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Abstract

Humans show striking limitations in information processing when multitasking yet can modify these limits with
practice. Such limitations have been linked to a frontal-parietal network, but recent models of decision-making
implicate a striatal-cortical network. We adjudicated these accounts by investigating the circuitry underpinning
multitasking in 100 human individuals and the plasticity caused by practice. We observed that multitasking
costs, and their practice-induced remediation, are best explained by modulations in information transfer be-
tween the striatum and the cortical areas that represent stimulus-response mappings. Specifically, our results
support the view that multitasking stems at least in part from taxation in information sharing between the puta-
men and pre-supplementary motor area (pre-SMA). Moreover, we propose that modulations to information
transfer between these two regions leads to practice-induced improvements in multitasking.
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Significance Statement

Humans show striking limitations in information processing when multitasking, yet can modify these limits
with practice. Such limitations have been linked to a frontal-parietal network, but recent models of decision-
making implicate a striatal-cortical network. We adjudicated these accounts by investigating the circuitry
underpinning multitasking in 100 individuals and the plasticity caused by practice. Our results support the
view that multitasking stems at least in part from taxation in information sharing between the putamen and
pre-supplementary motor area (pre-SMA). We therefore show that models of cognitive capacity limits must
consider how subcortical and cortical structures interface to produce cognitive behaviors, and we propose
a novel neurophysiological substrate of multitasking limitations.

Introduction
Although human information processing is fundamentally

limited, the points at which task difficulty or complexity in-
curs performance costs are malleable with practice. For ex-
ample, practicing component tasks reduces the response
slowing that is typically induced as a consequence of

attempting to complete the same tasks concurrently (multi-
tasking; Telford, 1931; Ruthruff et al., 2001; Strobach and
Torsten, 2017). These limitations are currently attributed to
competition for representation in a frontal-parietal network
(Watanabe and Funahashi, 2014, 2018; Garner and Dux,
2015; Marti et al., 2015), in which the constituent neurons
adapt response properties to represent the contents of the
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current cognitive episode (Duncan, 2010, 2013; Woolgar et
al., 2011). Despite recent advances, our understanding of
the network dynamics that drive multitasking costs and the
influence of practice remains unknown. Furthermore,
although recent work has focused on understanding cortical
contributions to multitasking limitations, multiple theoretical
models implicate striatal-cortical circuits as important neu-
rophysiological substrates for the execution of single senso-
rimotor decisions (Joel et al., 2002; Bornstein and Daw,
2011; Caballero et al., 2018), the formation of stimulus-re-
sponse representations in frontal-parietal cortex (Ashby et
al., 2010; Hélie et al., 2015), and performance of both effort-
ful and habitual sensorimotor tasks (Yin and Knowlton,
2006; Graybiel and Grafton, 2015; Jahanshahi et al., 2015).
This suggests that a complete account of cognitive limita-
tions and their practice-induced attenuation also requires in-
terrogation into the contribution of striatal-cortical circuits.
We seek to address these gaps in understanding by investi-
gating how multitasking and practice influence network dy-
namics between striatal and cortical regions previously
implicated in the cognitive limitations that give rise to multi-
tasking costs (Garner and Dux, 2015).
We previously observed that improvements in the de-

codability of component tasks in two regions of the fron-
tal-parietal network, pre-supplementary motor area (pre-
SMA/SMA), the intraparietal sulcus (IPS), and one region
of the striatum (putamen) predicted practice-induced mul-
titasking improvements (Garner and Dux, 2015). This im-
plies that practice may not divert performance from the
frontal-parietal system, as had been previously assumed
(Petersen et al., 1998; Kelly and Garavan, 2005; Yin and
Knowlton, 2006; Chein and Schneider, 2012) but, rather,
may alleviate multitasking costs by reducing competition
for representation within the same system. Moreover, our
finding that the putamen showed changes to task decod-
ability that predicted behavioral improvements compara-
ble to what was observed for pre-SMA and IPS implies
that rather than stemming from overload of an entirely
cortical network (Marois and Ivanoff, 2005; Dux et al.,
2006; Marti et al., 2015), multitasking costs are manifest
by limitations within a distributed striatal-cortical system.
This raises the question of how interactions between

