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Automatic Cell Segmentation by Adaptive Thresholding (ACSAT) for large scale 40 
calcium imaging datasets 41 

Abstract 42 

Advances in calcium imaging have made it possible to record from an increasingly 43 

larger number of neurons simultaneously. Neuroscientists can now routinely image 44 

hundreds to thousands of individual neurons. An emerging technical challenge that 45 

parallels the advancement in imaging a large number of individual neurons is the 46 

processing of correspondingly larger datasets. One important step is the identification of 47 

individual neurons. Traditional methods rely mainly on manual or semi-manual 48 

inspection, which cannot be scaled for processing large datasets. To address this 49 

challenge, we focused on developing an automated segmentation method, which we 50 

refer to as Automated Cell Segmentation by Adaptive Thresholding (ACSAT). ACSAT 51 

works with a time-collapsed image and includes an iterative procedure that 52 

automatically calculates global and local threshold values during successive iterations 53 

based on the distribution of image pixel intensities. Thus, the algorithm is capable of 54 

handling variations in morphological details and in fluorescence intensities in different 55 

calcium imaging datasets. Within this manuscript we demonstrate the utility of ACSAT 56 

by testing it on 500 simulated datasets, two wide-field hippocampus datasets, a wide-57 

field striatum dataset, a wide-field cell culture dataset, and a two-photon hippocampus 58 

dataset. For the simulated datasets with truth, ACSAT achieved over 80% recall and 59 

precision when the signal-to-noise ratio was no less than ~24 dB. 60 

Significance 61 

ACSAT aims at automatically segmenting cells in large-scale calcium imaging datasets. 62 

It is based on adaptive thresholding at both global and local levels and iteratively 63 



 

3 
 

identifies individual neurons in a time-collapsed image. It is designed to address a 64 

variety of datasets, potentially involving variations in cell morphology and fluorescence 65 

intensity between different datasets. We demonstrate the effectiveness of ACSAT by 66 

testing it under a variety of conditions. For the simulated datasets with truth, ACSAT 67 

achieved recall and precision rates over 80% when the signal-to-noise ratio was no less 68 

than ~24 dB. For the datasets from mouse hippocampus and striatum, ACSAT captured 69 

~80% of human-identified ROIs and even detected some low-intensity neurons that 70 

were initially undetected by human referees. 71 

Introduction 72 

The ability to record from a large population of single neurons during behavior greatly 73 

facilitates the investigation of the contribution of individual neurons to neuronal network 74 

dynamics. Extracellular single-unit recording has traditionally been a method of choice 75 

in neurophysiological analyses of single neurons in the brain. Recent improvements, 76 

such as the new generation of genetically-encoded calcium sensors GCaMP6 (Chen et 77 

al., 2013, Sun et al., 2013), have made it possible to observe hundreds to thousands of 78 

individual neurons simultaneously (Ohki et al., 2005, Andermann et al., 2010, Huber et 79 

al., 2012, Ziv et al., 2013, Issa et al., 2014, Mohammed et al., 2016). Though indirect, 80 

these calcium indicators have been sensitive enough to monitor neuronal activity with 81 

high spatiotemporal precision in behaving animals, allowing researchers to examine the 82 

activity of populations of a specific cell type (Hofer et al., 2011, Wachowiak et al., 2013, 83 

Pinto and Dan, 2015, Allen et al., 2017) or the same cell over an extended period of 84 

time (Poort et al., 2015).  85 
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As the performance of genetically-encoded calcium indicators improved, wide-field 86 

microscopy has become feasible for recording the activity of a large population of 87 

neurons over an extended anatomical area (Lutcke et al., 2013, Wilt et al., 2013). 88 

Although lacking the spatial subcellular resolution of a multiphoton microscope, wide-89 

field microscopes can operate at a higher speed, allowing the simultaneous recording of 90 

increasingly larger populations (Ghosh et al., 2011, Ziv et al., 2013, Kim et al., 2016, 91 

Mohammed et al., 2016). Advanced microfabrication techniques further miniaturized the 92 

wide-field microscope to a microendoscope capable of monitoring neural activity in 93 

freely-moving animals (Ghosh et al., 2011, Ziv et al., 2013). 94 

An emerging technical challenge that parallels advances in calcium imaging is the 95 

processing of large datasets (Hamel et al., 2015). During data analysis, an important 96 

step is to identify regions of interest (ROIs) corresponding to individual neurons. As data 97 

grows rapidly both spatially and temporally, the traditional labor-intensive approach of 98 

manual inspection has to be automated. Principal component analysis (PCA) and 99 

independent component analysis (ICA) methods are natural and frequently-used 100 

candidates for automating ROI identification (Mukamel et al., 2009). However, if its 101 

assumption of statistical independence between neurons is violated, which is often the 102 

case in real neural recordings, then the method relies on user selection of parameters 103 

for spatial segmentation. 104 

Threshold-based methods represent a promising and intuitive alternative for automatic 105 

ROI identification. However, several challenges need to be overcome, including 106 

variability in recording conditions or fluorescence signal strength across structures, 107 
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recording subjects, and the imaging field. For example, one of the most referenced 108 

thresholding methods, Otsu’s method, which automatically selects the optimal threshold 109 

value that minimizes the intra-class variance among ROI pixels and among background 110 

pixels, would only successfully segment some of the highest-intensity ROIs (Otsu, 1979, 111 

Sezgin and Sankur, 2004). Additionally, the multi-class Otsu’s method is limited 112 

because uneven lighting may result in separate background classes. A waterfall-113 

thresholding approach addresses uneven lighting by iterative thresholding to capture all 114 

intensity peaks, but its selection of a threshold value is “ad hoc,” making it dataset-115 

dependent and user-dependent (Mellen and Tuong, 2009). A feedback loop-based 116 

approach for segmenting bacteria cells optimizes the threshold value from the 117 

distribution of pixel intensities, but its assumption that the total ROI area remains 118 

constant over time does not hold for calcium-imaging datasets because neurons change 119 

in brightness (Shen et al., 2015). A recent machine learning-based algorithm uses 120 

image gradients and pixel traces to optimize the threshold value, but it still requires a 121 

user’s subjective input in selecting a background removal factor based on each dataset 122 

