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Abstract
Individuals with the short (S) allele in the promoter region of the serotonin transporter gene (5-HTTLPR) show a
less favorable response to selective serotonin reuptake inhibitor (SSRI) treatment than individuals with the long (L)
allele. Similarly, individuals with the C(-1019)G allele for the mutation found in the promoter region of the serotonin
1A receptor gene (5-HTR1A) have shown blunted responses to SSRI treatment when compared with individuals
lacking this polymorphism. While these findings have been replicated across multiple studies, only two studies to
date have reported data for a gene–gene interaction associated with response to SSRI treatment. Both of these
studies reported a combined effect for these genotypes, with individuals homozygous for the L allele and the C
allele (5-HTTL/L�1AC/C) reporting the most favorable response to SSRI treatment, and individuals homozygous for
the S allele and the G allele (5-HTTS/S–1AG/G) reporting the least favorable response to SSRI treatment.
Additionally, no neural mechanisms have been proposed to explain why this gene–gene interaction has been
observed. To that end, this article provides a review of the relevant literature associated with these polymorphisms
and proposes a feasible model that describes a genotype-dependent modulation of postsynaptic serotonin
signaling associated with the 5-HTT and 5-HTR1A genes.
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Introduction
Major depressive disorder (MDD) is a mental disorder that
will affect an estimated 16% of the world population
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Significance Statement

Approximately forty percent of individuals that seek pharmacological treatment for depression do not
initially respond to selective serotonin reuptake inhibitor (SSRI) antidepressants. Past research has at-
tempted to determine if specific mutations in genes associated with the serotonergic system can help to
predict response to antidepressant treatment; however, results have been inconclusive. Additionally, very
little research has examined how multiple mutations can cause a combined, reduced response to SSRI
antidepressant treatment. This article provides a review of the relevant literature, offers a model for why
individuals with multiple mutations in the serotonergic system show a blunted response to SSRIs, and
provides a basis for further research regarding genotype-dependent response to antidepressant treatment.
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(Kessler et al., 2003). Of those individuals who seek treat-
ment, approximately one-third of patients do not respond
to antidepressant therapies (Fava and Davidson, 1996;
Fava, 2003; Papakostas et al., 2006; Trivedi et al., 2006).
Due to the high prevalence of MDD, and its associated
healthcare costs, there has been a dramatic increase in
the amount of money spent on both the prevention and
treatment of this disease (Wang et al., 2003; Halfin, 2007).
Because of these expenses, researchers have sought to
better tailor treatments to individuals in hopes of reducing
the vast resources expended pursuing effective treatment
options. One proposal for reducing overall treatment cost
is via genetic testing, which could help to predetermine
which individuals will favorably respond to specific treat-
ment types (Rausch et al., 2002). Unfortunately, further
knowledge in regard to the underlying mechanisms by
which individual genotypes are expected to interact with
various drugs is necessary before genetic-testing tech-
niques can be implemented (Serretti et al., 2009). Cur-
rently, much of the research being conducted on
depression focuses on a class of signaling molecules
known as neurotransmitters.

Reduced amounts of the monoamine neurotransmitter
serotonin [5-hydroxytryptamine (5-HT)] is thought to be a
predisposing factor for susceptibility to depression (Mur-
phy et al., 1998). Additionally, short-term depletion of
tryptophan, a biochemical precursor for 5-HT, leads to
decreased serotonin levels, which can mediate relapses
in previously depressed patients (Booij and Van der Does,
2011; Yatham et al., 2012; Young, 2013). In the brain,
serotonin is produced by a subset of neurons located in
the raphe nuclei (RN); however, axons extending from the
RN innervate large areas of the brain, including the
prefrontal cortex, hippocampus, hypothalamus, and
amygdala (Peyron et al., 1998; Hornung, 2003). These
serotonergic projections modulate a multitude of behav-
ioral responses, including sleep circadian rhythms, satiety
levels, and mood (Bauer et al., 2002; Kranz et al., 2010;
Homberg and Lesch, 2011); disruptions within these path-
ways have been linked to depressive symptoms (Holmes,
2008; Albert et al., 2014).

While serotonin has been implicated as an important
biological factor in depression, many other factors, such
as environmental stress and genetic makeup, can con-
tribute to susceptibility to depression (Pittenger and Du-
man, 2008; Jasinska et al., 2012). The most widely studied
mutation in the serotonin system is a variation in the
length of the promoter region, known as the promoter
region of the serotonin transporter protein (5-HTTLPR),
located upstream of the serotonin transporter gene
(SLC6A4; Murphy et al., 2004). Varying numbers of re-
peated elements are associated with different alleles; the
“long” allele (5-HTTL) has 16 repeat elements, while the

“short” allele (5-HTTS) has 14 repeat elements. The
5-HTTL allele is associated with a twofold increase in the
basal serotonin transporter protein (5-HTT) transcription
rate when compared with the 5-HTTS allele, due to in-
creased transcription factor binding of the 5-HTT pro-
moter region (Maier and Zobel, 2008).

