in the VSV-G pseudotyped lentiviral vec-
tors was expressed primarily in neurons (74.6 � 1.3%),
slightly in astrocytes (10.8 � 2.2%), and only marginally in
microglia (1.8 � 0.5%; Fig. 10).

Identification of NF-�B targets
We previously examined chronic ethanol-induced

changes in gene expression patterns in mouse brain
(Osterndorff-Kahanek et al., 2015) and used these data-
sets to determine changes in downstream Nfkb/Rel gene
targets in mouse CeA, NAc, and PFC. Ingenuity pathway
analysis (IPA) was used to curate and identify potential
gene targets in mice and humans. As shown in Table 1,
we identified numerous targets, suggesting that large net-
works of downstream genes may be altered by ethanol.
Ethanol has also been shown to alter gene expression of
IKK� in mice (Osterndorff-Kahanek et al., 2015) and

Figure 7. Injection target verification of lentiviral-mediated IKK� knockdown in the NAc and CeA. A, C, Composite microscope images
of a coronal section in the NAc (A) or CeA (C) of a representative lentiviral injection using fluorescent microscopy (on left) to show
EGFP marker signal (green) and bright-field (on right) to demonstrate neuroanatomy. B, D, Coronal brain atlas figures of the injection
sites with blue circles indicating the NAc (B) or CeA (D), and the green ovals illustrating the typical lentiviral injection location and
spread.
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humans (Flatscher-Bader et al., 2005; Mayfield et al.,
unpublished observations), and IKK� may represent an
upstream intermediate target to control NF-�B activation
and reduce alcohol-induced changes in gene expression.

Discussion
IKK� is a critical component in the regulation of the

NF-�B inflammatory cascade, but its role in alcohol drink-
ing had not been investigated prior to this study.

Inhibiting IKK�, either peripherally or in brain regions
associated with addictive behaviors, decreased voluntary
ethanol consumption and preference in several drinking
tests, including long-term and binge-like paradigms. Sys-
temic administration of the peripherally acting IKK� inhib-
itors, TPCA-1 or sulfasalazine, reduced ethanol drinking in
two distinct drinking models (2BC and 2BC-DID). The
ability of sulfasalazine and TPCA-1 to penetrate the BBB
is not well established, and their anti-inflammatory effects
are thought to be confined to the periphery (Liu et al.,

2012). However, it is possible that the inhibition of sys-
temic inflammatory signaling during drinking also impacts
central pathways. Decreased levels of proinflammatory
cytokines in blood, for example, could translate to de-
creased cytokine release and signaling across the BBB,
ultimately decreasing levels of inflammatory mediators in
brain. We also note that other anti-inflammatory agents,
such as minocycline, were proposed to reduce drinking in
mice through direct central actions (Agrawal et al., 2014).
It has been hypothesized that alcohol-induced inflamma-
tory responses signal via peripheral-central positive-
feedback cycles (Robinson et al., 2014). Regardless of the
primary mechanism, the ability of peripheral IKK� inhibi-
tors to successfully inhibit long-term and binge-like drink-
ing alludes to their translational potential as a therapeutic
target.

Knockdown of IKK� in the NAc or CeA was sufficient to
decrease voluntary 2BC ethanol consumption, showing