these brain regions give rise to multitasking costs and
how can these be mitigated with practice: do multitasking
costs reflect over-taxation of striatal-cortical circuits? Or
are they a consequence of competition for representation
between cortical areas? Alternately, do multitasking costs
stem from limitations in both striatal-cortical and cortico-
cortical connections? Does practice alleviate multitasking
costs via modulating all the interregional couplings that
give rise to multitasking behavior, or by selectively in-
creasing or reducing couplings between specific regions?
Our aim was to arbitrate between these possibilities by

applying dynamic causal modeling (DCM; Friston et al.,
2003) to a functional magnetic resonance imaging (fMRI)
dataset (N=100) collected while participants performed a
multitasking paradigm before and after practice on the
same paradigm (N=50) or on an active control task
(N=50; Garner and Dux, 2015). We sought to first charac-
terize the modulatory influence of multitasking on the net-
work dynamics between the pre-SMA, IPS and putamen,
and then to understand how practice modulated these
network dynamics in concert with multitasking perform-
ance improvements.

Materials and Methods
Participants
The MRI scans of the participants (N=100) previously

analyzed in Garner and Dux (2015) were included in the
present analysis, apart from the data of two participants,
for whom some of the scans were corrupted because of
experimenter error. The remaining 98 participants had
been pseudorandomly allocated to the practice group
[N=48, mean age: 24.33 (SD: 6.31), 44 F, 44 right-
handed] or the control group [N=50, mean age: 24.58
(SD: 5.48), 46 F, 45 right-handed]. All participants re-
ceived 10 Australian dollars (AUD) per hour for participa-
tion. Participants also earned bonus dollars across the
three training sessions. Bonus dollars were accrued
for high accuracy and for beating RT deadlines (;20 AUD
per participant). For details of the original data point ex-
clusions, we refer the reader to Garner and Dux (2015).
The University of Queensland Human Research Ethics
Committee approved the study as being within the guide-
lines of the National Statement on Ethical Conduct in
Human Research, and all participants gave informed,
written consent.

Experimental protocols
Participants attended six experimental sessions: a fa-

miliarization session, two MRI sessions and three behav-
ioral practice sessions. Familiarization sessions were
conducted the Friday before the week of participation,
where participants learned the stimulus-response map-
pings and completed two short runs of the task. The MRI
sessions were conducted to obtain pre-practice (Monday
session) and post-practice (Friday session) measures.
These sessions were held at the same time of day for
each participant. Between the two MRI sessions, partici-
pants completed three behavioral practice sessions,
where they either practiced the multitasking paradigm

This work was funded by the Australian Research Council Future Fellowship
FT120100033 (to P.E.D.), The University of Queensland Foundation Research
Excellence Award (P.E.D.), the Australian Research Council–Special Research
Initiative (ARC-SRI) Science of Learning Research Centre Grant SR120300015
(to P.E.D.), the Australian Research Council Centre of Excellence for
Integrative Brain Function Grant CE140100007 (to M.I.G.), the University of
Queensland Fellowship 2016000071 (to M.I.G.), and by a UQ Centennial
Scholarship, an International Postgraduate Research Scholarship, and a Marie
Sklodowska-Curie Global Fellowship (K.G.G.).
*M.I.G. and P.E.D. share senior authorship.
Acknowledgements: We thank the participants for their time; Aiman Al-

Najjar, Anita Burns, Luke Hearne, and Amy Taylor for assisting with data
collection; and David Lloyd for assistance with results visualization.
Correspondence should be addressed to K.G. Garner at getkellygarner@

gmail.com.
https://doi.org/10.1523/ENEURO.0139-20.2020

Copyright © 2020 Garner et al.

This is an open-access article distributed under the terms of the Creative
Commons Attribution 4.0 International license, which permits unrestricted use,
distribution and reproduction in any medium provided that the original work is
properly attributed.

Research Article: New Research 2 of 18

July/August 2020, 7(4) ENEURO.0139-20.2020 eNeuro.org

mailto:getkellygarner@gmail.com
mailto:getkellygarner@gmail.com
https://doi.org/10.1523/ENEURO.0139-20.2020
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


(practice group) or the visual-search task (control group).
Participants typically completed one practice session per
day, although on occasion, two practice sessions were
held on the same day to accommodate participants’
schedules (when this occurred, the two sessions were ad-
ministered with a minimum of 1-h break between them).
Participants also completed an online battery of question-
naires that formed part of a different study.

Behavioral tasks
All tasks were programmed using MATLAB R2010a

(MathWorks) and the Psychophysics Toolbox v3.0.9 ex-
tension (23). The familiarization and behavioral training
sessions were conducted with a 21-inch, Sony Trinitron
CRT monitor and a Macintosh 2.5-GHz Minicomputer.