The presence of the 5-HTTS allele has been associated
with an increased susceptibility to depression in multiple
studies. Interestingly, this increased susceptibility to de-
pression exists only when preceded by stressful life
events, suggesting that susceptibility to depression is
mediated by both genetic and environmental factors
(Caspi et al., 2003; Risch et al., 2009; Goldman et al.,
2010; Uher and McGuffin, 2010; Karg et al., 2011). As well
as being linked with increased susceptibility to depres-
sion, individuals with the 5-HTTS allele in the 5-HTTLPR
have also been shown to be less responsive to selective
serotonin reuptake inhibitor (SSRI) treatment than individ-
uals with the 5-HTTL allele (Smits et al., 2004; Porcelli
et al., 2012).

In addition to the 5-HTTLPR polymorphism, a single
nucleotide polymorphism in the promoter region of the
serotonin 1A autoreceptor (5-HT1A) serotonin receptor
gene (5-HTR1A) is also associated with depressive phe-
notypes. The G allele associated with this polymorphism,
also known as C(-1019)G or rs6296, has been linked to a
blunted response to SSRI treatment (Parsey et al., 2006b,
2010). As both of these polymorphisms are located within
the promoter regions of each gene, the transcription rate
of both the 5-HTT and the 5-HT1A receptor is altered
when these alleles are present (5-HTS and 5-HT1AG, re-
spectively). These altered transcription rates lead to al-
tered transporter and receptor expression, and are a
possible explanation for why these polymorphisms cause
blunted responses to SSRI antidepressant therapy.

While many studies have examined the association be-
tween one polymorphism genotype and the response to
SSRI treatment, only two studies to date (Arias et al.,
2005; Hong et al., 2006) have accounted for a gene–gene
interaction associated with treatment response. These
studies showed a combined genotype effect for SSRI
response, suggesting that some of the discrepancies
found in other studies (Kraft et al., 2007; Dogan et al.,
2008; Wilkie et al., 2008), which focused solely on one
polymorphism, could be attributed to the omission of
other genotypes. While there was a gene–gene interac-
tion of 5-HT1A and 5-HTTLPR polymorphisms reported in
both studies (Arias et al., 2005; Hong et al., 2006), no
underlying mechanism has been offered as an explana-
tion for why these findings were observed.

The purpose of this review is to provide a background
on studies relevant to these polymorphisms and to pro-
pose a neural model that could account for the combined
effect noted in these two studies. The neural model of-
fered is based on alterations in the transcriptional regula-
tion of the 5-HTT and the 5-HT1A receptor genes, with the
5-HTTS allele causing a reduction in transcription rate of
the 5-HTT and the 1AG allele causing an increase in the
transcription rate of the 5-HT1A receptor. Ultimately, the
model hypothesizes how these altered transcription rates
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affect the amount of extracellular serotonin available for
postsynaptic signaling and predicts a genotype-
dependent response to SSRI antidepressant treatment.

Serotonin transporter protein
5-HTT, which is encoded by the human SLC6A4 gene,

is thought to be the main mechanism by which serotonin
is removed from the synapse (Homberg et al., 2007;
Murphy and Lesch, 2008). While some mutations in the
SLC6A4 gene have been shown to cause significant im-
pairments in response to SSRI treatment (Smits et al.,
2004), the majority of studies have focused on polymor-
phisms within 5-HTTLPR. In addition to the previously
mentioned 5-HTTL and 5-HTTS polymorphisms, the
5-HTTLPR can be further modified by another allele,
the 5-HTTLG allele (Hu et al., 2006; Murphy et al., 2013).
This 5-HTTLG allele is associated with decreased tran-
scription rates that could be equivalent to the 5-HTTS

allele. In other words, individuals with the 5-HTTL/L geno-
type could have a twofold increase in the expression of
5-HTT when compared to individuals with the 5-HTTLG

or 5-HTTS allele.
This twofold increase in expressed 5-HTT increases the

amount of 5-HT removed from the synapse, also by a
factor of two (Lesch et al., 1996; Bengel et al., 1998;
Montañez et al., 2003; Homberg et al., 2007). Perhaps
paradoxically, however, 5-HTT knock-out studies have
shown there are no discernible differences in extracellular
5-HT concentrations in mice with half the amount of
normally expressed 5-HTT (5-HTT�/�) compared with
mice with normal 5-HTT (5-HTT�/�) expression (Bengel
et al., 1998; Mathews et al., 2004; Shen et al., 2004). Other
studies have shown that 5-HT reuptake is also carried out
by other monoamine transporters (e.g., dopamine, norepi-
nephrine), which could compensate for the reduced up-
take in 5-HTT�/� mice (Shen et al., 2004). However,
studies have reported significantly higher extracellular
5-HT concentrations in mice expressing no 5-HTT (5-
HTT�/�) compared to 5-HTT�/� and 5-HTT�/� mice,
demonstrating that other monoamine transporters ac-
count for only a minimal amount of 5-HT reuptake
(Mathews et al., 2004; Shen et al., 2004; Homberg et al.,
2007).

