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Abstract
Current models for neural coding of vowels are typically based on linear descriptions of the auditory periphery,
and fail at high sound levels and in background noise. These models rely on either auditory nerve discharge rates
or phase locking to temporal fine structure. However, both discharge rates and phase locking saturate at
moderate to high sound levels, and phase locking is degraded in the CNS at middle to high frequencies. The fact
that speech intelligibility is robust over a wide range of sound levels is problematic for codes that deteriorate as
the sound level increases. Additionally, a successful neural code must function for speech in background noise
at levels that are tolerated by listeners. The model presented here resolves these problems, and incorporates
several key response properties of the nonlinear auditory periphery, including saturation, synchrony capture, and
phase locking to both fine structure and envelope temporal features. The model also includes the properties of
the auditory midbrain, where discharge rates are tuned to amplitude fluctuation rates. The nonlinear peripheral
response features create contrasts in the amplitudes of low-frequency neural rate fluctuations across the
population. These patterns of fluctuations result in a response profile in the midbrain that encodes vowel formants
over a wide range of levels and in background noise. The hypothesized code is supported by electrophysiological
recordings from the inferior colliculus of awake rabbits. This model provides information for understanding the
structure of cross-linguistic vowel spaces, and suggests strategies for automatic formant detection and speech
enhancement for listeners with hearing loss.

Key words: auditory nerve; computational model; midbrain; modulation tuning; speech coding

Significance Statement

Encoding of speech sounds is the most important function of the human auditory system. Current models
for neural coding of speech fail over the range of sound levels encountered in daily life and in background
noise. The acoustic structure of vowels and the properties of auditory midbrain neurons that are tuned to
low-frequency amplitude fluctuations suggest a neural code for the spectral peaks (called formants) that
identify vowels. The proposed neural code for speech sounds is the first that is robust over a wide range
of sound levels and in background noise. These results address classic problems in auditory neuroscience
and linguistics, and suggest novel strategies for auditory prosthetics, automatic speech recognition, and
speech enhancement for hearing aids and telephones.
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Introduction
Vowels carry a heavy functional load in all languages,

especially in running speech and discourse. How vowels
are encoded by the nervous system across the range of
sound levels important for vocal communication is un-
known. The acoustic signature of vowels includes period-
icity at the fundamental frequency (F0, or voice pitch); the
harmonics of F0; and formants, the amplitude bands in
the spectrum that characterize vowel contrasts (Fant,
1960). The first two formants are most important for vowel
identification. Studies of auditory nerve (AN) speech cod-
ing typically focus on response rates or temporal syn-
chrony at frequencies to which a fiber is most sensitive
(Sachs and Young, 1979; Young and Sachs, 1979; Del-
gutte and Kiang, 1984; Schilling et al., 1998). These codes
are adequate for low-level speech sounds in quiet, but
they fail for moderate-to-high sound levels and in back-
ground noise. Vowels also induce systematic changes in
the amplitude of F0-related fluctuations in AN responses.
The vowel-coding hypothesis tested here focuses on the
F0-related neural fluctuations and on contrasts in their
amplitudes across neurons tuned to different frequencies.

Many inferior colliculus (IC) neurons display both spec-
tral tuning, described by a most sensitive best frequency
(BF), and tuning to the frequency of sinusoidal fluctuations
in amplitude, described by a best modulation frequency
(BMF; Krishna and Semple, 2000; Joris et al., 2004; Nel-
son and Carney, 2007). Most IC neurons tuned for ampli-
tude fluctuations have BMFs in the range of voice pitch
(Langner, 1992) and are thus well suited to represent the
critical acoustic features of vowels (Delgutte et al., 1998).
The vowel-coding hypothesis presented here takes ad-
vantage of nonlinear properties of AN responses, includ-
ing rate saturation (Sachs and Abbas, 1974; Yates, 1990;
Yates et al., 1990) and synchrony capture, which is the
dominance of a single stimulus frequency component on
the response (Fig. 1; Young and Sachs, 1979; Deng and
Geisler, 1987; Miller et al., 1997). These nonlinearities
have strong effects on the rate fluctuations of AN fibers in
response to vowels and provide a robust framework for
encoding vowel features.

Figure 1 introduces the main features of the vowel-coding
hypothesis. The harmonic structure of vowels (Fig. 1A)
yields two types of periodicity that coexist in AN re-
sponses, as follows: phase locking to harmonics near the
BF of the fiber; and phase locking to slow fluctuations at
F0. Fibers tuned near formant peaks may be saturated,
and these fibers also have sustained responses that are
dominated by phase locking to a single harmonic near the
BF of the fiber, which is referred to as synchrony capture.
Both of these nonlinearities result in responses with rela-
tively weak fluctuations at F0 (Fig. 1B). Fibers tuned to
frequencies away from formants are not dominated by
one harmonic but are influenced by the beating of multiple
harmonics, resulting in strong low-frequency neural fluc-
tuations at F0 (Fig. 1C).