Multitasking paradigm
For each trial of the multitasking paradigm, participants

performed either one (single-task condition) or two (multi-
task condition) sensorimotor tasks. Both involved a two-
alternative discrimination (2-AD), mapping the two stimuli
to two responses. For one task, participants were pre-
sented with one of two white shapes that were distin-
guishable in terms of their smooth or spikey texture,
presented on a black screen and subtending ;6° of visual
angle. The shapes were created using digital sculpting soft-
ware (Scluptris Alpha 6) and Photoshop CS6. Participants
were required to make the appropriate manual button press
to the presented shape, using either the index or middle fin-
ger of either the left or right hand (task/hand assignment
was counterbalanced across participants). For the other
task, participants responded to one of two complex tones
using the index or middle finger of the hand that was not
assigned to the shape task. The sounds were selected
to be easily discriminable from one another. Across
both the single-task and multitask trial types, stimuli
were presented for 200ms and, on multitask trials, were
presented simultaneously.

Familiarization session
During the familiarization session, participants com-

pleted two runs of the experimental task. Task runs con-
sisted of 18 trials, divided equally between the three trial
types (shape single-task, sound single-task, and multitask
trials). The order of trial type presentation was pseudo-
randomized. The first run had a short intertrial interval
(ITI), and the trial structure was as follows: an alerting fixa-
tion dot, subtending 0.5° of visual angle, was presented
for 400ms, followed by the stimulus/stimuli that was pre-
sented for 200ms. Subsequently a smaller fixation dot,
subtending 0.25° of visual angle, was presented for
1800ms, during which participants were required to re-
spond. Participants were instructed to respond as accu-
rately and quickly as possible to all tasks. For the
familiarization session only, performance feedback was
then presented until the participant hit the spacebar to
continue the task. For example, if the participant had
completed the shape task correctly, they were presented
with the message “You got the shape task right.” If they

performed the task incorrectly, the message “Oh no! You
got the shape task wrong” was displayed. On multitask
trials; feedback was presented for both tasks. If partici-
pants failed to achieve at least 5/6 trials correct for each
trial type they repeated the run until this level of accuracy
was attained.
The second run familiarized participants with the timing

of the paradigm to be used during the MRI sessions; a
slow event-related design with a long ITI. The alerting fixa-
tion was presented for 2000ms, followed by the 200-ms
stimulus presentation, 1800-ms response period, and
feedback. Subsequently an ITI, during which the smaller
fixation dot remained on screen, was presented for
12,000ms.

MRI sessions
Participants completed six long ITI runs in the scanner,

with 18 trials per run (six of each trial type, pseudo-ran-
domly ordered for each run), for a total of 108 trials for the
session. Trial presentation was identical to the long ITI run
presented at the familiarization session, except that feed-
back was not presented at the end of each trial.

Practice sessions
All participants were informed that they were participat-

ing in a study examining how practice improves attention,
with the intention that both the practice and control
groups would expect their practice regimen to improve
performance. The first practice session began with an
overview of the goals of the practice regimen; participants
were informed that they were required to decrease their
response time (RT), while maintaining a high level of accu-
racy. The second and third sessions began with visual
feedback in the form of a line graph, plotting RT perform-
ance from the previous practice sessions.
For each session, participants completed 56 blocks of

18 trials, for a total of 1008 trials, resulting in 3024 practice
trials overall. To ensure that participants retained familiar-
ity with the timings of the task as presented in the scan-
ner, between two and four of the blocks in each session
used long ITI timings.
The practice group performed the multitasking para-

digm, as described above (Familiarization session), ex-
cept that performance feedback was not displayed after
each trial. Over the course of practice, participants from
this group performed 1008 trials of each trial type (shape
single-task, sound single-task, multitask). Participants in the
control group went through the identical procedures to the
practice group, except that they completed a visual search
task instead of the multitasking paradigm. Participants
searched for a “T” target among 7, 11, or 15 rotated “Ls” (to
either 90° or 270°). Participants indicated whether the target
was oriented to 90° or 270°, using the first two fingers of
their left or right hand (depending on handedness). Over the
course of the three practice sessions, participants com-
pleted 1008 trials for each set size.
For both groups, performance feedback showed mean

RT (collapsed across the two single-tasks for the practice
group, and over the three set-sizes for the control group),
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and accuracy, for the previous eight blocks, total points
scored, and the RT target for the subsequent eight blocks.
If participants met their RT target for over 90% of trials,
and achieved .90% accuracy, a new RT target was cal-
culated by taking the 75th percentile of RTs recorded over
the previous eight blocks. Furthermore, two points were
awarded. If participants did not beat their RT target for
over 90% trials, but did maintain .90% accuracy, one
point was awarded.