Another explanation for the similarities in 5-HT concen-
tration in both 5-HTT�/� and 5-HTT�/� mice is that basal
firing rates of medial RN 5-HT neurons were reduced by
36% in 5-HTT�/� mice when compared to their homozy-
gous 5-HTT�/� littermates (Gobbi et al., 2001). This re-
duced firing rate is attributed to the negative feedback
mechanism mediated by 5-HT1A receptors, which alter
the amount of 5-HT being released in direct response to
how much 5-HT is being removed by the transporter
(Fabre et al., 2000). This effect on the signaling pathway is
thought to play a large part in patient response to antide-
pressant treatment, which is why the most widely pre-
scribed antidepressant pharmacological agents (SSRIs)
impinge on the 5-HTT.

5-HTT and SSRI
SSRIs are thought to inhibit the reuptake of 5-HT by

binding to the active site of the extracellular hydrophobic

region of the 5-HTT, effectively reducing the uptake of
extracellular 5-HT (Murphy et al., 2004). As the 5-HTTS

allele is associated with a reduction in the transcription
rate of the 5-HTT by a factor of two, neurons with at least
one 5-HTTS allele express half the amount of 5-HTT when
compared with neurons with the homozygous 5-HTTL/L

genotype. Because fewer 5-HTTs are available, studies
have demonstrated that neurons expressing the 5-HTTS

allele take approximately double the amount of time to
remove 5-HT from the synapse when compared with
neurons expressing 5-HTTL alleles (Lesch et al., 1996;
Bengel et al., 1998; Montañez et al., 2003; Homberg et al.,
2007). However, to determine 5-HT reuptake rates, the
majority of these studies exogenously add 5-HT to the
surrounding synapses. These results may not accurately
represent the true nature of what is occurring at the
synapse following SSRI treatment.

As previously stated, rodents with reduced expression
of 5-HTT had no discernable differences in extracellular
5-HT prior to SSRI treatment. This, coupled with the
observation that 5-HTT�/� mice show reduced serotoner-
gic firing rates (Gobbi et al., 2001), provides a possible
explanation for what is occurring at the synapse after
5-HTT inhibition. Following SSRI treatment, if the same
proportion of 5-HTTs are blocked in both 5-HTT�/� and
5-HTT�/�, then less 5-HT is ultimately released into the
synapse. This is due to the 5-HT�/� neurons having re-
duced amounts of serotonin being released because of
lower firing rates. Ultimately, Because less 5-HT is being
released into the synapse in 5-HTT�/� neurons, 5-HTT�/�

neurons will have a larger increase in extracellular 5-HT
after 5-HTT reuptake inhibition when compared with ex-
tracellular concentrations of 5-HT in 5-HTT�/� neurons.
Supporting this proposed mechanism, subsequent to re-
uptake inhibition, 5-HTT�/� mice had significantly higher
extracellular 5-HT concentrations than 5-HTT�/� mice
(Shen et al., 2004).

These results yield a possible explanation for why de-
pression studies have reported an association between
5-HTTS/S individuals and blunted SSRI treatment re-
sponse (Smeraldi et al., 1998; Serretti et al., 2007; Huezo-
Diaz et al., 2009; Porcelli et al., 2012). Participants with
differing genotypes receiving the same amount of SSRI
should respond differently to treatment. This is mainly
because individuals with the 5-HTTL allele would have a
higher 5-HT concentration following SSRI treatment and,
subsequently, more 5-HT postsynaptic signaling than in-
dividuals with the 5-HTTS allele. Corroborating this, indi-
viduals with the 5-HTTS allele showed reduced response
to SSRI treatment when compared with individuals with
the 5-HTTL allele. However, when the dosage of the SSRI
was increased in individuals with the 5-HTTS allele, these
individuals showed favorable responses that were similar
to individuals with the 5-HTTL allele (Rausch et al., 2002).
This increased dosage would lead to increased circulating
SSRI levels. Ultimately, as more 5-HTTs are inhibited from
the increased circulating levels of the SSRI, more 5-HT is
kept in the synapse. This could compensate for the re-
duced amount of extracellular 5-HT in neurons expressing
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fewer 5-HTTs following SSRI treatment (Gartside et al.,
1995), resulting in a reduction of depressive symptoms.

However, this initial increase in extracellular 5-HT levels
does not fully explain SSRI mechanisms in their entirety; if
reuptake inhibition were the only mechanism occurring, a
response to SSRI treatment would happen almost instan-
taneously. Instead, patients report an initial response
somewhere between 4 and 8 weeks after beginning treat-
ment (Steimer et al., 2001; Gibbons et al., 2012). Many
researchers implicate the downregulation of the 5-HT1A
as the most probable cause for this delay in response
(Trivedi et al., 2006; Catapano and Manji, 2007; Hannon
and Hoyer, 2008). While past antidepressant treatment
options have been generally geared toward the 5-HTT,
recently developed pharmacological agents have been
aimed at other aspects of the serotonergic system, such
as the 5-HT1A receptor (Lladó-Pelfort et al., 2010).