The contrast in the amplitude of low-frequency rate
fluctuations across the AN population is enhanced in the
midbrain by the rate tuning of IC neurons to amplitude
modulations, which is described by modulation transfer
functions (MTFs; Fig. 1D,E). The majority of MTFs in the IC
have bandpass (BP) tuning to amplitude modulations (Fig.
1D), and the rest have band-reject tuning (Fig. 1E), low-
pass or high-pass tuning (Nelson and Carney, 2007), or
more complex MTFs that combine excitation and inhibi-
tion (Krishna and Semple, 2000). Midbrain cells with
bandpass MTFs that have maxima (i.e., BMFs) near F0 are
hypothesized to display decreased rates when the BF of
the cell is near a formant frequency (Fig. 1F, green arrow)
because the neural inputs have weak low-frequency rate
fluctuations (Fig. 1B). Cells with bandpass MTFs but with
BF between formants are hypothesized to have increased
rates (Fig. 1F, orange arrow) because their neural inputs
have strong low-frequency fluctuations (Fig. 1C). In con-
trast, cells with band-reject or low-pass MTFs and minima
near F0 will have increased rates when formant frequen-
cies are near the BF (Fig. 1G, green arrow), because their
neural inputs have weak low-frequency fluctuations (Fig.
1B). Band-reject or low-pass cells will have decreased
rates (Fig. 1G, orange arrow) when the BF is between
formants and the inputs have strong fluctuations (Fig. 1C).

The contrast across frequency in the F0-related neural
fluctuations sets up a code for formants that is translated
into rate profiles in the midbrain (Fig. 1F,G). This study
used computational models for AN fibers and IC neurons
to explore the robustness of this proposed code across a
wide range of sound levels and in background noise.
Examples of recordings from IC neurons in awake rabbits
support the model for cells that have simple bandpass or
band-reject amplitude modulation tuning.

Materials and Methods
Modeling
A phenomenological model of AN responses that includes
several key nonlinearities, including rate saturation, adap-
tation, and synchrony capture (Zilany et al., 2009, 2014)
provided the inputs to the models for two types of mid-
brain neurons (Fig. 2A). IC cells with BP MTFs were
simulated using the same-frequency inhibition-excitation
(SFIE) model (Nelson and Carney, 2004), which explains
tuning for the amplitude modulation frequency by the
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interaction of excitatory and inhibitory inputs with different
dynamics. IC cells with low-pass, band-reject (LPBR), or
high-pass MTFs were simulated using an extension of the
SFIE model; the LPBR model received excitatory input
from the brainstem and inhibitory input from bandpass
cells (Fig. 2B). Time-varying input rate functions to each
model cell were convolved with � functions representing
excitatory or inhibitory postsynaptic responses. The de-
cay time constants of the � functions and the delays
associated with synaptic responses were varied to pro-
duce MTFs tuned to different amplitude modulation fre-
quencies (Nelson and Carney, 2004).

The parameter values for the cochlear nucleus (CN)/
brainstem neurons (Fig. 2) were fixed for all simulations.
These parameters were the time constants of the excit-
atory and inhibitory � functions, �CNex and �CNinh; the delay
of the inhibitory � function with respect to the excitatory �
function, DCNinh; and amplitude scalars for the excitatory
and inhibitory � functions, ACNex and ACNinh (for parameter
values, see Table 1). These parameters resulted in “ge-
neric” cochlear nucleus or other brainstem neurons that
project to the IC. In general, many types of CN/brainstem
neurons have an increased synchrony to the stimulus
envelope and a weak rate tuning to the amplitude modu-
lation rate (Frisina et al., 1990; Grothe et al., 1997; Joris

and Yin, 1998; Gai and Carney, 2008; for review, see Joris
et al., 2004). The model CN/brainstem cells do not have
significantly greater contrast in the rate versus BF profiles
in response to vowels than do AN fibers, thus this stage of
the model is not an attempt to simulate the CN “chopper”
neurons described by Blackburn and Sachs (1990), which
have weaker temporal representations of vowels than AN
fibers or other CN response types but more robust rate
versus BF profiles. The detailed response properties and
connections of different types of CN and other brainstem
neurons were not included in the simulations here.