(Fantuzzo et al., 2017). Other approaches based on edge detection have trouble due to 123 

weak fluorescence signal strength in comparison with the background pixels 124 

(Sadeghian et al., 2009). Generally, most segmentation methods require a high level of 125 

tuning to each individual dataset. 126 

To overcome these challenges of diverse imaging datasets, we introduce a new 127 

Automated Cell Segmentation by Adaptive Thresholding (ACSAT) algorithm. ACSAT 128 

dynamically and automatically determines global and local threshold values based on 129 

the distribution of pixel intensities within a time-collapsed image of a recorded image 130 
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sequence. We demonstrate the utility of ACSAT on simulated datasets, cell culture 131 

datasets, and in vivo wide-field and two-photon datasets. For the simulated datasets 132 

with truth, ACSAT achieved recall and precision >80% when the signal-to-noise ratio 133 

was no less than ~24 dB. ACSAT also captured ~80% of human-identified ROIs in 134 

datasets from mouse hippocampus and striatum and was even able to detect low-135 

intensity neurons that were initially undetected by human referees. 136 

Materials and Methods 137 

Wide-field hippocampus and striatum datasets 138 

All animal procedures were approved by [Author University – redacted for double-blind 139 

review] Institutional Animal Care and Use Committee. Female C57BL/6 mice (8-12 140 

weeks old, Taconic, Hudson, NY) were first injected with 250nL AAV9-Syn-141 

GCaMP6.WPRE.SV40 virus (titer: ~6e12 GC/ml, University of Pennsylvania Vector 142 

Core). AAV was delivered either into the dorsal CA1 (AP: -2, ML: 1.4, DV: -1.6), or into 143 

the dorsal striatum (AP: 0.5, ML: 1.8, DV: -1.6) regions. Injections were performed with 144 

a 10 μL syringe (World Precision Instruments, Sarasota, FL) coupled with a 33 gauge 145 

needle (NF33BL, World Precision Instruments, Sarasota, FL) at a speed of 40 nL/min, 146 

controlled by a microsyringe pump (UltraMicroPump 3-4, World Precision Instruments, 147 

Sarasota, FL). Upon complete recovery, a custom imaging chamber with glass coverslip 148 

was surgically implanted on top of the viral injection site by removing the overlying 149 

cortical tissue. The imaging chamber was assembled by fitting a circular coverslip (size 150 

0; OD: 3 mm) to a stainless steel cannula (OD: 0.317 mm, ID: 0.236 mm) using a UV-151 

curable optical adhesive (Norland Products). During surgery, a custom aluminum 152 
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headplate was also attached to the skull, which allows head-fixation during the imaging 153 

session.  154 

Imaging data were acquired with a custom wide-field microscope coupled with a 155 

scientific CMOS camera (ORCA-Flash 4.0, C11440-42U, Hamamatsu, Boston MA), 156 

controlled by the commercial software package HCImageLive (Hamamatsu, Boston 157 

MA). The wide-field microscope consisted of a Leica N Plan 10×0.25 PH1 objective 158 

lens, an excitation filter (HQ 470/50), a dichroic mirror (FF506-Di02), an emission filter 159 

(FF01-536/40), a commercial SLR lens as the tube lens (Nikon Zoom-NIKKOR 80–200 160 

mm f/4 AI-s), and a 5W LED (LZ1-00B200, 460 nm; LedEngin, San Jose CA). Data 161 

acquisition was performed at 20 Hz, at a resolution of 1024 x 1024 pixels, with 16-bits 162 

per pixel, for about 10-20 minutes. With 10x objective lens, the microscope provided a 163 

field of view of 1.343 x 1.343 mm2 (1.312 x 1.312 μm2/pixel) of brain tissue. Imaging 164 

data was streamed from the camera to RAM of a custom computer (dual Intel Xeon 165 

processors, 128 GB RAM, and a GeForce GTX Titan video card) to ensure temporal 166 

precision. After each imaging session, data was moved from RAM to hard drive and 167 

saved in multi-page tagged image file format. 168 

Two hippocampus datasets (A and B) were collected from two mice (dataset A was 169 

previously reported by Mohammed et al. (Mohammed et al., 2016)). The mice were 170 

trained to perform a trace conditioning task known to involve hippocampal neural activity 171 

(Solomon et al., 1986, Moyer et al., 1990, Tseng et al., 2004, Sakamoto et al., 2005). In 172 

this task, the animal was trained to associate a conditioned stimulus (a 350 ms long 173 

tone) with an unconditioned stimulus (a gentle 100ms air puff to one eye). There was a 174 
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250 ms trace interval between two stimuli. During each recording session, the animal 175 

was head-fixed and performed 40 trials with a randomized 31-36 second inter-trial 176 

interval. The hippocampus datasets (1024 x 1024 pixels/frame, 2047 frames, ~100 177 

seconds, ~4 GB size) analyzed in this study were part of larger recording sessions 178 

(~50GB size). 179 

The striatum dataset was collected from a head-fixed animal running on a spherical 180 

treadmill system. The treadmill system consisted a styrofoam ball floated by air 181 

pressure in a 3D-printed bowl designed as described in (Dombeck et al., 2007) that 182 

allowed the animal to move its limbs freely while head-fixed. The mouse was first 183 

handled for several days before being head-fixed to the spherical treadmill. Habituation 184 

to running on the spherical treadmill while head-fixed occurred over 3-4 days/week at 185 

the same time of day as subsequent recording sessions (8-12 hours after lights-on), for 186 

several weeks. Single imaging sessions took approximately 25 minutes. Sampling 187 

occurred at approximately 20Hz and exposure time was fixed at 20ms. The striatum 188 

dataset (~100 seconds, ~4 GB size) contains 2047 frames with 1024 x 1024 pixels per 189 

frame and was also part of a larger dataset (~25GB size). 190 

Two human referees manually identified ROIs in the hippocampus dataset A and in the 191 

striatum dataset to create a set of human-generated ROIs for comparison with ACSAT’s 192 

segmentation results. This manual selection was done by viewing the image sequence 193 

and segmenting ROIs that had fluorescence traces compatible with neuronal dynamics 194 

and/or by selecting ROIs from a composite image created from the video sequence and 195 

confirming fluorescence traces were compatible with neuronal dynamics. 196 
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Wide-field cell culture dataset 197 

The primary neuron cell dataset was collected from a 10-day-old neuron culture, 198 

infected with AAV9-Syn-GCaMP6.WPRE.SV40 virus. Seven days after infection, 199 

neurons were imaged at 20 Hz for 60 seconds. The primary neuron culture dataset 200 

contains 1201 frames, 1024 x 1024 pixels per frame, recorded with the same imaging 201 

setup as for the hippocampus and striatum datasets described above. 202 

Two-photon dataset 203 

The two-photon dataset was downloaded from the Neurofinder website 204 

(http://neurofinder.codeneuro.org/, 03.00). GCaMP6f was used as the indicator. The 205 

dataset contains 2250 frames with 498 x 490 pixels per frame with resolution 0.588 x 206 