5-HT1A
Recently, the 5-HT1A receptor has been implicated in

both susceptibility to depression and as a factor moder-
ating the response to SSRI treatment (Blier, 2010;
Richardson-Jones et al., 2010, 2011; Donaldson et al.,
2013). The serotonin 1A receptor is a presynaptic autore-
ceptor in the RN, and a postsynaptic heteroreceptor in the
amygdala, cortex, hippocampus, and hypothalamus (So-
telo et al., 1990; Burnet et al., 1995; Riad et al., 2000). The
serotonin 1A receptor is a pertussis toxin-sensitive het-
erotrimeric G-protein-coupled receptor (GPCR), which is
coupled negatively to adenylyl cyclase (Catapano and
Manji, 2007). Ligand binding to this class of GPCRs has
been shown to open potassium channels and close cal-
cium channels, leading to hyperpolarization of the neuron
and ultimately to inhibition of the cell (Rotondo et al.,
1997; Hannon and Hoyer, 2008).

Serotonin 1A receptors are the main somatodendritic
autoreceptors that mediate the negative-feedback mech-
anism in serotonergic raphe neurons (Riad et al., 2000).
Discrete portions of the RN have serotonergic axons that
extend to different regions of the brain (Bang et al., 2012).
Within each of these discrete clusters of neurons, shorter
axons extend from the RN, synapse onto other serotoner-
gic axons, and inhibit the axons extending to other por-
tions of the brain (Vasudeva et al., 2011). This feedback
mechanism works by inducing a series of cascade events
that regulate the amount of serotonin being released
based on current extracellular 5-HT concentrations. In
other words, a decrease in extracellular 5-HT will result in
reduced 5-HT1A autoreceptor binding, less cell hyperpo-
larization, disinhibition of the serotonin neuron, and in-
creased 5-HT release at the axon terminal. Conversely, an
abundance of extracellular 5-HT will result in increased
5-HT1A autoreceptor binding, increased cell hyperpolar-
ization, neuronal inhibition, and reduced 5-HT release at
the axon terminal (Koek et al., 1998; Gobbi et al., 2001).

5-HT1A genes
The 5-HT1A receptor is encoded by the intronless gene

5HTR1A, which is found on chromosome 5q11.2-13 (Ko-
bilka et al., 1987; Albert et al., 1990). Similar to the
5-HTTLPR region in the 5-HTT gene, the 5HTR1A gene

contains a promoter sequence. However, the interactions
between the promoter region and transcription factors
associated with this area are more complex (Parks and
Shenk, 1996; Albert et al., 2011). Pet-1 is a transcription
factor, expressed only in raphe-specific cells, that binds
to several Pet-1 binding sites upstream of the 5HTR1A
gene (Jacobsen et al., 2011). Because Pet-1 is only ex-
pressed in serotonergic neurons found in the raphe nuclei,
all 5-HT1A receptors produced by Pet-1 are considered
autoreceptors. More broadly, 5-HT1A receptors—both
heteroreceptors and autoreceptors—are selectively ex-
pressed only on neuronal cells via the repressors Freud-1,
Freud-2, and REST (Ou et al., 2000; Lemonde et al.,
2004). While REST restricts the expression of 5-HT1A
receptors only in non-neuronal cells. Freud-1/2 repres-
sors act to restrict 5-HT1A receptor expression in both
non-neuronal and neuronal cells (Albert, 2012). More spe-
cifically, Freud-1/2 repressors act to inhibit the expression
of 5-HT1A receptors in the brain and the CNS.

Another transcription factor regulating the expression
of 5HTR1A is NUDR/Deaf1, which is unique in that its
function changes depending on which cell type it is ex-
pressed in. In non-raphe neurons, this transcription factor
acts as an enhancer, which upregulates the amount of
postsynaptic heteroreceptors present on the cell mem-
brane (Czesak et al., 2006). In direct juxtaposition, the
same transcription factor (Deaf1) acts as a repressor in
RN serotonergic cells. A study supporting this reported a
50% increase in 5-HT1A autoreceptor expression in the
dorsal and medial RN following removal of the Deaf1
repressor (Czesak et al., 2012). This relatively recent dis-
covery has elucidated some of the mechanisms surround-
ing 5-HT1A receptor regulation and 5-HT1A receptor
binding in depression, as multiple conflicting studies re-
port both increased and decreased 5-HT1A binding in
depressed individuals (Parsey et al., 2010).

5-HT1A and depression
Many of the first studies implicating 5-HT1A receptors

in depression consisted of postmortem studies of de-
pressed suicidal patients (Stockmeier et al., 1998; Arango
et al., 2001). Discrepancies arose, however, as these
studies reported both decreased and increased 5-HT1A
binding in suicidal individuals. These studies have been
criticized for their very low sample size and high interper-
son variability; more specifically, age varied widely among
subjects in these postmortem studies. As positron emis-
sion tomography (PET) imaging of the 5-HT1A selective
antagonist [11C]WAY-100635 has shown significant de-
creases in 5-HT1A receptor binding with increased age
(Tauscher et al., 2001), this has cast some doubt on the
reliability of these findings.

PET scanning is considered a more reliable method for
determining the association of 5-HT1A binding with de-
pression, as this technique allows for measurements of
metabolic changes in live tissue (Sargent et al., 2000;
Bhagwagar et al., 2004; David et al., 2005; Parsey et al.,
2006a). Many of these studies reported findings that con-
flicted with one another, as some studies associated in-
creased depressive symptoms with reduced 5-HT1A
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receptor binding (Drevets et al., 1999; Sargent et al.,
2000). Others studies, however, reported that higher bind-
ing potentials were correlated with increased depressive
symptoms and blunted SSRI treatment response (Parsey
et al., 2006a, b, 2010; Miller et al., 2009; Richardson-
Jones et al., 2010).