Parameter values for model IC neurons are provided in
Table 1. For model bandpass neurons, there were the
following four parameters: the time constant of the excit-
atory � function, �BPex; the time constant of the inhibitory
� function, �BPinh; the delay of the inhibition with respect
to the excitation, DBPinh; and amplitude scalars for the
excitatory and inhibitory inputs, ABPex and ABPinh. These
parameters were based on example model neurons with a
range of BMFs in the study by Nelson and Carney (2004).
Model band-reject, low-pass, and high-pass neurons (Fig.
2B) were described by the bandpass model parameters,
plus the time constant of the excitatory � function,
�LPBRex; the time constant of the inhibitory � function,
�LPBRinh; the delay of the inhibition with respect to excita-

Figure 1 Schematic illustration of vowel-coding hypothesis. The left-hand column labels the key stages in the coding scheme. A,
Vowel spectrum consisting of harmonics of F0, shaped by the spectral envelope. B, Responses of AN fibers tuned near formants have
relatively small pitch-related rate fluctuations. These responses are dominated by a single harmonic in the stimulus, referred to as
synchrony capture. C, Fibers tuned between formants have strong rate fluctuations at F0 (Delgutte and Kiang, 1984). D, Example of
a bandpass MTF from rabbit IC with a BMF near F0 for a typical male human speaker. E, Example band-reject MTF with a notch near
a typical F0. F, Bandpass midbrain neurons have reduced rates in frequency channels with weak fluctuations (green arrow) and
increased rates in channels with strong fluctuations (see C, orange arrow); thus dips in the rate profile of bandpass neurons encode
F1 and F2. G, The profile of rates across a population of band-reject neurons has peaks at F1 and F2, because band-reject neurons
respond more strongly to stimuli that result in reduced neural fluctuations in their inputs (see B, green arrow).
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tion, DLPBRinh; and amplitude scalars for the excitatory and
inhibitory inputs, ALPBRex and ALPBRinh.

For all models, the synaptic output signal from the
auditory nerve model (which has units of spikes per

second) was convolved with excitatory and inhibitory
postsynaptic potentials for the CN/brainstem model.
These potentials were modeled by � functions, each
described by a time constant, and each normalized to
have unit area before scaling the amplitudes with the
coefficients described above. The model cell output
was computed by subtracting the inhibitory signal from
the excitatory potential and then half-wave rectifying.
This model output signal was then convolved with the
appropriate � function to provide the input to the next
model cell, and excitatory and inhibitory signals were
summed and half-wave rectified to compute the model
IC response.

The basic properties of the model responses to the
vowel /æ/ (in “had”) are illustrated in Figure 2C as a
function of time for a population of neurons tuned to a
range of BFs (the frequency that elicits the strongest
response). As illustrated schematically in Figure 1, the
model AN fibers (Fig. 2C) tuned near formant frequencies
(arrows at right) have strong response rates with relatively
small F0-related fluctuations, and those tuned to interme-
diate frequencies have strong fluctuations in rate associ-
ated with each pitch period. A population of model BP
cells with the MTF tuned to F0 and a range of BFs is
illustrated in Figure 2D. BP cells with BFs tuned to formant
frequencies have weak responses compared to those
tuned to intermediate frequencies, where the strong F0-
related fluctuations elicit strong responses (Figs. 1C, 2D).
In contrast, model LPBR cells (Fig. 2E) with a notch in the
MTF near F0 (Fig. 1E) respond best when the BF is tuned
near a formant frequency; these cells respond weakly to
the strong F0-related fluctuations on their inputs (Fig. 1C),
and are more effectively driven by the weaker modula-

Figure 2 Models for modulation tuning in IC cells. A, Time waveform of the vowel /æ/ (had). B, The SFIE model (Nelson and Carney,
2004) for midbrain cells with BP MTFs (blue cell). An extension of the SFIE model is illustrated by the red cell, which is excited by
ascending inputs and inhibited by the bandpass SFIE cell. This model cell simulates the relatively common low-pass or band-reject
MTFs (see Fig. 3), and is referred to as the LPBR model. C, Model AN population response (Zilany et al., 2009, 2014). D, Population
response of the BP IC model; BP neurons with BFs near F1 and F2 (arrows at right) have decreased responses (Fig. 1F). E, The LPBR
model has peaks in the population rate profile near F1 and F2 (Fig. 1G).

Table 1 Model parameters

CN/brainstem parameters (all simulations)

�ex (ms) 0.5
�inh (ms) 2
D (ms) 1
Aex 1.5
Ainh 0.9

IC model parameters

Bandpass model Fig. 3A Fig. 3B Fig. 3C

�BPex (ms) 2 0.7 5
�BPinh (ms) 6 0.7 10
DBP (ms) 2 1.4 2
ABPex 2 3 6
ABPinh 2.2 4.2 6.6

Low-pass/band-reject model Fig. 3A Fig. 3B Fig. 3C

�LPBRex (ms) 2 0.7 5
�LPBRinh (ms) 5 5 5
DLPBR (ms) 0.7 0.7 0.7
ALPBRex 0.6 1 0.6
ALPBRinh 2 2 2

A single set of parameters was specified for the CN/brainstem level of the
model. Three sets of parameters were used for the IC models, illustrated in
Figure 3, which had BMFs of 45 Hz (left), 125 Hz (middle), and 16 Hz (right).
The model parameters for other figures were the same as those for Figure
3B, which had a BMF near F0 for most of the vowels used as stimuli.
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tions provided by the auditory periphery at the formant
frequencies (Fig. 1B).