0.588 μm2/pixel. 207 

Signal-to-noise ratio (SNR) calculation 208 

We calculated the signal-to-noise ratio (SNR) in decibels (dB) as 209 

SNR ROI

background
 

For the simulated datasets,  ROI is the mean intensity value of all pixels belonging to all 210 

ROIs in the time-collapsed image , and similarly, background is the standard deviation of 211 

background pixel intensity values i.e. all pixels that do not belong to an ROI. For the 212 

hippocampus dataset A and the striatum dataset, ROI is the maximum intensity value of 213 

an ROI trace, and background is the standard deviation of the background trace. The ROI 214 

trace value at each timepoint is the averaged intensity values of all pixels belonging to 215 

that ROI, and similarly for the background trace, which uses all pixels not belonging to 216 
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any ROI. Note that the SNR for the simulated datasets describes the whole time-217 

collapsed image , whereas the SNR for the hippocampus and striatum datasets 218 

describe an individual ROI. 219 

Simulated datasets 220 

We tested ACSAT’s segmentation performance on 500 simulated datasets with varying 221 

signal-to-noise ratios (between ~19 dB and ~29 dB) and numbers of ROIs (between 300 222 

and 700). Figure 2B shows some examples of the simulated time-collapsed image, i.e., 223 

the input image  to ACSAT in Figure 1A. The simulation gives us the true locations of 224 

all ROIs so that we can accurately assess ACSAT’s segmentation performance. 225 

Our simulated datasets were obtained by a procedure adapted from (Zhou et al., 2018). 226 

We used the model  to generate the simulated datasets where  represents 227 

noise,  represents the shapes of each ROI, and  adjusts each ROI’s intensity to 228 

simulate uneven lighting.  229 

The pixel noise values in  were randomly sampled from the background pixel values in 230 

the time-collapsed image for the hippocampus dataset. This noise is unlikely to be 231 

Gaussian because the time-collapsing procedure subtracts the mean value from the 232 

maximum value of each pixel such that the time-collapsed image is biased towards 233 

higher pixel values. 234 

The centroid location of each ROI represented in  was randomly selected with weights 235 

. The pixel values comprising the body of each ROI was modeled deterministically by 236 
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the bivariate Gaussian probability density function, with widths randomly selected 237 

according to Zhou et al. (Zhou et al., 2018). 238 

The image  is also used to amplify each ROI’s pixel values to reflect uneven lighting 239 

conditions across the imaging field.  was generated by applying heavy Gaussian 240 

filtering to the time-collapsed image of the hippocampus dataset until no individual ROIs 241 

are detectable. 242 

Automated Cell Segmentation by Adaptive Thresholding (ACSAT) Overview 243 

Fluorescence imaging data obtained in the form of image sequences is processed 244 

offline using a custom MATLAB algorithm. Image sequences were first motion-corrected 245 

as described in Mohammed et al. (2016) to remove micromotion of the imaged area 246 

caused by breathing and other movements of the animal. ACSAT (Figure 1A) is then 247 

applied to a time-collapsed image that represents the image sequences, to 248 

automatically identify individual neurons as regions of interest (ROIs). 249 

The input image sequence is first loaded into MATLAB as a 3D matrix (height x width x 250 

time) and then time-collapsed to produce a representative two-dimensional image 251 

(height x width,  in Figure 1A), where each pixel in  is represented by the maximum 252 

intensity value of that pixel across the entire image sequence with its mean value 253 

removed. This time-collapsed image  is then used for the rest of the algorithm. Pixels 254 

with low intensity values would correspond to static background, whereas pixels with 255 

high intensity values would correspond to neurons with GCaMP6 expression. In general, 256 

neurons with GCaMP6 expression appear in  as a cluster of adjacent pixels with high 257 

intensity values and with size similar to that of a neuron. Meanwhile, it is improbable for 258 
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random background noise to generate clusters with similar properties. Thus, the time-259 

collapsed image  is expected to contain sufficient information to separate neurons 260 

from the background. 261 

Next, ACSAT iteratively generates ROIs  from the time-collapsed image  for 262 

iterations , starting with . Prior to each subsequent iteration,  is 263 

generated by cumulatively clearing previously segmented ROIs, , from  by 264 

setting each ROI’s pixels in  to blank values of 0 and dilating the cleared area. As 265 

described later, each iteration consists of both adaptive thresholding at the global level 266 

(Global FIBAT in Figure 1A), using the automatically selected threshold value  (Figure 267 

1B), and adaptive thresholding at the local level (Local FIBAT in Figure 1A). When the 268 

change in global threshold value  is insignificant, further iterations are likely to 269 

contribute more false positives than true positives. Thus, the ACSAT algorithm 270 

terminates at iteration  if  where  acts as a normalizing factor. 271 

Accordingly, the final output of ACSAT is the union of the segmented ROIs from each 272 

iteration, . 273 

Global and Local Adaptive Thresholding in ACSAT 274 

Each iteration  of ACSAT contributes a set of newly segmented ROIs  from  275 

by applying our Fluorescence Intensity Based Adaptive Thresholding (FIBAT) algorithm, 276 

at the global and local levels (Global/Local FIBAT in Figure 1A). Briefly, FIBAT (Figure 277 

1B) takes an inputted image  and outputs the optimal threshold value  which results 278 

in optimally segmented ROIs . 279 
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Global adaptive thresholding is the first step in the th iteration of ACSAT (Figure 1A). 280 

This step applies FIBAT directly to the whole image ( ) to identify potential ROIs 281 

( ). 282 

These potential ROIs  may include groups of adjacent neurons or overlapping 283 

neurons because neurons located above and below the focal plane could be captured in 284 

the same frame during wide-field imaging. Such overlap however is unlikely to occur in 285 

two-photon datasets or in cell culture datasets. The local adaptive thresholding step 286 

(Figure 1C) recursively separates any potentially overlapping ROIs within  in 287 

order to output . Specifically, each ROI in  is individually dilated and then 288 

inputted to the local FIBAT (ROI ) in (Figure 1B) to obtain a set of separated ROIs 289 