Figure 8. IKK� protein levels and mRNA expression of IKK�, TNF-�, and IL-6 at the injection site upon completion of behavioral
studies. A, IKK� protein levels in NAc and CeA (A; n � 5 per group: NAc LV-EGFP-Cre, NAc LV-EGFP-Empty, CeA LV-EGFP-Cre,
and CeA LV-EGFP-Empty). B–D, mRNA levels of IKK� (B), TNF-� (C), and IL-6 (D) in the NAc (n � 10, LV-EGFP-Cre; n � 5,
LV-EGFP-Empty) and CeA (n � 5, LV-EGFP-Cre; n � 5, LV-EGFP-Empty). Values are shown relative to LV-EGFP-Empty-treated mice.
IKK� protein levels were analyzed using immunohistochemistry. IKK� mRNA levels at the target site in the NAc and CeA were
assessed by quantitative RT-PCR and normalized relative to GADPH. ��p � 0.01, ���p � 0.001 determined by Student’s t test. All
data are shown as the mean � SEM.
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that drinking behavior can be selectively regulated by the
central actions of IKK�. The NAc is part of the mesolimbic
dopamine reward system, which has a well documented
role in substance abuse, and has also been implicated in
the rewarding effects of cocaine mediated by IKK� (Russo
et al., 2009). The CeA is involved in fear-motivated behav-
iors associated with drug and alcohol abuse, and has
been shown to mediate the behavioral effects of ethanol
consumption in rodents (Roberto et al., 2004a,b; 2006;
Lam et al., 2008). Lesions of the central, but not basolat-
eral, amygdala decreased voluntary ethanol consumption
(Möller et al., 1997), and a review of the neurocircuitry of
drug addiction further highlights the role of plasticity in
frontal cortical and subregions of the amygdala in craving,
withdrawal, negative affect, and loss of control (Koob and
Volkow, 2010). Thus, the brain regions targeted here have
key roles in alcohol addiction-mediated behaviors and
were both sensitive to IKK� knockdown.

We provide initial evidence that IKK� knockdown dis-
rupts proinflammatory cascades in the NAc and CeA
based on decreased expression of downstream products

of the NF-�B canonical pathway (TNF-� and IL-6) in both
regions. Although the corresponding reductions in these
inflammatory cytokines suggest that this pathway is
responsible for the decreased drinking, these results do
not provide specific mechanistic evidence of down-
stream effects. Other studies (Blednov et al., 2011;
Robinson et al., 2014) have hypothesized that alcohol-
induced increases in levels of cytokines promote ex-
cessive alcohol consumption in animal models and
human alcoholic subjects. This may in turn exacerbate
inflammatory responses via activation of NF-�B. In fact,
NF-�B DNA binding in the brain has been shown to
increase with ethanol treatment (Crews et al., 2006) and
the human NFKB1 gene has also been linked with
alcoholism (Edenberg et al., 2008).

In addition, previous evidence suggests that long-term
ethanol consumption alters gene expression of IKK� in
mouse PFC (Osterndorff-Kahanek et al., 2015) and human
postmortem PFC from alcoholic subjects (Flatscher-
Bader et al., 2005). Furthermore, our current evidence
suggests that NF-�B-related gene targets are ethanol-

Figure 9. Cell type-specific localization of IKK� in the NAc and CeA. A–I, Representative fluorescent light microscope images
illustrating cell type-specific antibodies in the first columns [anti-NeuN for neurons (A); anti-GFAP for astrocytes (D); anti-IBA1 for
microglia (G)], anti-IKK� stains in the second columns (B, E, H), and overlay of the first two in the third columns (C, F, I). Arrows
illustrate cells showing colocalization of anti-IKK� and cell type-specific stains.

New Research 11 of 15

September/October 2016, 3(5) e0256-16.2016 eNeuro.org



responsive in mouse CeA, NAc, and PFC, potentially affect-
ing a significant number of downstream targets (mouse and
human). Based on the genomic evidence in mice and hu-
mans, and the many networks of downstream genes that
may be dysregulated, ethanol-mediated changes in IKK�
regulation of NF-�B cascades are relevant targets that may
offer new treatment strategies for AUD.