A possible reason for these discrepancies has been
attributed to the C(-1019)G polymorphism located within
an inverted repeat section recognized by the Deaf1 tran-
scription factor (Jacobsen et al., 2011; Albert, 2012). As
noted earlier, Deaf1 acts as an enhancer in non-raphe
cells (increasing 5-HT1A heteroreceptor expression) and a
repressor in raphe cells (decreasing 5-HT1A autorecep-
tors expression; Czesak et al., 2006; Czesak et al., 2012).
This disruption in the expression of the 5-HT1A autore-
ceptor has been associated with decreased SSRI re-
sponse (Serretti et al., 2004; Suzuki et al., 2004; Arias
et al., 2005; Hong et al., 2006) and increased susceptibil-
ity to depression in adults directly following a stressful life
event (Lemonde et al., 2003; Parsey et al., 2010; Benedetti
et al., 2011). Additionally, studies have revealed that indi-
viduals with the 5-HTTS/S genotype show reduced ex-
pression of the 5-HT1A autoreceptor, which could also
account for an increased susceptibility to depression (Da-
vid et al., 2005).

Studies using both genetic and neuroimaging tech-
niques have found increased presynaptic 5-HT1A autore-
ceptor raphe binding associated with the 1AG/G genotype
(Parsey et al., 2006b, 2010), whereas other studies (Sar-
gent et al., 2000; Bhagwagar et al., 2004) have reported
reduced binding across postsynaptic 5-HT1A heterore-
ceptors. Interestingly, some studies (Parsey et al., 2006b)
have reported an increase in postsynaptic 5-HT1A bind-
ing potentials associated with the 1AG/G genotype. While
this genotype does result in significant downregulation
of the 5-HT1A heteroreceptor, increased 5-HT1A auto-
receptor expression leads to decreased extracellular
5-HT concentrations. This decrease in extracellular 5-HT
concentrations is thought to lead to partial, compensatory
upregulation of the postsynaptic 5-HT1A heteroreceptor
(Parsey et al., 2010; Albert, 2012). This compensation
would account for the observed increased postsynaptic
binding. In addition, increased 5-HT1A autoreceptor bind-
ing [especially due to the C(-1019)G polymorphism] has
been correlated with a decreased response to SSRI treat-
ment (Parsey et al., 2006b; Richardson-Jones et al.,
2010). This blunted response in participants with the
1AG/G genotype is attributed to increased raphe inhibition
due to higher 5-HT1A autoreceptor binding. This in-
creased inhibition would ultimately lead to overall lower
concentrations of extracellular 5-HT when compared with
neurons from individuals with the 1AC/C genotype (Albert
et al., 2014).

Adding to this line of evidence are a number of studies
in which mice have been transgenically bred to show
normal, reduced, or no 5-HT1A receptors (1A�/�, 1A�/�,
1A�/� mice, respectively; Donaldson et al., 2013). In a
2010 study, researchers (Richardson-Jones et al., 2010)
developed a reversible method of tetracycline-dependent
transcriptional suppressor-induced downregulation of

5-HT1A autoreceptors, but not 5-HT1A heteroreceptors.
Mice induced to show lower levels of 5-HT1A presynaptic
autoreceptors showed a markedly improved response to
fluoxetine (SSRI) treatment in multiple depressive tests.
Additionally, extracellular 5-HT concentrations 8 d after
SSRI treatment were significantly higher in 1A�/� mice
when compared with 1A�/� mice. Experiments using ir-
reversible 5-HT1A knock-out mice have also reported a
favorable antidepressant response in mice with reduced
expression of 5-HT1A autoreceptors (Bortolozzi et al.,
2012; Ferrés-Coy et al., 2013). These studies imply that
modifications to the 5-HT1A receptors could be beneficial
in the treatment and remission of depression.

Clinical implications
Many studies have reported that the administration of

both 5-HT1A antagonists (Blier and Ward, 2003; Berney
et al., 2008) and agonists (Koek et al., 1998; Papakostas
et al., 2004) result in antidepressant effects in treatment-
resistant depressive patients. Weak antagonists, such as
pindolol, reportedly bind to 5-HT1A receptors without
causing a reduction in 5-HT firing rates, while preventing
further inhibition and, consequently, desensitization from
occurring (Albert, 2012). Agonists, however, are thought
to work via 5-HT1A autoreceptor firing, 5-HT1A autore-
ceptor downregulation, and disinhibition of the 5-HT neu-
ron, resulting in increased raphe 5-HT firing (Rotondo
et al., 1997; Koek et al., 1998).