. If any outputted set  contains more than one separated ROIs, then 290 

each ROI in the set  is further separated using the same procedure, thus 291 

forming a recursive loop. Otherwise, if any outputted set  contains only one 292 

ROI, then the recursion terminates. The final output of the local thresholding step 293 

 is the union of all such sets containing one ROI that cannot be further 294 

separated. 295 

Fluorescence Intensity Based Adaptive Thresholding (FIBAT)  296 

As described, FIBAT (Figure 1B) is used in both the global and local adaptive 297 

thresholding steps of each iteration of ACSAT to identify potential ROIs in the time-298 

collapsed image  or to separate potentially overlapping neurons within  which is 299 

an element of , respectively. In either case, an optimal pixel intensity threshold 300 

value  separates ROIs from the background. FIBAT selects  by searching for the 301 
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threshold value that maximizes the number of resulting ROIs that are larger in area than 302 

 and smaller in area than .  303 

The search is performed recursively over a pixel intensity range , where initially 304 

 is the minimum pixel intensity value in  and  is the maximum pixel intensity value 305 

in . From this search range,  test threshold values  are uniformly 306 

selected. A larger  will decrease the probability of skipping the optimal threshold value, 307 

but it will result in more computation time that may not be necessary. Because the 308 

threshold value is refined by a recursive process until it reaches the optimal value that 309 

produces the maximum number of ROIs, the value of  should have little to no effect on 310 

ACSAT’s segmentation results. We chose . Each of these test threshold values 311 

 is applied to the image  by assigning each pixel a 1 (a true calcium event) if its 312 

value is greater than the threshold or a 0 (a false calcium event) otherwise. 313 

Morphological operations are then performed to refine the thresholded images. 314 

Specifically, these operations fill in holes (0s surrounded by 1s) and remove spur pixels 315 

which may be due to noise. The operations also break H-connected ROIs prior to 316 

splitting overlapping cells. ROIs are finally collected with 8-connectivity (MATLAB 317 

function bwlabel or bwconncomp) to generate a set of segmented ROIs for each test 318 

threshold value: . 319 

Since ROIs represent real neurons that are roughly spherical in shape and are about 5 320 

μm - 20μm in diameter, some realistic criteria can be used to eliminate false ROIs that 321 

are not possibly actual neurons. Accordingly, FIBAT removes ROIs from 322 

 if their centroid is outside the ROI, or if their area is less than 323 
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 or greater than , or if their solidity (i.e. the area ratio between the convex hull 324 

of a ROI and the ROI itself) is greater than approximately the golden ratio. 325 

The next search range is selected based on the results of the test thresholds. A 326 

relationship of the test threshold values  vs the numbers of resulting ROIs 327 

 can be generated (Figure 1B). If the test threshold value  328 

resulted in the most ROIs i.e. , then the next search range is set 329 

to  in order to include  inside the search range. If more than one 330 

test threshold value  resulted in the same maximum number of ROIs, then the 331 

next search range is similarly set to  in order to 332 

contain all . This search is terminated when further refinement of the search 333 

range produces little improvement in the number of detected ROIs: either the new 334 

search range  is less than  or the new range overlaps the previous range 335 

by at least . We chose  and the smallest non-zero intensity difference 336 

between every pair of adjacent pixels in whole image . As such,  is determined 337 

automatically and does not require user input. Upon termination, the optimal threshold 338 

value is set to , and the segmented ROIs 339 

 includes ROIs whose area exceeds . 340 

Code accessibility 341 

The code/software described in the paper is freely available online at [redacted for 342 

double-blind review]. The code is available in Extended Data 1. 343 

  344 
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Results 345 

We tested ACSAT on 500 simulated datasets, two wide-field hippocampus datasets, a 346 

wide-field striatum dataset, a wide-field cell culture dataset, and a two-photon 347 

hippocampus dataset. The simulated datasets with known ground truth allowed us to 348 

accurately assess the segmentation performance of ACSAT in different conditions of 349 

SNR and number of ROIs. For the hippocampus dataset A and the striatum dataset, in 350 

which the ground truth is unknown, we used human-generated ROIs as a reference. For 351 

the cell culture dataset, hippocampus dataset B, and two-photon dataset, we provide 352 

the ACSAT segmented ROIs that can be inspected and interpreted by users. 353 

ACSAT performance on simulated datasets with various SNRs and numbers of ROIs 354 

To evaluate the performance of ACSAT, we simulated 500 time-collapsed images  355 

with various numbers of ROIs (between 300 and 700) at random locations and different 356 

SNRs (between ~19 dB and ~29 dB). The exact locations of ROIs are known and 357 

served as the ground truth to provide an accurate evaluation of the performance of 358 

ACSAT. For all 500 datasets, we used the parameters ,  359 

and  for the global adaptive thresholding step, and 360 

 and  for the local adaptive thresholding step because ROIs 361 

tend to shrink in size after repeatedly applying FIBAT. 362 

The recall and precision results for each of these simulated datasets are shown as dots 363 

in Figure 2A1 and Figure 2A2, respectively. Figure 2B shows examples of the simulated 364 

time-collapsed images, and each example corresponds to a dot in Figure 2A1 and 365 

Figure 2A2. At SNR greater than approximately 24 dB, ACSAT shows a stable 366 

performance with generally higher than 80% recall. The precision rate remains stable at 367 
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generally higher than 80% when SNR is greater than approximately 21 dB. However, 368 

the performance of ACSAT falls when SNR is below approximately 20 dB. 369 

ACSAT performance on hippocampus dataset A and striatum dataset 370 

We used ACSAT (Figure 1A) to automatically segment ROIs from a hippocampus wide-371 

field imaging dataset and a striatum wide-field imaging dataset. Prior to the application 372 

of the ACSAT, the image sequences were time-collapsed as shown in Figure 3 and 373 

Figure 4 (top rows) for the hippocampus A and the striatum datasets, respectively. 374 

These time-collapsed images show high intensity areas resembling neural morphology. 375 

The final segmented ROIs outputted by ACSAT are illustrated in Figure 3 and Figure 4 376 

(bottom row), respectively.  377 

For both datasets, we initiated ACSAT using the same parameters as for the simulated 378 

datasets ( ,  and  for the global 379 

adaptive thresholding step, and  and  for the local 380 

adaptive thresholding step). To obtain the results as shown in Figure 3 and Figure 4, it 381 

took approximately one minute per iteration on a Xeon E5-1650 v4 at 3.6GHz with 128 382 

GB DDR4 RAM, but it used less than 30 MB RAM. As such, the RAM size had little 383 

effect on the speed.  384 

ACSAT Performance Compared to Human-Generated ROIs 385 

To assess the performance of the ACSAT algorithm, we compared the ACSAT 386 

segmentation results with ROIs generated by human inspection (human-generated 387 