MRI data acquisition
Images were acquired using a 3T Siemens Trio MRI

scanner housed at the Centre for Advanced Imaging at
The University of Queensland. Participants lay supine in
the scanner and viewed the visual display via rear projec-
tion onto a mirror mounted on a 12-channel head coil. A
T1-weighted anatomic image was collected after the
fourth experimental run of the scanning session [repetition
time (TR) = 1.9 s, echo time (TE) = 2.32ms, flip angle
(FA) = 9°, field of view (FOV) = 192� 230 � 256 mm,
resolution= 1 mm3]. Functional T2p-weighted images
were acquired parallel to the anterior commissure-poste-
rior commissure plane using a GRE EPI sequence (TR=2
s, TE=35ms, FA=79°, FOV=192� 192 mm, matrix =
64� 64, in-plane resolution= 3� 3 mm). Each volume
consisted of 29 slices (thickness= 3 mm, interslice
gap=0.5 mm), providing whole brain coverage. We
synchronized the stimulus presentation with the acquisi-
tion of functional volumes.

MRI data analysis
fMRI data were preprocessed using the SPM12 soft-

ware package (Wellcome Trust Centre for Neuroimaging,
London, United Kingdom; http://www.fil.ion.ucl.ac.uk/
spm). Scans from each subject were corrected for slice
timing differences using the middle scan as a reference,
realigned using the middle scan as a reference, co-regis-
tered to the T1 image, spatially normalized into MNI
standard space, and smoothed with a Gaussian kernel of
8-mm full-width at half maximum.

DCM
To assess the causal direction of information flow

between brain regions, we applied DCM, which maps ex-
perimental inputs to the observed fMRI output, via hy-
pothesized modulations to neuronal states that are
characterized using a biophysically informed generative
model (Friston et al., 2003). Parameter estimates are ex-
pressed as rate constants (i.e., the rate of change of
gross neural activity in one region, given the activity in
the coupled brain region) and are fit using Bayesian pa-
rameter estimation. It is important to note that any inter-
pretations regarding information transfer between brain
regions is based on the assumption that these rate pa-
rameters reflect a causal relationship between the re-
gions of interest (ROIs) that is meaningful with regards to
task performance. Moreover, with DCM, we seek to
model coupling changes between ROIs that have been
defined a priori and that the presence of such

interregional couplings are postulated. It is possible that
any observed coupling changes could be driven by a
third node that is not included in the proposed network
architecture. Moreover, the currently proposed architec-
tures certainly do not reflect the entire network that
underpins multitasking of sensorimotor tasks.

DCM implementation
Implementation of DCM requires definition of endoge-

nous connections within the network (A parameters), the
modulatory influence of experimental factors (B parame-
ters), and the influence of exogenous/driving inputs into
the system (e.g., sensory inputs, C parameters; Friston et
al., 2003). We implemented separate DCMs to investigate
(1) the modulatory influence of multitasking on the pre-
practice data, and (2) the modulatory influence of practice
on the pre-practice to post-practice data.
To make inferences regarding the modulatory influence of

multitasking, we defined our endogenous network as com-
prising reciprocal connectivity between all three of our ROIs,
on the basis of anatomic and functional evidence for con-
nections between all three of them (Alexander et al., 1986;
Cavada and Goldman-Rakic, 1989; Luppino et al., 1993;
Wise et al., 1997; Haber, 2016). To address our theoretically
motivated question regarding the locus of modulatory influ-
ence of the multitasking, we first implemented all 63 possi-
ble combinations of the modulatory influence of the
multitasking (i.e., allowing each combination of connections
to be modulated by the multitasking factor; for an illustration
of the model architectures, see Extended Data Fig. 2-2) and
then grouped the model space into three families: those that
allowed any combination of corticocortical modulations, but
not striatal-cortical (corticocortical family, with three models
in total M1-3 = 3), those that allowed the reverse pattern
(striatal-cortical family, with 15 models in total, M4-18), and
those that allowed modulations to both types of connec-
tions (both family, with 45 models in total, M19-63). We found
it very difficult to define the most likely locus of input a priori,
given empirical evidence that both the striatum and the IPS
receive inputs from sensory pathways (Saint-Cyr et al.,
1990; Grefkes and Fink, 2005; Anderson et al., 2010; Reig
and Silberberg, 2014; Vossel et al., 2014; Alloway et al.,
2017; Guo et al., 2018). Instead, we opted to first determine
whether the data were better modelled using the putamen
or the IPS as the input. Importantly, this parameter did not
vary over experimental conditions; therefore, this parameter
did not explain changes in network activity that were attrib-
utable to the multitasking manipulation. We therefore imple-
mented the full set of models (M1-63) with inputs to either the
IPS, or to the putamen, so that we could test which input
best explained the data (invariant to whether the input was
from a single-task or multitask trial). Thus, we fit a total of
126 (2� 63) models to the pre-practice data.
To make inferences regarding the modulatory influence