Figure 3 illustrates MTFs for three model BP neurons
(blue curves) tuned to different amplitude modulation
rates. Each of these model BP neurons provided an in-
hibitory input to an LPBR neuron, yielding the other set of
MTFs (red curves). The shapes of these MTFs are char-
acteristic of MTF types referred to as band reject, low
pass, and high pass (Krishna and Semple, 2000; Nelson
and Carney, 2007). This relatively simple model for mod-
ulation frequency tuning explains several of the MTF types
that are encountered in the IC. Other IC cells have more
complex MTFs, consisting of combinations of excitatory
and inhibitory regions (Krishna and Semple, 2000). Further
extensions of this modeling approach will be required to
describe those MTFs.

Physiological methods
All animal procedures were performed in accordance with
the regulations of the University of Rochester animal care
committee. Recordings were made in the central nucleus
of the IC in female awake rabbits using implanted tetrodes
advanced through the IC with a head-mounted microdrive
(5-Drive, Neuralynx). Tetrodes were constructed by twist-
ing four strands of 12- or 18-�m-diameter epoxy-coated
platinum iridium wire. Action potentials were sorted off-
line based on spike shapes (Schwarz et al., 2012). Single-
unit recordings were identified based on a criterion of
�2% for interspike intervals �1 ms and, when multiple
spikes were recorded and sorted, on values �0.1 of the
summed cluster separation metric (L�, based on a sum of
the cluster isolation metric Lratio, from Schmitzer-Torbert
et al., 2005; Schwarz et al., 2012).

Acoustic stimuli were created in Matlab and presented
using Tucker-Davis Technologies hardware and Beyer
Dynamic headphones through custom earmolds. Stimuli
were calibrated using an Etymotic ER-7C probe-tube mi-
crophone. Audio frequency tuning was determined using
response maps based on responses to 200 ms tones
presented every 600 ms with frequencies from 0.2 to 20
kHz and levels from 10 to 70 dB SPL, presented in
random order. Amplitude modulation tuning was deter-
mined using 100% modulated wideband noise (30 dB
SPL spectrum) or tone carriers (70 dB SPL) near the best
frequencies of the neurons. Vowel stimuli (65 dB SPL)

were from the database of Hillenbrand et al. (1995). Sam-
ples were extracted from the steady-state portion of the
vowel, and a Hanning window was applied to limit the
duration to 200 ms. Vowel stimuli were chosen from the
database based on the match of the speaker’s average F0
to the BMF of the neuron.

Results
Model responses
Responses of model IC cells with bandpass and band-
reject MTFs to two vowel tokens (Fig. 4) illustrate the
representation of formants in the average rate profiles of
model IC population responses. As schematized in Fig. 1,
the profile of average discharge rates for a population of
model IC neurons with BP MTFs (Fig. 4C,D, blue) has
minima at BFs near the vowel formants. In contrast, the
rates of band-reject neurons (Fig. 4C,D, red) have peaks
at the formants. The importance of the LPBR model for a
robust neural code of vowel formants is illustrated in
Figure 4D for the vowel /i/, which, like many vowels, has
widely spaced formants. This response shows that reduc-
tions in the discharge rate of BP responses (Fig. 4D, blue)
are ambiguous, as they may be due either to reduced
fluctuations of AN responses tuned near formants (Fig.
1B) or to reduced spectral energy (Fig. 4D, arrow, 1500
Hz). This ambiguity is resolved by the LPBR model (Fig.
4D, red), which only responds when both sufficient energy
and reduced fluctuations are present on the inputs to the
model midbrain cell. The reduced fluctuations result in the
disinhibition of the LPBR model by reducing the inhibitory
input from the BP neuron. Note that the model LPBR
population rate profile is qualitatively similar to the AN
(Fig. 4C,D, magenta) and CN/brainstem (Fig. 4C,D, cyan)
profiles, except that the LPBR population responses (Fig.
4C,D, red curves) have greater contrast and steeper
slopes in the discharge rates across the population in
comparison with the peripheral responses. The LPBR
model average rate profiles differ from peripheral rate
profiles in being more robust for vowels in background
noise and across a wide range of sound levels (see be-
low).

The midbrain vowel-coding hypothesis is robust across
a wide range of SPLs (Fig. 5) because it is based on the
pattern of pitch-related rate fluctuations in AN responses,

Figure 3 A–C, Three bandpass MTFs (blue, as in Fig. 2) with mid-frequency (A), high-frequency (B), and low-frequency (C) BMFs.
MTFs for three model cells (red, as in Fig. 2) that are inhibited by the bandpass cells explain three other MTF types in the IC: the more
common band-reject (A) and low-pass (B) MTFs, as well as the less common high-pass MTF (C). Model parameters are in Table 1.
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as opposed to spectral energy or average rates of AN
fibers. Model AN rates, shown in response to the vowel
/æ/ (had), saturate at moderate-to-high sound levels, ob-
scuring the representations of formant peaks (Fig. 5A). All
model responses presented here are based on models for
low-threshold high-spontaneous rate AN model fibers,
which are the majority of AN fibers (Liberman, 1978).
Although responses of medium- or low-spontaneous rate
fibers have somewhat larger dynamic ranges and higher
thresholds, the representation of formant peaks in all fiber
types weakens as the sound level increases and the fibers
begin to saturate.