ROIs). This set of human-generated ROIs contained 423 ROIs for the hippocampus 388 

dataset A and 91 ROIs for the striatum dataset. We first compared the ACSAT-389 
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generated ROIs for the hippocampus A and striatum datasets with the ROIs in the 390 

human-generated ROIs. We consider a pair of ROIs to correspond to the same neuron 391 

if they had centroids that were less than  apart and had a mutual overlap 392 

greater than 60%. We calculated the mutual overlap as the average of the percentages 393 

of the overlapping area against the areas of both ROIs. When there were multiple ROIs 394 

sharing overlapping areas, we selected the pair with highest mutual overlap as the 395 

matched ROIs. 396 

For the hippocampus dataset A, ACSAT identified 445 ROIs after three iterations. 397 

Among these 445 ROIs, 317 ROIs were matched in the human-generated ROIs 398 

(Match), and 128 ROIs were not in the human-generated ROIs (ACSAT-only). 399 

Additionally, 106 ROIs in human-generated ROIs were not identified by ACSAT 400 

(Human-only). This result gave us a precision rate of 71.2% (317 out of 445) and a 401 

recall rate of 74.9% (317 out of 423). For the striatum dataset, ACSAT was terminated 402 

after one iteration and identified a total of 135 ROIs: 69 Match ROIs, 66 ACSAT-only 403 

ROIs, and 22 Human-only ROIs (precision rate: 51.1%, recall rate: 75.8%). 404 

We further examined the fluorescence traces of ROIs from the ACSAT-only, Human-405 

only, and Match groups. Representative traces are shown in Figure 5A1 and B1, 406 

respectively for the hippocampus A and striatum datasets, and all traces are available in 407 

Extended Data 2. The value of each ROI fluorescence trace at each timepoint is the 408 

average intensity value of all pixels belonging to that ROI. In Figure 5A1 and B1, each 409 

trace is normalized by subtracting the mean value of that trace over time and then 410 

dividing this difference by that mean value. We calculated the signal-to-noise ratio 411 
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(SNR) for every ROI in each group. In both the hippocampus A and striatum datasets, 412 

the Match ROIs exhibit a broad range of SNR, indicating that both ACSAT and humans 413 

are capable of identifying ROIs with various intensities in the time-collapsed image 414 

(Figure 5A2 and B2). 415 

We further examined the individual ROIs identified by ACSAT that were not identified by 416 

humans. This secondary manual inspection found that some of the ACSAT-only ROIs 417 

were actually true neurons (i.e. with fluorescence traces compatible with neuronal 418 

dynamics) that were missed in the initial human-generated ROIs due to human error. 419 

This means that ACSAT was able to segment ROIs that were difficult to identify by 420 

human experts. Specifically, for the hippocampus A dataset, 70 (54.7%) out of 128 421 

ROIs initially labeled as ACSAT-only were later determined to be actual neurons, and 422 

for the striatum dataset, 31 (47%) ROIs were true neurons. After correction, of the total 423 

445 ACSAT ROIs from the hippocampus dataset A, 387 segmented ROIs corresponded 424 

to true neurons (Match), and 58 segmented ROIs did not correspond to true neurons 425 

determined by human inspection (ACSAT-only). Additionally, 106 true ROIs were not 426 

segmented (Human-only). This corresponds to a precision rate of 87% and a recall rate 427 

of 78.5%. Similarly, for the striatum dataset, which resulted in 135 ACSAT ROIs, there 428 

were 100 Match ROIs, 35 ACSAT-only ROIs, and 22 Human-only ROIs after correction. 429 

This corresponds to a precision rate of 74.1% and a recall rate of 82%. Even though 430 

neurons in the hippocampus and striatum have different morphology and fluorescence 431 

intensity, ACSAT was consistently effective for both datasets, and it was able to detect 432 

low-intensity neurons that were initially undetected by human referees. As such, our 433 

results demonstrate the robustness and effectiveness of the algorithm. 434 
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The result from the hippocampus dataset A shows that ACSAT successfully identified 435 

true ROIs of diverse sizes (Figure 6, red). In general, the false positive ROIs had 436 

relatively smaller areas (Figure 6, yellow), similar to the ROIs missed by human 437 

referees (Figure 6, green). This indicates that ACSAT is more likely to recognize 438 

intensity changes in small areas thereby outperforming human referees under such 439 

challenging detection conditions. Additionally, ACSAT missed a small portion of true 440 

ROIs, which shares similar sizes with those identified (Figure 6, blue). 441 

Number of Iterations in Using ACSAT 442 

For the hippocampus dataset A, ACSAT was terminated at iteration  when the 443 

change in global threshold value . For the striatum dataset, 444 

ACSAT was terminated at iteration  when the change in global threshold value 445 

. 446 

To evaluate how ACSAT performs when terminated at different iteration numbers, we 447 

ran ACSAT up to 9 iterations on both datasets, and calculated several major 448 

performance indicators after each iteration (Figure 7): cumulative number of ROIs, 449 

global threshold value, recall, false negative rate, and false discovery rate (which is 450 

equal to 1 – precision) compared to the human-generated ROIs prior to secondary 451 

manual inspection of false positives. The cumulative number of ROIs, recall, and false 452 

discovery rate increased with the iteration number, but at different speed. While the 453 

cumulative number of ROIs and the false discovery rate increased steadily, recall rose 454 

steeply and reached its plateau within approximately three iterations for the 455 

hippocampus dataset and after the first iteration for the striatum dataset. Both the global 456 
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threshold value and the false negative rate dropped as iterations progressed, indicating 457 

ACSAT dynamically adjusted the threshold to capture potential ROIs with lower intensity 458 

in later iterations. This dynamic adjustment of the threshold value at each iteration was 459 

only possible because of the removal of segmented ROIs prior to each iteration. 460 

Overall, the changes in these performance indicators over iterations suggested that 461 

most true ROIs were identified during the early iterations:  for the hippocampus 462 

dataset and  for the striatum dataset, which are consistent with when the ACSAT 463 

termination criterion described by  was met. ROIs segmented during later iterations 464 

were mostly false positive. 465 

FIBAT Global and Local Thresholding 466 

In Figure 8, we demonstrate how FIBAT (Figure 1B) determines the threshold value that 467 

achieves optimal segmentation results by sampling the distribution of threshold values 468 

vs the number of ROIs. Each trace of Figure 8 plots the number of ROIs that results 469 

from each sampled threshold value in the global thresholding step during the first four 470 

iterations of ACSAT (Figure 1A) on the hippocampus dataset. In each iteration, FIBAT 471 

(Figure 1B) first samples the threshold values across the entire intensity range at coarse 472 

resolution to identify the potential search range that may result in the maximum number 473 

of ROIs. FIBAT further re-samples threshold values within the new search range with a 474 

finer resolution, until it reaches a threshold value that gives the maximum number of 475 