of practice on both single and multitask conditions, we
conducted the following for both the single-task and the
multitask data (see Extraction of fMRI signals for DCM
analysis section for details on data extraction): based on
the endogenous connectivity and locus of driving input
identified by the preceding analysis, we then fit the
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possible modulatory influences of the practice factor (i.e.,
pre-practice to post-practice).

Extraction of fMRI signals for DCM analysis
The brain ROIs were selected by the following steps.

First, we identified regions that showed increased activity
for both single tasks at the pretraining session. Second,
we sought which of these showed increased activity for
multitask trials relative to single-task trials. Lastly, we
asked which of these regions also showed a practice (pre
vs post) by group interaction (Garner and Dux, 2015). The
left and right IPS, left and right putamen, and the SMA
were implicated by this interaction. In the interest of re-
ducing the complexity of the model space, and in the ab-
sence of lateralized differences in the current data, we
included only regions in the left hemisphere (LH) and the
SMA in the first analysis.
For each region, we restricted the initial search radius

by anatomically defined ROI masks and extracted the first
eigenvariate of all voxels within a sphere of 4-mm radius
centered over the participant-specific peak for the initial
contrast (increased activity for both single tasks, as in the
previous study), adjusted for the effects of interest (p,
0.05, uncorrected). We opted to use this approach, rather
than selecting a fixed functional ROI across participants,
as we know that there are clear individual differences in the
exact peak of BOLD signal changes within the brain regions
that constitute the multiple demand network when partici-
pants perform comparable sensorimotor tasks (Crittenden
and Duncan, 2014). Therefore, we sought to ensure that we
identify the voxels for each participant that are most respon-
sive to the functional localizer of interest, while leveraging a
priori knowledge gained by the group-level contrasts
(N=100) and prior anatomic knowledge. This, in our opinion,
utilizes a good combination of our a priori knowledge con-
cerning brain structure and function, to localize meaningful
BOLD signal changes at the individual level.
We created the anatomic masks in standard MNI space

using FSL. As can be seen from Extended Data Figure 2-
4, participant-level peaks tended to cluster within the ana-
tomically defined region, as would have occurred had we
used a spherical ROI based on the functional data. For
the IPS, we used the Juelich Histologic atlas, and for the
putamen and the SMA, we used the Harvard-Oxford corti-
cal and subcortical atlas. Note: to analyze the modulatory
influence of practice on single-task data, we regressed
out activity attributable to the multitask condition at this
step. To analyze the modulatory influence of practice on
multitask data, we comparably regressed out the single-
task data at this step. For the first analysis concerning
the multitasking network, we concatenated the six
functional pretraining runs to form a single time series,
and for the analysis of the influence of practice, we
concatenated the six pretraining and six post-training
runs (total runs = 12). The two resulting time series
were each adjusted for confounds using regressors for
movement and for each run. The DCMs were fit using
the resulting time series and hence provide a global
estimate for the interactions among areas across the
whole experiment rather than trial-specific estimates.

It is reasonable to expect that over the course of the
experiment there will be some degree of variability be-
tween the flow of information from putamen to pre-
SMA, because of potential fatigue and/or over learning
effects. These nuisance effects are however mitigated
in our event-related design.