The representations of F1 and F2 for the vowel /æ/ (had)
in the average discharge rate profiles of populations of
model IC cells appear as decreased rates for model BP
cells tuned near the formants (Fig. 5B, vertical blue
streaks) or increased rates for model LPBR cells (Fig. 5C,
vertical orange streaks). The contrast in rates [e.g., the
difference between peaks (Fig. 5B,C, red) and minima
(Fig. 5B,C, blue)] along the frequency axis varies with SPL.
This contrast is strongest for sound levels near 65 dB SPL
(Fig. 5B,C; i.e., in the range of conversational speech). The
wide dynamic range of the formant representation is due
partly to spike rate adaptation (Dean et al., 2005, 2008;
Wen et al., 2009, 2012), which increases the overall dy-
namic range of auditory neurons, a phenomenon largely
explained by the power law synaptic adaptation included
in the AN model (Zilany and Carney, 2010).

The reduction in the contrast of rates in the model
responses at high levels is consistent with the phenome-
non of “rollover,” the gradual decrease in speech recog-
nition scores at levels exceeding 80 dB SPL (Studebaker
et al., 1999). The addition of smaller percentages of
medium- and low-spontaneous rate AN fibers to the high-
spontaneous rate model population would slightly in-

Figure 4 Model IC responses to vowel tokens. A, B, The spectra of actual vowels are as follows: /æ/ (A), /i/ (B). C, D, Rate profile of
model cells with BP MTFs tuned to F0 (blue) has dips at formants (dots). Rate profile of LPBR model cells with minima in the MTF
near F0 (red) has peaks near formants (dots). AN (magenta) and CN/brainstem (cyan) rate profiles. D, Rate profile for BP cells has an
ambiguous dip (arrow) for vowels with a broad spectral valley. LPBR cells (red) have relatively low rates where spectral energy is low,
due to reduced excitatory inputs. Vowel levels were 65 dB SPL. Model parameters are the same as in Fig. 3B.

Figure 5 A–C, Population rate profiles for model AN (A), BP (B),
and LPBR (C) cells in response to the vowel /æ/ (had) for a range
of sound levels. Vertical dotted lines indicate the first two formant
frequencies. A, Peaks (red) in AN rates that code formants at low
SPLs saturate as level increases. B, Dips (blue) in the rate profile for
F1 and F2 extend from �30 to 95 dB SPL and are strongest at
conversational speech levels of 50-70 dB SPL. C, LPBR model cells
have peaks (red) in the rate profile at the formant frequencies; these
peaks are most robust at conversational speech levels. Model
parameters are the same as in Fig. 3B.
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crease the model dynamic range, but the representation
of formants would still roll off at the highest levels (data
not shown). The high-spontaneous rate AN models were
used as inputs for the IC models shown here to empha-
size that the information required for the wide dynamic
range of the proposed coding hypothesis is present even
in this group of AN fibers, which has the smallest dynamic
range.

The representation of formants in the model midbrain
average discharge rate profiles is also robust in the pres-
ence of additive speech-shaped Gaussian noise across a
range of signal-to-noise ratios (SNRs; Fig. 6). Figure 6A
shows model AN fibers in response to the vowel /æ/ (had);
as SNR decreases, the representation of the formants in
the AN discharge rates deteriorates, especially in the F2
frequency region. Formant representation is much more
robust in the response profiles of midbrain neurons (Fig.
6B,C). The dips in the response profiles of the model BP
cells (Fig. 6B) and in the peaks in the LPBR profile (Fig.
6C) deteriorate at approximately the speech reception
threshold (SRT), where human listeners have difficulty

understanding speech in noise (approximately �5 dB
SNR; Festen and Plomp, 1990).

Physiological responses
The vowel-coding model was tested with recordings from
IC neurons in awake rabbits in response to 12 contrastive
English vowels from one human male speaker with an
average F0 of 128 Hz (Hillenbrand et al., 1995). The
responses of 75 neurons with BFs �4500 Hz that re-
sponded to 65 dB SPL vowel stimuli were compared to
model predictions; a subset of these neurons were also
studied at multiple SPLs and SNRs.