ROIs. This design allows FIBAT to determine the optimal threshold value with a fine 476 

resolution without actually sampling the whole intensity range at the fine scale, and, as 477 

a result, reduces the processing time. 478 
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After performing global thresholding to identify potential ROIs  (Figure 1A), 479 

ACSAT further applies FIBAT locally to each identified ROI in  to refine the 480 

segmentation results (Figure 9). When neurons are densely labeled with GCaMP6, 481 

using the global thresholding step alone may lead to one or more large clusters of 482 

adjacent neurons being segmented as a single ROI (Figure 9A). For each such cluster, 483 

FIBAT (Figure 1B) determines and applies a new threshold value to the local ROI area. 484 

With local thresholding, the example cluster is further segmented into 5 new ROIs 485 

(Figure 9B), which would not otherwise be separated by applying the global threshold. 486 

Because further local thresholding produces the same result (Figure 9C), the local 487 

thresholding step of ACSAT concludes that these 5 ROIs cannot be further separated, 488 

exits the recursive loop, and outputs these ROIs. 489 

To evaluate the efficacy of local thresholding, we examined the hippocampus dataset A 490 

at each iteration before and after the local thresholding step (Figure 10, left and right 491 

bars, respectively). Local thresholding refined the ROIs detected by global thresholding 492 

and captured more true ROIs at every iteration. It is also worth noting that, at later 493 

iterations, local thresholding was still able to identify true ROIs that were missed by 494 

global thresholding alone (Figure 10, iteration 4).  495 

ACSAT performance on two-photon dataset 496 

We applied ACSAT to the two-photon dataset Neurofinder 03.00 (Figure 11C). 497 

Genetically Encoded Calcium Indicators are generally not expressed in the nuclei (Tian 498 

et al., 2009), and because of the optical sectioning technique that two-photon imaging 499 

provides, in this dataset the nuclei appear dark. Additionally, this dataset had high 500 

speckle noise. Thus, the time-collapsed image generated by ACSAT using max minus 501 
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mean pixel values shows bright nuclei. The truth file provided by Neurofinder contains 502 

621 ROIs, most of which are nuclei. Since the features of this dataset are the nuclei, 503 

which are smaller, we used the parameters ,  and 504 

 for the global adaptive thresholding step, and 505 

 and  for the local adaptive thresholding step.  506 

ACSAT identified 571 ROIs. Among these, 442 ROIs were matched with the truth (true 507 

positive), and 179 ROIs were not in the truth (false positive). Additionally, 129 ROIs in 508 

truth were not identified by ACSAT (false negative). This result gave us a recall rate of 509 

71.2% (442 out of 621) and a precision rate of 77.4% (442 out of 571). 510 

We further inspected the time-collapsed image  and observed that the right side of the 511 

time-collapsed image  had different patterns of texture than the left side. To utilize the 512 

new texture information for ROI detection by ACSAT, we extracted the right side of  513 

that is rich in texture information to generate  as input to ACSAT. The  was 514 

generated by change detection between the original image and its Gaussian-filtered 515 

counterpart. Thus, ACSAT identified an additional 157 ROIs, of which 95 were true 516 

positives, and 62 were false positives. Combining these additional ROIs with the ROIs 517 

identified by direct application of ACSAT results in a recall rate of 82.8% (514 out of 621) 518 

and a precision rate of 70.6% (514 out of 728). 519 

ACSAT performance on cell culture and hippocampus B dataset 520 

Finally, we used ACSAT to detect ROIs in the dataset of the primary neuron culture 521 

expressing GCaMP6f (Figure 11B). Qualitatively, it appears ACSAT successfully 522 

identified the cell bodies of the majority of neurons in early iterations, and neurites in 523 

later iterations. We also used ACSAT to detect ROIs in the hippocampus dataset B 524 
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(Figure 11A). For both datasets, we used the parameters , 525 

 and  for the global adaptive thresholding step, and 526 

 and  for the local adaptive thresholding step because 527 

ROIs tend to shrink in size after repeatedly applying FIBAT. 528 

Discussion 529 

In this study, we presented our Automated Cell Segmentation by Adaptive Thresholding 530 

(ACSAT) method that adaptively selects threshold values based on image pixel intensity 531 

with two iterative steps at the global and local levels using a time-collapsed image. As 532 

such, the algorithm is capable of handling morphological variations in fluorescence 533 

intensity in neurons and is robust against luminance condition changes across datasets. 534 

When applied to two datasets collected from the hippocampus and the striatum in mice, 535 

ACSAT resulted in approximately 80% recall rate of regions of interest (ROIs) 536 

containing individual neurons (78.5% for the hippocampus A dataset and 82% for the 537 

striatum dataset), and approximately 80% precision rate (87% for the hippocampus 538 

dataset and 74.1% for the striatum dataset). ACSAT was also able to detect low-539 

intensity ROIs that were initially undetected by human referees. When applied to 500 540 

simulated datasets, ACSAT achieved recall and precision rates higher than 80% when 541 

SNR was no less than approximately 24 dB. However, the performance of ACSAT falls 542 

when SNR reaches below approximately 20 dB. 543 

The ACSAT algorithm is an intuitive thresholding method that uses global and local 544 

schemes to address variations in fluorescence intensity levels of GCaMP6 fluorescence 545 

even within the same image field. Simply applying a lower global threshold value would 546 

result in few large ROIs containing multiple neurons within one ROI. On the other hand, 547 
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with a high global threshold value, only a small number of neurons with high intensity 548 

would be found. As such, applying a single high or low threshold value would generate 549 

inadequate results of either few or excessive ROIs, which is a universal limitation of 550 

thresholding methods. Our algorithm efficiently addresses this challenge in two ways. 551 

First, it cumulatively excludes previously segmented ROIs from the time-collapsed 552 

image  after each iteration so that in the following iteration, ACSAT could detect new 553 

ROIs that require distinct thresholds to separate but were missed with previous 554 

thresholds. Therefore, the global threshold value  (Figure 1) used by ACSAT usually 555 

decreases after each iteration, and ROIs with high intensity were segmented before 556 

those with low intensity, as shown in Figure 3 and Figure 4. Because ACSAT is based 557 

on adaptive thresholding, it allows us to objectively and robustly segment ROIs with low 558 

intensity relative to the background. These low-intensity areas often pose challenges to 559 

human experts when manually detecting ROIs, as our results showed that about half of 560 

the ROIs initially labeled as false positive were actually true neurons (Figure 10). 561 

Second, ACSAT uses Fluorescence Intensity Based Adaptive Thresholding (FIBAT) 562 

locally to separate overlapping ROIs. This approach directly addresses the issue of 563 

heterogeneity in recorded neural signals when the intensities of pixels surrounding an 564 