Bayesian model comparison and inference over
parameters
As our hypotheses concerned the modulatory influence

of our experimental factors on model characteristics,
rather than any specific model per se, we implemented
random effects Bayesian model comparison between
model families (Penny et al., 2010), with both family infer-
ence and Bayesian model averaging (BMA) as imple-
mented in SPM 12. We opted to apply a random effects
approach that uses a hierarchical Bayesian model to esti-
mate the parameters of a Dirichlet distribution over all
models, to protect against the distortive influence of out-
liers (Stephan et al., 2009). Specifically, the Dirichlet den-
sity describes the probability of each model, given the
probability of all the models across the group. Its parame-
ters can be considered as a proxy for a count for how
many times a model won across participants. Therefore,
improbable individual contributions to the group-level
data are down-weighted proportional to the likelihood of
the observation and contribute less to the evidence over
the model space (e.g., a model that only wins for one par-
ticipant will not hold much weight in the model probability
space). This therefore mitigates the potential influence
of individual outliers on the model selection proce-
dures. For each family comparison, we report (1) the ex-
pectation of the posterior probability [i.e., the expected
likelihood of obtaining the model family k, given the
data p(fk|Y)], and (2) the exceedance probability of fam-
ily k being more likely than the alternative family j, given
the data p(fk . fj |Y) (see Penny et al., 2010). To ensure
that a particular family of models is not advantaged be-
cause of merely containing more models than a com-
parison family, a uniform prior needs to be set at the
family level. The prior over a given family is defined as
pðfkÞ ¼ 1=K, where K is the total number of families. As
the prior at the family level is obtained by summing the
priors across constituent models in the family set, the
uniform family prior is implemented at the model (m)
level as pðmÞ ¼ 1=KNk8m 2 fk, where N is the number of
models in family k (Penny et al., 2010).
Upon establishment of the winning family, we sought to

identify, post hoc, which specific parameters were likely,
given the data, and when relevant, where there was evi-
dence for group differences. To achieve this, we calcu-
lated the posterior probability (Pp) that the posterior
density over the given parameter has deviated from zero
(or in the case of group differences, whether the differ-
ence between posterior estimates has deviated from
zero), using the SPM spm_Ncdf.m function. To correct for
multiple comparisons, we reported Pps as having devi-
ated from zero when the likelihood exceeded that set by
the Sidak correction (1 � a)1/m, where m = the number of
null hypotheses being tested.
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Results
As all results unrelated to the DCM analysis are de-

scribed in detail in Garner and Dux (2015), we recap the
relevant findings here. Participants completed a multi-
tasking paradigm (Fig. 1A) while being scanned with fMRI,
in a slow event-related design. For the multitasking para-
digm, participants completed both single-task and multi-
task trials. For the single-task trials, participants made a
2-AD between either one of two equiprobable shapes (vis-
ual-manual task) or between one of two equiprobable
sounds (auditory-manual task). Participants were in-
structed to make the correct button-press as quickly and
as accurately as possible. On multitask trials, the shape
and sound stimuli were presented simultaneously, and
participants were required to make both discriminations
(visual-manual task and auditory-manual task) as quickly
and as accurately as possible. Between the pre-practice
and post-practice scanning sessions, participants were
randomly allocated to a practice group or an active-con-
trol group (also referred to as the control group). The prac-
tice group performed the multitask paradigm over
multiple days whereas the control group practiced a vis-
ual-search task (Fig. 1B). For both groups, participants
were adaptively rewarded for maintaining accuracy while
reducing RT (for details, see Materials and Methods).
Our key behavioral measure of multitasking costs was

the difference in RT between the single-task and multitask

conditions. Performing the component tasks as a multi-
task increases RT for both tasks, relative to when each is
performed alone as a single task. The effectiveness of the
paradigm to assess multitasking was confirmed with multi-
tasking costs being clearly observed in the pre-practice ses-
sion (main effect of condition, single-task vs multitask,
F(1,98) =688.74, mean square error (MSE)=0.026, p ,
0.0001, hp

2 = 0.88; see Extended Data Fig. 1-1). Critically,
the practice group showed a larger reduction in multitasking
costs between the pre-practice and post-practice sessions
than the control group [significant session (pre vs post) �
condition (single-task vs multitask) � group (practice vs
control) interaction; F(1,98) = 31.12, MSE=0.01, p, 0.001,
hp

2 = 0.24; Fig. 1C]. Specifically, the practice group showed
a mean reduction (pre-cost – post-cost) of 293ms (95% CI
[228, 358]), whereas the control group showed a mean re-
duction of 79ms (95% CI [47, 112]). These findings did not
appear to be due to a speed/accuracy trade-off as the
group � session � condition interaction performed on the
accuracy data were not statistically significant (p=0.06).
We sought to identify the brain regions that could be

part of the multiple demand network that supports per-
formance of both tasks, as our question pertains to how
regions that appear to be associated with cognitive con-
trol, invariant to the modality of the underlying tasks, inter-
act under conditions of multitasking and multitasking
practice. Specifically, ROIs were defined as those that (1)