Figure 7 illustrates responses of two neurons, one with
a BF of 1100 Hz and a bandpass MTF (Fig. 7A), and the
other with a BF of 2000 Hz and a band-reject MTF (Fig.
7B). Figure 7, C and D, shows the average discharge rates
for these two cells in response to nine English vowels
(black line), along with predictions provided by the BP
SFIE (Figs. 1, 4, blue line) and LPBR (Figs. 1, 4, red line)
models. For comparison, predictions based on the energy
through a gammatone filter centered at the BF are also
shown (Figs. 1, 4, green line). The Pearson product mo-
ment correlation coefficient between actual rates and
each of the predictions is also shown.

The discharge rates of the BP cell were not explained
by the stimulus energy near the BF of the neuron. For
example, for the cell in Figure 7, A and C, the energy near
the BF is greatest for the vowels /ɒ/ (in “father”) and /ɔ:/ (in
“bawd”), yet the discharge rates of the neuron are low in
response to these vowels. In contrast, the neuron re-
sponds strongly to /i/ (in “heed”) and /I/ (in “hid”), which
have relatively low energy near the BF of this neuron (Fig.
7C). The BP SFIE model, however, explains these coun-
terintuitive responses of the BP IC neurons to vowels (Fig.
7C, blue and black lines). The responses of the BP neuron
decreased when formant frequencies encroached upon
the BF of the neuron (1300 Hz), as predicted by the SFIE
model (Figs. 1F, 4C, blue), because of the reduced rate
fluctuations in the those frequency channels. Synchrony
capture and saturation of AN fibers tuned near the for-
mant peaks result in reduced rate fluctuations in the
responses of those frequency channels. Knowledge of the
BF, MTF type, and BMF of the neuron allowed predictions
of the vowel responses of the BP cell by the SFIE BP
model.

The responses of the band-reject neuron (Fig. 7D,
black) increased when formant frequencies were near the
BF of the neuron (2000 Hz), as predicted by the LPBR
model (Fig 7D, red). Although the responses of the band-
reject neuron were positively correlated to energy near the
BF (Fig. 7D, green), the LPBR model responses also
reflected trends in the responses of the band-reject neu-
ron that were not explained solely by the stimulus energy
in the critical band centered at the BF.

An important property of the proposed model for vowel
coding is its resilience across SPL (Fig. 5) and SNR (Fig.
6). Some cells in the IC have discharge rate profiles that
are similarly robust across a wide range of stimulus pa-
rameters. An example is shown in Figure 8. This neuron
had a band-reject MTF (Fig. 8A), and its discharge rates in

Figure 6 A–C, Population rate profiles for model AN (A), BP
(B), and LPBR (C) cells in response to the vowel /æ/ (had) for
a range of SNRs. Vowel levels were fixed at 65 dB SPL; the
noise level increases toward the bottom of plots. A, Saturation
of AN rates by the added noise obscures representations of
formant frequencies, especially in the F2 region. B, Dips in the
average discharge rate profile that indicate the first two for-
mants in the BP population response deteriorate gradually as
SNR decreases (toward the bottom of the plot). C, Peaks in
the rate profile versus SNR for model LPBR cells also deteri-
orate as SNR decreases. Arrow and horizontal dashed lines
indicate the approximate SRT for listeners with normal hearing
(Festen and Plomp, 1990). Model parameters are the same as
in Fig. 3B.
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response to the set of nine vowels presented at 65 dB
SPL were well predicted by the LPBR model and by the
energy model (Fig. 8B). The large differences in rate
across the set of vowels for this neuron facilitate compar-
isons of the rate profile across a range of SPLs (Fig. 8C)
and SNRs (Fig. 8E). As SNR decreases, the rate profile
approaches the response to 65 dB noise alone (Fig. 8E,
blue), whereas at high SNRs the profile approaches the
response to speech in quiet (Fig. 8E, black). For compar-
ison, responses of a high-spontaneous rate model AN
fiber with the same BF (1100 Hz) are shown for the same
range of SPLs (Fig. 8D) and SNRs (Fig. 8E). The AN rates
across this set of vowels gradually saturate over this
range of sound levels (Fig. 8D). All of the AN responses for
stimuli that included the added speech-shaped noise
were saturated for the SNRs studied (Fig. 8E).

The physiological results above demonstrate examples
of IC responses with features that are consistent with the
model. Of 75 neurons that responded to 65 dB vowel
stimuli with F0 in the 100-130 Hz range, 62 neurons (83%)
had average rates in response to a set of 12 vowels that
were significantly correlated (i.e., r � 0.57, 2 df) by at least
one of the three models (BP, LPBR, or energy). Of these,
11% were best predicted by the BP model, and 42% were
best predicted by the LPBR model. Note that many neu-
rons in the IC have more complex MTFs than the simple
bandpass and band-reject examples shown above. In
particular, MTFs that combine excitatory and inhibitory
regions at different modulation frequencies are common