ROI can vary. However, because a higher thresholding value is usually required to 565 

separate adjoining neurons, the output sub-ROIs after local FIBAT are often smaller 566 

than the corresponding true neurons. Thus, a simple dilation step was applied during 567 

the local FIBAT step. This correction is useful to prevent real ROIs from falling below 568 

the minimum area criteria  and thus being removed. Although the interleaving 569 

process of global FIBAT and local FIBAT has been effective in addressing overlapping 570 
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neurons, a potential problem still arises if two neurons with similar intensities have 571 

significant overlap with each other in the time-collapsed image such that there is no 572 

trough between them. Then ACSAT may identify them as a single ROI. Conversely, if 573 

there is a neuron with multiple hot-spots (Pnevmatikakis et al., 2016), then this may be 574 

identified as multiple neurons by ACSAT. Such a scenario, however, can be minimized 575 

by the minimum area criteria   and the maximum area criteria . Spatial overlap 576 

is profound for wide-field imaging, but not for two-photon imaging or in vitro cell culture 577 

imaging with single cell layer. With increasing improvement wide-field imaging, such as 578 

volumetric imaging (Shain et al., 2018, Xiao et al., 2018), such significant overlap may 579 

be better eliminated during data acquisition step. 580 

ACSAT has three sets of free parameters that can be rationally chosen or otherwise are 581 

not sensitive:  which describes the termination condition for ACSAT,  which describes 582 

a termination condition for FIBAT, and  and  which describe the allowed sizes 583 

of ROIs.  584 

The termination condition for ACSAT, described by , can be explained by the 585 

tendencies of ACSAT. Specifically, running ACSAT for more iterations increases the 586 

number of ROIs segmented, especially the number of low-intensity ROIs, as the global 587 

threshold value  gradually decreases (Figure 7). While many of the added ROIs are 588 

true ROIs, the proportion of false positive ROIs added increases as iteration number 589 

increases (Figure 7). This increasing proportion of outputted false positives in later 590 

iterations can be attributed to the higher probability of a spurious collection of adjacent 591 

background pixels meeting the criteria to be an ROI. Also, the added false positives can 592 

be related to the step which clears previously segmented ROIs from the time-collapsed 593 
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image at the start of each iteration of ACSAT. Due to the scattering of light in brain 594 

tissue, ROI removal may leave a few small fragments of bright pixels around removed 595 

areas, which could be identified as ROIs during the next iteration. ACSAT tries to avoid 596 

this problem by dilating the cleared area which makes sure the whole ROI is cleared 597 

rather than only the brighter center. Besides dilation, these misidentified ROIs were also 598 

discarded either because of their small size or because they do not meet the solidity 599 

criteria; however, occasionally they may pass the size criteria and become the false 600 

positive ROIs. As a result, the majority of false positives tend to have small size (Figure 601 

6, yellow). 602 

In order to balance the effects of simultaneous increase in true ROIs and false positive 603 

ROIs, ACSAT stops when a decrease of global threshold value becomes relatively 604 

small between iterations i.e. . At that stage, most true ROIs have been 605 

detected and removed from the time-collapsed image. Thus, the global threshold values 606 

 of any further iterations are similar, so most ROIs detected at this stage are false 607 

positives. For the hippocampus dataset A, iteration  is when the increase in false 608 

positives begins to outweigh the increase in true positives, and for the striatum dataset, 609 

nearly all true ROIs segmented by ACSAT were outputted at iteration  (Figure 7). 610 

Qualitatively, the time-collapsed image  for hippocampus has a higher density of 611 

neurons with a greater variety of pixel intensities than the  for striatum, so it may take 612 

more iterations for ACSAT to perform at the same rate on the hippocampus dataset 613 

than on the striatum dataset. ACSAT’s performance under the diverse conditions of 614 

these two datasets suggests that our choice of  provides a robust and rational 615 

termination condition for ACSAT that can be generalized to other datasets, namely the 616 
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500 simulated datasets and the cell culture dataset, as well. In fact, changing the 617 

termination condition from  to  only affected the segmentation results in 618 

less than 17% of the 500 simulated datasets. For the two-photon dataset, our reported 619 

results are using the termination condition . In general, users can choose  to be 620 

between 5% and 10% based on the needs of their application: if recall is more important, 621 

then users should choose a smaller , and if precision is more important, then users 622 

should choose a larger . 623 

Additionally, the final segmentation results generated by ACSAT are not sensitive to the 624 

termination conditions for FIBAT described by  and . FIBAT is terminated if the 625 

threshold search range has minimal change over an iteration, which we determine in 626 

two ways. One way this condition would be satisfied is when all threshold values within 627 

the search range result in the same, optimal number of ROIs. This is equivalent to 628 

setting the criteria . For the practical purpose of reducing FIBAT run time, we 629 

allow termination if the change in the search range is less than . This 630 

condition is also easily met when FIBAT is used in the local thresholding step because, 631 

by definition, ROIs that cannot be separated by FIBAT will return exactly one ROI no 632 

matter what threshold value is used. Additionally, we terminate FIBAT if the search 633 

range is smaller than , the smallest difference between any pair of adjacent pixels in , 634 

which can be objectively and automatically determined from . If FIBAT were to continue 635 

refining the threshold value, then the gained precision beyond that defined by  would 636 

be useless due to the discrete step in pixel intensity values in .  637 

The last set of parameters  and  should be chosen based on how large 638 

neurons are expected to be using information including neuron size, image resolution, 639 
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magnification, imaging method, etc. In our wide-field datasets, the boundaries of 640 

neurons may not be as well-defined as those collected with two-photon microscope, and 641 

the size will appear larger than the size of a neuron due to light scattering in wide-field 642 

conditions. This effect is consistent with our observation that the minimum size of the 643 

human-generated ROIs was  for the hippocampus A dataset and 644 

 for the striatum dataset. Thus, our minimum ROI criteria for the wide-645 

field datasets may be larger than a typical neuron size. 646 

The images  used by ACSAT are time-collapsed, and therefore do not contain any 647 

temporal information. With the flexibility of ACSAT, the framework of ACSAT can be 648 

used as long as a single image can be generated to represent the ROIs within the 649 

image sequence. For example, an input image  can be generated where the value of 650 

each pixel represents the time of its maximum intensity. This image  would allow 651 