Figure 1. Task, protocol, behavior and ROIs. A, Multitasking paradigm. The task comprised two single-task (S) conditions and one
multitask (M) condition. Each S was a two alternative-discrimination between either one of two equiprobable stimuli. The stimuli
could either be shapes (visual-manual task) or sounds (auditory-manual task). On M trials, participants were required to complete
both Ss (visual-manual and auditory-manual). On all trials, participants were requested to perform the task(s) as quickly and as ac-
curately as possible. B, Protocol. At both the pre-practice and post-practice sessions, all participants completed the multitasking
paradigm while structural and functional MRI images were taken. Participants were then allocated to either the practice or the ac-
tive-control group. The practice group subsequently performed the multitask paradigm over three sessions, whereas the control
group practiced a visual-search task with three levels of difficulty, under a comparable reinforcement regimen. C, Multitasking costs
to RT [mean(Ms) – mean(Ss)] for the practice and control groups, at the pre-practice and post-practice sessions, presented as indi-
vidual data points, boxplots, and densities (raincloud plots; Allen et al., 2018). D, ROIs identified by our previous study (Garner and
Dux, 2015); the SMA (blue), the IPS (red), and the putamen (yellow). The data from the S and M conditions at the pretraining session
are shown in Extended Data Figure 1-1.
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showed increased activity for both single tasks (i.e., a
conjunctive contrast), as could be expected by brain
areas containing neurons that adapt to represent the cur-
rent cognitive episode and brain areas that contribute to,
or at least are sensitive to, the performance of both tasks;
(2) showed sensitivity to multitasking demands (i.e., in-
creased activity for multitask relative to single-task trials);
and (3) showed specificity in response to the training regi-
men, i.e., showed a group � session interaction (for de-
tails, see Garner and Dux, 2015). Thus, our ROIs are
sensitive to both single tasks and to the multitasking prac-
tice regimen, regardless of laterality and the modality of
the underlying single tasks. This criterion isolated the pre-
SMA/SMA, the left and right inferior parietal sulcus (IPS)
and the left and right putamen.
For the first analysis of the current study, in the interest of

parsimony regarding the number of areas (nodes) in our
models, and given that the current data suggested no strong
reason to assume lateralized differences in the function of
the currently defined underlying network, we opted to in-
clude only the pre-SMA/SMA and the remaining LH regions
as our ROIs (Fig. 1D; Erickson et al., 2005, 2007; Dux et al.,
2006, 2009; Filmer et al., 2013). Upon completion of this
analysis, we then sought to understand which of our conclu-
sions might be hemisphere specific. It is worth noting that
we cannot conclusively infer whether any lateralized differ-
ences are because of genuine functional hemispheric differ-
ences or extraneous factors. However, such an analysis
does provide insights into which conclusions can be drawn
generally, regardless of hemisphere (and consequent deci-
sions over the model space), and those which are hemi-
sphere specific. To this end we repeated the analysis using
the right hemisphere (RH) regions as our ROIs. We discuss
the results of the LH analysis first, while referencing which
findings did and did not generalize to the RH. We then pres-
ent the details of the findings from the RH analysis.

Network dynamics underlying multitasking
We sought to identify how multitasking modulates con-

nectivity between the IPS, pre-SMA/SMA, and the puta-
men. Although our anatomically defined mask included all
of SMA, the majority (78%) of participants showed peak
activity in pre-SMA, defined as coordinates rostral to the
vertical commissure anterior in a probabilistic atlas based
on resting state data from 12 participants (Kim et al.,
2010). Moreover, a visual examination of the locations
of the individual peaks suggest that the remaining
22% showed peak activity changes close to this probabil-
istic boundary (Extended Data Fig. 2-4). Therefore, we
hereon refer to the region as pre-SMA (note: the within
group percentages were also comparable; practice=83%,
control = 73%). To achieve this, we first applied DCM to
construct hypothetical networks that could underlie the
observed data. These models were then grouped into
families on the basis of characteristics that addressed our
key questions. This allowed us to conduct random effects
family-level inference (Penny et al., 2010) to determine
which model characteristics were most likely, given the
data. Specifically, we asked: (1) which region drives inputs
to the proposed network, invariant to the experimental