(Krishna and Semple, 2000), and further extension of the
model is required to describe the responses of those
neurons to vowels. Figure 9 illustrates diverse MTFs,
vowel responses, and correlations to model predictions
for five additional IC neurons. These complex MTF shapes
illustrate the challenge of classifying neurons as simply
bandpass or band-reject. Each of these neurons has rates
that are enhanced and/or suppressed with respect to the
response to the lowest modulation frequency tested. Kim
et al. (2015) propose categorization of MTFs as band
enhanced or band suppressed, based on comparisons to
the response to an unmodulated stimulus. The examples
in Figure 9 have responses that are sometimes better
predicted by the BP model (Fig. 9A,D), and sometimes by
the LPBR model (Fig. 9B,C,E). However, it should be
noted that in some cases (Fig. 9A), the correlation be-
tween model and neural responses is strongly influenced
by the responses to one or two vowels. The correlations in
Figure 9 also illustrate that although the LPBR and energy
model responses are often highly correlated (), this is not
always the case (Fig. 9A,D). In general, for the examples in
Figure 9 the BP model provides better predictions of
responses for neurons that have peaks in the MTF near
the F0 of the stimulus, and the LPBR provides better
predictions when there is a dip in the MTF near F0. Thus,
it is reasonable to hypothesize that quantifying the neural
fluctuations established in the periphery near the BF of a
neuron, and then applying the features of the MTF at
modulation frequencies relevant to the stimulus, will ex-

Figure 7 A, B, Examples of two IC neurons in awake rabbits with bandpass MTF (BF, 1300 Hz; BMF, 130 Hz; A) and band-reject MTF
(BF, 2000 Hz; MTF notch at 150 Hz; B). C, Black, Average rate of the bandpass neuron in response to nine vowels with F0 � 148 Hz
(Hillenbrand et al., 1995), 65 dB SPL. Blue, Responses of the bandpass SFIE model; red, LPBR model responses; green, energy at
the output of a fourth-order gammatone filter at the BF of the cell. Mean and SD of model responses were matched to neural
responses. Lines connect the symbols to emphasize patterns in the responses across this set of vowels. D, Average rate of the
band-reject neuron (black) to vowels with F0 � 95 Hz presented at 55 dB SPL, with LPBR model predictions (red), energy (green),
and for comparison, the SFIE model response (blue). Model parameters were the same as in Fig. 3B.
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plain the vowel responses for cells with complex MTFs.
This strategy provides a novel and general framework for
understanding how complex sounds with strong fluctua-
tions, such as voiced speech, are encoded at the level of
the midbrain.

Discussion
Previous studies of the neural representation of vowels
have largely focused on the coding of spectral energy by
the AN (Liljencrants and Lindblom, 1972; Delgutte and
Kiang, 1984; Young, 2008; Lindblom et al., 2009). Codes
based on AN average discharge rates and/or temporal
fine structure are problematic because of limited dynamic
range and background noise. Many AN models, espe-
cially those used in the phonetics literature, are based on

linear filter banks (Lindblom, 1990; Diehl and Lindblom,
2004; Ghosh et al., 2011). The model presented here, in
contrast, includes the nonlinear attributes of AN re-
sponses, including level-dependent tuning bandwidth,
synchrony capture, and saturation, all of which influence
the neural fluctuations in response to speech sounds that
ultimately project to the IC. The coding hypothesis here
focuses on the F0-related fluctuations in the AN re-
sponses and how they vary across the population. These
fluctuations are important because IC neurons are tuned
to both audio and modulation frequencies. This tuning
provides sensitivity to the contrast in low-frequency,
pitch-related fluctuations across a population of neurons
with different best frequencies (Fig. 1B,C).

Figure 8 A, B, Example of a neuron (BF, 1100 Hz) with a band-reject MTF (A) for which average discharge rates in response to 65
dB SPL vowels were best predicted by the LPBR model or the energy model (B). C, E, The patterns of average discharge rates for
this neuron across the set of vowels were consistent across a range of SPLs (C) and SNRs (E). D, F, Vowel responses for a model
AN fiber with the BF at 1100 Hz is shown for the same range of SPLs (D) and SNRs (F). Vowel F0 for all datasets was 95 Hz. IC Model
parameters were the same as in Fig. 3B.
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IC responses tuned to a range of modulation frequencies
encode vowel formant frequencies across a range of pitches,
capturing an essential aspect of speech (Diehl, 2008).

This model framework provides a context for under-
standing several general questions related to vowel sys-
tems, which exhibit universal properties that generalize
across languages. For example, formant locations appear
to disperse optimally within an F1–F2 space, referred to
as dispersion theory (Liljencrants and Lindblom, 1972;
Lindblom, 1986; Schwartz et al., 1997; Diehl and Lind-
blom, 2004). This dispersion results in consistencies
among linguistic vowel systems in the appearance of
vowel contrasts as vowel systems increase in size. Our
model for neural representations of vowels thus provides
a new tool for understanding how the role of the auditory
system in shaping vowel systems.