This 5-HT1A autoreceptor downregulation and raphe
disinhibition, which can occur over a timespan of weeks,
is thought to be one of the main pathways in which SSRIs
mediate a reduction of depressive symptoms. It is also
thought to account for the 4-8 week delayed response
observed during SSRI treatment (Gartside et al., 1995;
Blier, 2010; Richardson-Jones et al., 2010). As extracel-
lular levels of 5-HT are increased in the synapse due to
blocked 5-HTT, 5-HT1A receptors initially become desen-
sitized within minutes of activation (Ferguson, 2001; She-
noy and Lefkowitz, 2003). Consistent ligand binding of the
5-HT1A somatodendritic autoreceptors leads to compen-
satory downregulation of 5-HT1A autoreceptors and re-
duced gene expression, causing disinhibition of the raphe
cells (Albert and Lemonde, 2004). This disinhibition has
been shown to lead to increased raphe firing and higher
extracellular 5-HT concentrations in the weeks following
SSRI treatment (Richardson-Jones et al., 2010). As this is
the case, some studies have shown that augmenting SSRI
treatment with 5-HT agonists, or antagonists, helped to
achieve a greater reduction in depressive symptoms in
patients with treatment-resistant depression (Trivedi
et al., 2006; Berney et al., 2008). Because both the
5-HT1A and 5-HTT genes have been implicated in re-
sponse to antidepressant treatment, it is imperative that
future research accounts for both genes, and that future
treatments incorporate agents that act on both proteins.

5-HT1A and 5-HTTLPR combined effect
Grounds for a relevant model

Because antidepressant augmentations that impinge
upon 5-HT1A receptors have been shown to be an effec-
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tive form of treatment for depression, polymorphisms
within this region have become a topic of interest during
the past decade (Suzuki et al., 2004; Drago et al., 2008).
The previously mentioned C(-1019)G polymorphism is
one of the most widely studied mutations in the 5-HT1A
receptor, and many studies (Hong et al., 2006; Malaguti
et al., 2011) have shown that the 1AG/G genotype medi-
ates an attenuated response to antidepressant treatment,
although it should be noted that not all studies have found
an association with this polymorphism and antidepres-
sant response (Xu et al., 2012). Similarly, while several
studies have demonstrated that the 5-HTTLPR polymor-
phism moderates the response to SSRI treatment (Smer-
aldi et al., 1998; Rausch et al., 2002; Huezo-Diaz et al.,
2009), there are still multiple studies that have reported no
association between the 5-HTTLPR genotype and re-
sponse to SSRIs (Kraft et al., 2007; Dogan et al., 2008;
Wilkie et al., 2008). There are many factors that could lead
to the discrepancies found among these studies, which
have been reviewed elsewhere (Serretti et al., 2007; Por-
celli et al., 2012). However, it is possible that other poly-
morphisms, not accounted for, could cause there to be no
observable difference in SSRI response. Both polymor-
phisms have a high population prevalence in Caucasians
[5-HTTL/L � 0.331, 5-HTTL/S � 0.474, 5-HTTS/S � 0.195
(Odgerel et al., 2013); 1AC � 0.675, 1AG � 0.325 (Drago
et al., 2008)]. Considering how both of these polymor-
phisms can alter the response to SSRI treatments, it is
highly possible that these unmeasured genotypes have
been a confounding factor in previous studies.

A search of the relevant literature yielded only two
studies (Arias et al., 2005; Hong et al., 2006) that have
examined the relationship between both polymorphisms
and the response to SSRI treatment. In both studies, a
combined effect was reported. Arias et al. (2005) ob-
served that participants with the 5-HTTS/S–1AG/G geno-
type (each independently shown to be the least
responsive to SSRI treatment) reported a significantly less
favorable response to SSRI administration than any other
genotype. Conversely, Hong et al. (2006) found that of all
the genotypes tested for SSRI response, patients with the
5-HTTL/L–1AC/C genotype (each independently shown to
be the most responsive to SSRI treatment) responded
significantly better than participants with any of the other
genotypes. These results, along with research that asso-
ciates the 5-HTT and 5-HT1A polymorphisms with a com-
bined increased susceptibility to depression (Zhang et al.,
2009), demonstrate that a more nuanced approach is
necessary for determining the relationship between SSRI
response and genotype. While these studies did report a
gene–gene response to SSRI treatment, no neural model
was offered as to why these effects were observed. Ad-
ditionally, no mechanism, to date, has been proposed as
to why these genotypes show a combined response to
antidepressant treatment.

Model
Based on the knowledge currently available about the

two polymorphisms, a model is presented that might
account for the gene–gene interaction effect and provide

a framework to guide future work in this area. As noted
above, 5-HTT�/� mice with reduced amounts of ex-
pressed 5-HTT, analogous to the 5-HTTS/S genotype in
humans, owing to their reduced expression of 5-HTT
(Murphy et al., 2001; Murphy and Lesch, 2008; Kalueff
et al., 2010), show no discernible differences in extracel-
lular 5-HT concentration when compared with 5-HTT�/�

mice (analogous to the 5-HTTL/L genotype in humans;
Mathews et al., 2004). Following SSRI treatment, in-
creases in extracellular 5-HT concentrations were larger in
5-HTT�/� mice than increases in extracellular concentra-
tions observed in 5-HTT�/� mice (Shen et al., 2004).