ACSAT to separate adjoined ROIs that have similar intensity values in  but reach their 652 

maximum intensity at different time points, which is described by . Other ways to 653 

generate the single representative image include correlations with nearby pixels, 654 

intensity dynamics such as standard deviation or variance over time, texture of the time-655 

collapsed image (for example, as used for the two-photon dataset), and a combination 656 

of various parameters. Overall, by taking advantage of adaptively determining the 657 

threshold value at both the global level and the local level, ACSAT can theoretically 658 

perform segmentation on any image containing ROIs with non-homogenous intensity as 659 

long as it has sufficient contrast between ROIs and the background. 660 

  661 
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Figure Captions 754 

Figure 1. Flowchart of the Automated Cell Segmentation by Adaptive 755 

Thresholding (ACSAT) algorithm. (A) The input is the time-collapsed image , and 756 

the output is a collection of automatically segmented ROIs. In each iteration, the "Global 757 

FIBAT" step identifies potential ROIs  by applying FIBAT, described in part B, to 758 

the entire image ; and the "Local FIBAT” step, described in part C, splits overlapping 759 

ROIs. (B) Flowchart of the Fluorescence Intensity Based Adaptive Thresholding (FIBAT) 760 

algorithm. The input image is segmented using each of the test threshold values 761 

. The search range for the optimal threshold value ( ) is iteratively 762 

narrowed to contain the test threshold value which results in the maximum number of 763 

ROIs. (C) Local FIBAT procedure. FIBAT, described in part B, is recursively applied to 764 

each potential ROI until the resulting ROI(s) can no longer be separated by FIBAT.  765 

Figure 2. ACSAT performance on simulated datasets. (A1) Recall and (A2) precision 766 

are plotted as a function of signal-to-noise ratio (SNR) and number of ROIs. Each dot 767 

corresponds to the ACSAT result for one of the 500 simulated datasets. A surface was 768 

fitted to these dots for visualization. The black vertical plane corresponds to the SNR of 769 

the hippocampus A dataset. (B) Six examples of simulated time-collapsed images, 770 

labeled a-f, correspond to the dots labeled a-f in parts A1 and A2. 771 

Figure 3. Hippocampus dataset A and ROIs identified by ACSAT. (A) The 772 

aggregated image of hippocampus dataset A and zoom-in images (Ai, Aii, and Aiii, 773 

corresponding to the grey boxes). (B) ACSAT determined ROIs from multiple iterations 774 

overlying on the aggregated image (red, yellow, green, and blue outline corresponds to 775 
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iteration 1, 2, 3, and 4, respectively). The fourth iteration (blue) is shown for comparison 776 

although ACSAT terminated at iteration 3 (red, yellow, and green). 777 

Figure 4. Striatum dataset and ROIs identified by ACSAT. (A) The aggregated image 778 

of striatum dataset and zoom-in images (Ai, Aii, and Aiii, corresponding to the grey 779 

boxes). (B) ACSAT determined ROIs from multiple iterations overlying on the 780 

aggregated image (red, yellow, green, and blue outline corresponds to iteration 1, 2, 3, 781 

and 4, respectively). The second (yellow), third (green), and fourth (blue) iterations are 782 

shown for comparison although ACSAT terminated at iteration 1 (red). 783 

Figure 5. Fluorescence traces and signal-to-noise ratios. (A1) Representative 784 

fluorescence traces from the hippocampus dataset A for ROIs identified by both ACSAT 785 

and human referees (Match). ROIs identified only by ACSAT (ACSAT), and ROIs 786 

identified only by human referees (Human). (A2) Histogram of signal-to-noise ratio 787 

(SNR) for Match, ACSAT, and Human ROIs from the hippocampus dataset A. (B1) 788 

Representative fluorescence traces from the striatum dataset. (B2) Histogram of SNR 789 

for the striatum dataset. 790 

Figure 6. Distribution of ROI size. ACSAT identified true ROIs (red) with various size. 791 

The false positive ROIs (yellow) and those missed by human experts (green) tend to 792 

have small areas, while the areas of false negative ROIs (blue) appear slightly larger.  793 

Figure 7. Performance of ACSAT over iterations. For both (A) hippocampus dataset 794 

A and (B) striatum dataset, the cumulative number of identified ROIs (blue line) 795 

increased steadily over iterations. The global threshold (dash blue line) tended to 796 

decrease with each iteration, allowing ACSAT to capture ROIs with lower intensity. Both 797 
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recall (solid red line) and false discovery rate = 1 – precision (dotted red line) increased 798 

with iterations, while the false negative rate (dashed red line) decreased. All results 799 

reported here are based on human-generated ROIs prior to secondary manual 800 

inspection of false positives. 801 

Figure 8. Convergence of the FIBAT optimal global threshold value for the 802 

hippocampus dataset A. FIBAT first sampled at a coarse scale across a wide intensity 803 

range, and then focused on a small potential intensity range with a fine scale to identify 804 

the optimal global threshold value that generated most ROIs. The vertical lines indicate 805 

the final optimal global threshold value determined by FIBAT for each iteration. 806 

Figure 9. Improved ROI identification by local thresholding. (A) With global 807 

thresholding alone, a cluster of hippocampal neurons was identified as a single ROI. (B) 808 

After application of local thresholding, ACSAT successfully separated five new ROIs 809 

from the single ROI. (C) Zoom-in of each ROI separated by local thresholding. 810 

Figure 10. Local thresholding improves ACSAT performance. The ROIs identified by 811 

ACSAT at each iteration before local thresholding (left) and after (right). Local 812 

thresholding separated overlapping ROIs and thus helped identify more ROIs, including 813 

those identified by human (black) or missed by human (red). 814 

Figure 11. ACSAT results of various datasets. (A) The time-collapsed image of 815 

hippocampus dataset B (top) with ACSAT ROIs overlaid (bottom). (B) The time-816 

collapsed image for the primary neuron culture dataset (top) with ACSAT ROIs overlaid 817 

(bottom). (C) The time-collapsed image for the two-photon dataset (Neurofinder 03.00) 818 

(top) with ACSAT ROIs overlaid (bottom). For all three datasets, the majority of ROIs 819 



 

35 
 

were identified during the first two iterations. Red, yellow, green, and blue ROI outline 820 

corresponds to iteration 1, 2, 3, and 4, respectively. 821 

Extended Data 1. ZIP file contains eleven MATLAB files which comprise the ACSAT 822 

algorithm. 823 

Extended Data 2. Fluorescence traces in a MATLAB struct for all ROIs in the 824 

hippocampus dataset A and the striatum dataset grouped into “Match,” “ACSAT,” and 825 

“Human” as defined in Figure 5. Groupings here are based on human-generated ROIs 826 

prior to secondary manual inspection of ACSAT-only ROIs. 827 
