This model also provides a framework to study the
relative spacing of formant peaks, F1, F2, and F3, which

define single vowels. The neural resolution for coding
separate formants, or for merging them, depends upon
both the separation of the formant peaks and the widths
of the formant bands. Limits in neural resolution along the
frequency axis for coding single-formant peaks would
determine when nearby formants merge perceptually
(Chistovich and Lublinskaya, 1979). This concept under-
lies focalization-dispersion theory (Schwartz et al, 1997;
Becker-Kristal, 2010). In the neural model, the represen-
tation of the width of a single formant along the frequency
axis (Figs. 1F, 1G, 2, 6) depends upon the width of the
modulation transfer functions for these neurons (Figs.
1D,E, 4). Future studies to test the hypothesis presented
here should include synthetic vowel sounds, in which the
key parameters can be systematically manipulated with
respect to the frequency and modulation tuning of a given
neuron, as well as higher-level features such as formant
spacing. These stimuli would also provide stronger sta-

Figure 9 Example of five neurons with diverse MTFs (left panels) and predictions of responses to nine English vowels (right panels)
at 65 dB SPL, with correlations to the model predictions in the legends. A–E, BFs were 3900 Hz (A), 2700 Hz (B), 1900 Hz (C), 4020
Hz (D), and 1485 Hz (E). Model parameters were the same as in Fig. 3B.
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tistical tests of the correlations between model and neural
responses than was possible with the small set of spoken
vowels used in this study.

Recent results in the cortex suggest that phonetic fea-
tures are encoded in the responses of the superior tem-
poral gyrus (Mesgarani et al., 2008; Pasley et al., 2012),
but the problem of how neural maps at cortical levels are
created from the acoustic stimulus remains. The results
presented here suggest a framework for subcortical neu-
ral coding of phonetic features based on patterns of
F0-related neural fluctuations. These patterns are estab-
lished in the auditory periphery by the nonlinear response
properties of inner ear mechanics and sensory transduc-
tion. Contrasts in these patterns are then enhanced by the
sensitivity of midbrain neurons to fluctuation frequencies.
The potential also exists for amplification of these con-
trasts in the thalamus and cortex by interactions between
inputs from bandpass and band-reject midbrain re-
sponses. Responses of midbrain cells with complex
MTFs, characterized by a combination of inhibition and
excitation (Krishna and Semple, 2000), could serve as
effective “edge-detectors,” further enhancing the con-
trasts in rate fluctuations across the neural population. In
general, the combination of spectral frequency tuning and
modulation frequency processing in the midbrain pro-
vides a substrate for parsing complex sounds into the
features that are required for higher-level phonetic repre-
sentations.

The stimuli modeled and tested in this study were lim-
ited to vowels, and the voiced structure of these sounds
has a strong influence on the responses. It is interesting to
consider how the properties of these neurons would in-
fluence responses to other types of speech sounds. Un-
voiced vowels exist in whispered speech, and in vocoded
speech, such as that used in cochlear implant simulations
(Shannon et al., 1995), as well as conditioned alternates of
vowels in several languages (Ladefoged and Maddieson,
1996). Unvoiced or devoiced vowels have reduced intel-
ligibility compared to normal vowels. The model pre-
sented here would respond mainly to the energy profile in
unvoiced vowels, such that formants would be coded by
increased rates for neurons tuned near formants. These
energy-related responses would be correlated with the
representation of voiced vowels in the LPBR model,
though with reduced contrast in rate as a function of
frequency. Consonants represent another diverse and im-
portant set of speech sounds, sets of which (obstruents)
are commonly voiceless (p, t, k, ch), and sometimes are
characterized by a noisy source (e.g., fricatives; Stevens,
1998; Ladefoged, 2006). Similar to vowels, the conso-
nants set up a pattern of neural fluctuations in the periph-
eral response that will ultimately drive the responses at
the level of the midbrain. Future studies will extend the
general approach presented here to include a larger set of
speech sounds. An interesting question is how midbrain
neurons with different MTFs will represent the slopes and
peaks in consonant spectra, which result in nonperiodic
but potentially strong fluctuations in peripheral responses.

The vowel-coding hypothesis presented here has impli-
cations for several applications related to speech pro-

cessing. Accurate formant identification in the presence
of substantial background noise is critical for automatic
speech recognition systems, yet is difficult to achieve.
The hypothesis also provides a new framework for speech
enhancement algorithms for listeners with and without
hearing loss. The code is substantially affected by com-
mon aspects of hearing loss, such as broadened fre-
quency tuning in the inner ear, which distorts the
representation of both the spectrum and amplitude mod-
ulations. The proposed code is also affected by changes
in synchrony capture that would accompany hearing loss.
Loss of synchrony capture has a profound effect on the
nature of the neural fluctuations in peripheral responses,
and thus on the responses of central neurons that are
driven by these fluctuations. The hypothesis thus informs
the development of algorithms for new hearing aids and
cochlear implant speech processors that encode informa-
tion in temporal envelopes.
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