In addition to different brain regions, different cell types
may play unique roles in inflammatory responses (Szabo
and Lippai, 2014; Lacagnina et al., 2016; Warden et al., in
press). Inflammatory pathways are not limited to glia or
other immunocompetent cells, but also involve neurons
and neuronal–glial interactions. In our study, the selective
knockdown of IKK� did not affect all cell types equally,
due in part to the viral delivery system. IKK� was ex-
pressed primarily in neurons in the NAc and CeA with
lesser amounts found in glia (e.g., astrocytes and micro-
glia). The cell-type specificity of the viral vector system
delivering Cre favored the transduction in neurons, and to
a lesser degree in astrocytes, and only marginally in mi-
croglia. Even though IKK� was knocked down to some

extent in all three cell types, neurons appear to be a
primary target. Because GFAP only labels a subset of
astrocytes in the CNS and is not an ideal marker, our
estimation that IKK� knockdown occurred in only 10% of
astrocytes may be an underestimation. While this caveat
warrants the consideration of the role of IKK� in astro-
cytes, it does not detract from the novel evidence that
neurons are involved in the IKK�-mediated reduction in
ethanol drinking.

The IKK complex (IKK�, IKK�, IKK�/NEMO) is a crucial
mediator for several proinflammatory pathways that ulti-
mately result in the activation of NF-�B. IKK� primarily
regulates the NF-�B canonical pathway (transcription of
inflammatory genes/antiapoptosis), IKK� regulates the
NF-�B noncanonical pathway (cell cycle regulation/prolif-
eration), while IKK�/NEMO participates in both pathways
(Perkins, 2007; Gamble et al., 2012). We suggest that the
knockdown of IKK� in the NAc and CeA targeted the
canonical pathway in neurons and, to some extent, astro-
cytes, interrupting inflammatory signaling and feedback
cycles.

Figure 10. Cell-type trophism of lentiviral vectors in the NAc and CeA. A–I, Representative fluorescent light microscope images
illustrating cell type-specific stains in the first columns [anti-GFAP for astrocytes (A); anti-NeuN for neurons (D); anti-Iba1 for microglia
(G)], anti-GFP stains in the second columns (B, E, H), and overlay of the first two in the third columns (C, F, I). Arrows illustrate cells
showing coexpression of anti-GFP and cell type-specific stains.
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The central effects of IKK� are not well known, and prior
to this work its role in alcohol drinking had not been
investigated. Our results provide novel evidence that pe-
ripheral and/or central inhibition of IKK� decreases etha-
nol drinking, including binge-like consumption. Ethanol
could induce peripheral cytokines that ultimately activate
expression of immune-related genes in the brain or could
directly stimulate central immune- and inflammatory-
related pathways. Inhibiting IKK�-mediated signaling
could dampen the peripheral as well as the central inflam-
matory effects of ethanol. Our results are consistent with
other studies showing that null mutant mice lacking genes
associated with proinflammatory pathways had reduced
levels of chemokines and cytokines, and reduced volun-
tary ethanol consumption (Blednov et al., 2005, 2012).
However, not all inflammatory-related genes studied to
date have been shown to regulate ethanol drinking in

mouse knock-out models (Mayfield et al., 2016), suggest-
ing that indiscriminant inhibition of inflammatory path-
ways is not a viable strategy to limit excessive drinking
and further highlighting the relevance of the current study
in targeting treatment strategies.

In summary, voluntary ethanol drinking was decreased
by inhibiting IKK� peripherally using pharmacological in-
hibitors or centrally using genetic deletions in the CeA or
NAc, regions known to be important in the neurobiology
of alcohol abuse (Koob and Volkow, 2010). Although the
effects of inflammatory pathways are often attributed to
glia (astrocytes and microglia), this study highlights a
novel neuronal role for IKK� in alcohol consumption. Our
results also provide evidence that the use of peripherally
acting IKK� inhibitors with anti-inflammatory properties is
a potential treatment strategy for decreasing alcohol
drinking. In particular, drugs like sulfasalazine, which are