In other murine models, 1A�/� mice with a higher ex-
pression of 5-HT1A autoreceptors, analogous to the
1AG/G genotype in humans, express higher 5-HT1A pre-
synaptic binding and a weakened response to SSRI treat-
ment when compared with the 1A�/� genotype, which is
analogous to the human 1AC/C genotype (Richardson-
Jones et al., 2010). This blunted response is attributed to
larger amounts of presynaptic terminal inhibition due to
increased 5-HT1A autoreceptor binding (Parsey et al.,
2010). Additionally, after SSRI treatment and somatoden-
dritic downregulation of 5-HT1A autoreceptors, 1A�/�

mice initially expressing lower numbers of 5-HT1A
autoreceptors had markedly higher extracellular 5-HT
concentrations than that of their 1A�/� littermates
(Richardson-Jones et al., 2010). These results together
form the basis for the proposed model, which describes a
genotype-dependent modulation of postsynaptic sero-
tonin signaling associated with the 5-HTT and 5HTR1A
genes (Figs. 1, 2).

5-HTL/L–1AC/C genotype
While there would be no marked difference in initial ex-
tracellular 5-HT levels between 5-HTTLPR genotypes, af-
ter SSRI treatment high amounts of extracellular 5-HT in
the synapse would be present, specifically in contrast
with individuals with the 5-HTTS/S genotype. The high
amounts of extracellular 5-HT would then bind to the low
amounts of 5-HT1A autoreceptors (when compared with
the 1AG/G genotype) on the presynaptic cell and would
lead to a mild-to-moderate amount of inhibition. After
downregulation 5-HT1A autoreceptors after somatoden-
dritic 5-HT1A receptor binding, larger amounts of sero-
tonin would be released into the synapse when compared
to the 1AG/G genotype (as demonstrated by Richardson-
Jones et al., 2010). Due to the high amounts of extracel-
lular 5-HT from 5-HTT binding and increased 5-HT release
from reduced presynaptic terminal inhibition, the largest
increase in 5-HT levels would occur in these individuals.
This genotype is hypothesized to result in the highest
amount of postsynaptic 5-HT signaling and would show
the most favorable response to SSRI treatment.

5-HTTL/L–1AG/G genotype
After SSRI treatment, individuals with this genotype would
initially have the same increase in extracellular 5-HT levels
as the 5-HTTL/L–1AC/C genotype, but due to the higher
number of 5-HT1A autoreceptors there would be an in-
creased amount of inhibition in the presynaptic terminal,
leading to low amounts of 5-HT released. After somato-
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Figure 1 Pre-SSRI treatment. Diagram depicting extracellular
5-HT concentration, 5-HTT expression, and 5-HT1A receptor
expression across the 5-HTTLPR and 5-HTR1A genotypes. A, B,
Increased expression of 5-HTT due to the 5-HTTL/L genotype. C,
D, Decreased expression of 5-HTT due to the 5-HTTS/S geno-
type. A, C, Reduced expression of 5-HT1A due to the 1AC/C

genotype. B, D, Reduced expression of 5-HT1A due to the 1AG/G

genotype. While studies have demonstrated that there are fewer
5-HT1A expressed receptors in individuals with the 5-HTTS/S

genotype (David et al., 2005), for the sake of simplicity in the
model, no interaction is assumed between the two polymor-
phisms.

Figure 2 Post-SSRI treatment. Diagram depicting extracellular
5-HT concentration, 5-HTT expression, and 5-HT1A receptor
expression across the 5-HTTLPR and 5-HTR1A genotypes after
long-term SSRI treatment. Subsequent to somatodendritic
downregulation of 5-HT1A autoreceptors, disinhibition of raphe
neurons causes an increase in 5-HT release. A-C, However,
genotypes that express fewer 5-HTTs or higher numbers of
5-HT1A receptors (B, C) show a reduced increase in extracellular
5-HT concentration when compared with the genotype that has
higher 5-HTT levels and lower numbers of 5-HT1A receptors (A).
D, The genotype expressing both reduced levels of 5-HTT and
higher numbers of 5-HT1A receptors shows the smallest in-
crease in extracellular levels of 5-HT.
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dendritic downregulation, only a moderate increase in
5-HT levels would be observed, owing to the high sero-
tonin concentration from the blocked 5-HTT and the low
amount of 5-HT released due to the high 5-HT1A autore-
ceptor density. This genotype is hypothesized to result in
a moderate amount of postsynaptic 5-HT signaling and
would show an intermediate response to SSRI treatment.

5-HTTS/S–1AC/C genotype
After SSRI treatment, individuals with the 5-HTS/S geno-
type would have a small increase in extracellular 5-HT
concentrations when compared with the 5-HTTL/L geno-
type. This small amount of 5-HT binding to the low num-
ber of 5-HT1A autoreceptors would lead to a smaller
magnitude in the downregulation of the somatodendritic
cell, when compared with downregulation from the
5-HTL/L genotypes. This reduced amount of downregula-
tion, and consequently the low amounts of disinhibition,
would be offset, however, by the reduced expression of
presynaptic 5-HT1A autoreceptors already present due to
the 1AC/C genotype, resulting in a moderate increase in
5-HT levels. This genotype is hypothesized to result in a
moderate level of postsynaptic 5-HT signaling and show
an intermediate response to SSRI treatment (possibly
similar to that of the 5-HTTL/L–1AG/G genotype).

5-HTTS/S–1AG/G genotype
Following SSRI treatment, individuals with the 5-HTTS/S–
1AG/G genotype would have the same increase in extra-
cellular 5-HT concentrations as the genotype 5-HTTS/S–
5-HTTC/C, but, due to the increased number of 5-HT1A
autoreceptors present, a higher amount of presynaptic
inhibition would occur. In addition, once downregulation
of the somatodendritic 5-HT1A receptors occurred (simi-
lar to that of the 5-HTTS/S–1AC/C genotype), less 5-HT
would be released into the synapse due to the higher
density of the 5-HT1A autoreceptors inhibiting the pre-
synaptic terminal. The small amount of extracellular sero-
tonin from 5-HTT binding, combined with the small
amounts of 5-HT being released due to high 5-HT1A
autoreceptor density, would lead to the smallest increase
in 5-HT levels. This genotype is hypothesized to result in
the least amount of postsynaptic 5-HT signaling and
would show the least favorable response to SSRI treat-
ment.

Discussion
The proposed model predicts that the 5-HTTL/L–1AC/C

genotype will produce the highest amount of postsynaptic
5-HT signaling, that the 5-HTTL/L–1AG/G and 5-HTTS/S–
1AC/C genotypes will produce a moderate amount of post-
synaptic 5-HT signaling, and that the 5-HTTS/S–1AG/G

genotype will produce the least amount of postsynaptic
5-HT signaling. In addition to predicting which individuals
will respond more favorably to antidepressant treatments,
this model can also be used to predict the temporal
dynamics associated with response to treatment. More
specifically, while the functional outcomes of the 5-HTTL/L–
1AG/G and 5-HTTS/S–1AC/C genotypes are predicted to be
similar, these genotypes may behave differently before
they reach equilibrium. Because the 5-HTTL/L–1AG/G ge-
notype contains a high density of inhibitory 5-HT1A auto-

receptors, the benefits of the SSRI treatment will be
observed only after the autoreceptors have been down-
regulated. Only after the autoreceptors have been down-
regulated will the increase in extracellular 5-HT levels be
detectable. In contrast, the 5-HTTS/S–1AC/C genotype has
a significantly lower density of inhibitory 5-HT1A autore-
ceptors. It is possible that the main benefits of SSRI
treatment could be observed earlier than the 5-HTTL/L–
1AG/G genotype, as the model predicts that the 5-HTTS/S–
1AC/C genotype relies less on somatodendritic
downregulation of 5-HT1A autoreceptors and more on the
initial inhibition of 5-HT reuptake. Future research can
examine whether genotype moderates the temporal re-
sponse to antidepressant treatment, as well as the end
response.

Ultimately, though, the model predicts the response to
SSRI treatment based on genotypic modulation of post-
synaptic 5-HT signaling. This genotype-dependent mod-
ulation of postsynaptic serotonin signaling is important,
as higher postsynaptic serotonin signaling is associated
with reduced depressive symptoms. This is, in part,
thought to be due to the triggering of chemical cascades
that ultimately results in both increased dendritic arboriza-
tion and brain-derived neurotrophic factor (BDNF) expres-
sion within hippocampal cells (Nestler et al., 2002).
Increased 5-HT signaling via SSRI treatment has been
reported to enhance BDNF expression (Duan et al., 2004),
which is associated with a reduction in depressive symp-
toms (Martinowich and Lu, 2008). It is because of these
downstream pathways that 5-HT levels are implicated in
both susceptibility to and treatment of depression, and
why SSRIs, which increase postsynaptic 5-HT signaling,
are effective in treating depression. This also explains why
participants with the 5-HTL/L–1AC/C genotype respond
more favorably to SSRI treatment than other genotypes
and why individuals with the 5-HTTS/S–1AC/C genotype
have poorer treatment response than those with other
genotypes (Arias et al., 2005; Hong et al., 2006), as the
modulated 5-HT increases associated with each geno-
type would alter induced BDNF expression.

Further research should be conducted to determine
whether differences in BDNF expression, and other down-
stream responses associated with 5-HT signaling, are
observed between individuals with differing genotypes, as
this would add further support for the proposed model.
Additionally, researchers have recently developed a
5-HT1A agonist (F15599) specifically targeted for 5-HT1A
heteroreceptors (Lladó-Pelfort et al., 2010). Individuals
with a blunted response to SSRI treatment due to geno-
type could benefit from 5-HT1A heteroreceptor agonist
augmentation as it could compensate for the marginal
increase in extracellular 5-HT available for postsynaptic
signaling.

While this model proposes an explanation for the gene–
gene interaction observed by the two previously men-
tioned studies (Arias et al., 2005; Hong et al., 2006), it is
insufficient to explain why some patients fail to respond to
antidepressant treatment, whereas others who have a
genetic predisposition never actually succumb to depres-
sion. This is due to the highly plastic nature of the sero-
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tonin system, which can easily compensate for a
disruption in one aspect of the 5-HT system (Holmes,
2008). Extensive research is still necessary before wide-
spread use of genetic testing in tailoring antidepressant
treatment to individuals can be implemented, and other
gene–gene interactions (including gene–gene–gene and
gene–gene–environment interactions) should be studied
further. This model advances the current understanding of
how genotype can influence the neuronal response to
antidepressants and can help to guide future research on
the topic of SSRI response.
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