Table 1: Ethanol-induced changes in NFKB/REL gene targets in mouse brain

CeA NAc PFC
Illumina probe ID NFKB/REL targets (IPA) Illumina probe ID NFKB/REL targets (IPA) Illumina probe ID NFKB/REL targets (IPA)
ILMN_2738825 ACTA1 ILMN_2878060 ANXA6 ILMN_2878060 ANXA6
ILMN_2739999 B2M ILMN_2739999 B2M ILMN_1221503 CCND1
ILMN_1216746 B2M ILMN_1216746 B2M ILMN_2601471 CCND1
ILMN_2717613 CDK2 ILMN_2706514 BCL2 ILMN_2931411 CCT3
ILMN_2756435 CEBPB ILMN_2716567 BNIP3L ILMN_2846775 CDKN1A
ILMN_2609813 CHI3L1 ILMN_2756435 CEBPB ILMN_2634083 CDKN1A
ILMN_1224754 CKB ILMN_2959480 EIF4A1 ILMN_2846776 CDKN1A
ILMN_2747651 HAT1 ILMN_2718815 FAF1 ILMN_2992403 CINP
ILMN_2624153 HES5 ILMN_2994806 H2AFJ ILMN_2627041 CX3CL1
ILMN_1253414 HES5 ILMN_2648292 H3F3A/H3F3B ILMN_1256348 DNTTIP1
ILMN_2791952 HES6 ILMN_1253414 HES5 ILMN_2737713 EDN1
ILMN_1222313 HIST1H4J ILMN_2791952 HES6 ILMN_2903945 GADD45G
ILMN_2924419 HLA-A ILMN_2855315 HIST1H1C ILMN_2791952 HES6
ILMN_2835683 HLA-A ILMN_2924419 HLA-A ILMN_2835683 HLA-A
ILMN_1235470 HNRNPC ILMN_2835683 HLA-A ILMN_3156604 HMGB2
ILMN_1239021 HNRNPM ILMN_2715802 HMGA1 ILMN_2664319 IRF3
ILMN_2646625 JUN ILMN_1235470 HNRNPC ILMN_2646625 JUN
ILMN_2878071 LYZ ILMN_2511051 HNRNPC ILMN_3001914 NFKBIA
ILMN_2640883 NDE1 ILMN_2921103 HNRNPM ILMN_2596979 NRARP
ILMN_2596979 NRARP ILMN_2921095 HNRNPM ILMN_3158919 PRKCZ
ILMN_1242466 PSMB9 ILMN_1239021 HNRNPM ILMN_2647533 SLC41A3
ILMN_2717621 RPS15A ILMN_2646625 JUN ILMN_2938893 SMAD3
ILMN_2883164 SERPINE2 ILMN_1258376 KCNK6 ILMN_2701664 TSC22D3
ILMN_2701664 TSC22D3 ILMN_1258526 LGALS3BP ILMN_3150811 TSC22D3
ILMN_3150811 TSC22D3 ILMN_2878071 LYZ ILMN_3112873 TXNIP
ILMN_3121255 VEGFA ILMN_2640883 NDE1

ILMN_2596979 NRARP
ILMN_2790181 PHGDH
ILMN_1234766 PPME1
ILMN_2833378 PRKACA
ILMN_1242466 PSMB9
ILMN_1248316 PTGDS
ILMN_2728729 SDC4
ILMN_3027751 SORBS1
ILMN_2988299 SRF
ILMN_2692615 TGM2
ILMN_2701664 TSC22D3
ILMN_3150811 TSC22D3
ILMN_3112873 TXNIP

Ethanol administration produced numerous changes in NFKB/REL gene targets in mouse CeA, NAc, and PFC. IPA was used to curate gene targets. Gene
target identification included both human and mouse databases. Human nomenclature is used here. Adjusted p values are listed using an FDR of p � 0.001.
Experimental details are provided in the study by Osterndorff-Kahanek et al. (2015).
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already approved by the Food and Drug Administration,
may provide fast-track treatment options for AUD or other
inflammatory-related diseases. Studies such as this that
probe key inflammatory pathways, peripheral–central
components, different drinking models, and brain-region
and cell-type specificity will continue to refine treatment
strategies and opportunities for AUD.
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