multitasking manipulation (putamen or IPS family; Fig.
2A)? and (2) does multitasking modulate striatal-cortical
couplings, corticocortical couplings or both (Fig. 2B)?
Lastly, we conducted BMA within the winning family to
make inference over which specific parameters were
modulated by multitasking (i.e., is the posterior estimate
for each connection reliably different from 0?).
The model space (Extended Data Fig. 2-1) which under-

pins our theoretically motivated hypothetical networks
contained bidirectional endogenous connections be-
tween all three regions. Although effective connectivity
can be investigated independently of anatomic connectiv-
ity, we selected this endogenous connectivity pattern
given the extensive evidence for the existence of anatom-
ic connections between the putamen, IPS, and pre-SMA
(Alexander et al., 1986; Cavada and Goldman-Rakic,
1989; Luppino et al., 1993; Wise et al., 1997; Haber,
2016), as well as endogenous self-connections. As we
had no a priori reason to exclude a modulatory influence
of multitasking on any specific direction of coupling, we
considered all 63 possible combinations of modulation
(Extended Data Fig. 2-2).
First, we asked which region in the network received

driving inputs that are modulated by multitasking de-
mands. As the IPS shows sensitivity to sensory inputs
across modalities (Grefkes and Fink, 2005; Anderson et
al., 2010; Vossel et al., 2014), and as the striatum receives
sensory-inputs from both the thalamus (Alloway et al.,
2017) and from sensory cortices (Saint-Cyr et al., 1990;
Reig and Silberberg, 2014; Guo et al., 2018), both IPS and
putamen were considered as possible candidates. Given
the distribution of probability over models, it is plausible
(for example) that input arrives at both the IPS and the pu-
tamen. We decided to deal with this possibility by per-
forming BMA over the most likely models. This allows us
to capture information from models that allow inputs to ei-
ther the putamen or the IPS, but only under circumstan-
ces where the evidence shows that neither input should
be favored over the other. We opted to aggregate infor-
mation this way as it allowed us to examine the impact of
both inputs on the model evidence (separately) and retain
parsimony over the model space. We therefore fit each of
the 63 modulatory models twice, once allowing driving in-
puts to occur via the IPS, and once allowing input via the
putamen [therefore, total models (Mi) = 126]. These mod-
els were grouped into two families, on the basis of their
input [IPS input family (fIPS) and putamen input family
(fPut)]. The evidence favored the putamen family [expected
probability (p(fPut|Y)): 0.54, exceedance probability (p(fPut|
Y . fIPS|Y): 0.79; Fig. 2A] relative to the IPS family.
Therefore, the data are best explained by models where
multitasking modulates driving inputs to the putamen.
The winning putamen input family were retained for the
next stage of family level comparisons. Note, for the RH,
the evidence did not disambiguate between input fami-
lies. Therefore, we conclude that both subcortical and
cortical inputs are likely to drive the network that under-
pins multitasking.
We then asked whether the data were better explained

by models that allowed multitasking to modulate striatal-
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cortical connections, corticocortical connections, or all
(Fig. 2B). We therefore grouped the models from the puta-
men input family into three groups. The striatal-cortical
family (fSC) contained models that allowed multitasking to
modulate any combination of the striatal-cortical connec-
tions, and none of the corticocortical connections. The
corticocortical family (fCC) contained models with the op-
posite pattern; multitasking could modulate any pattern of
corticocortical couplings and none of the striatal-cortical
couplings). Finally, in the all family, we considered models
that included modulations to both striatal-cortical and
corticocortical couplings (fALL). In support of the idea that
multitasking modulates striatal-cortical connectivity as
well as corticocortical connections, the evidence favored
the all family [p(fALL|Y): 0.86, p(fALL|Y . fSC, CC|Y) = 1] over
the striatal-cortical family [p(fSC|Y): 0.11] and the cortico-
cortical family [p(fCC|Y): 0.03]. This result was also ob-
served for the RH.
Having determined that multitasking is indeed sup-

ported by both striatal-cortical and corticocortical cou-
plings, we next sought to infer which specific parameters
were modulated by multitasking; i.e., do we have evi-
dence for bidirectional endogenous couplings between all
regions? Or a subset of endogenous couplings? With re-
gard to multitasking related modulations; are all couplings
modulated, or a subset of striatal-cortical and corticocort-
ical connections? To answer this, we conducted BMA
over the all family to obtain the posteriors over each of the
endogenous (A) and modulatory coupling (B) parameters.
We looked for A parameters to retain by testing for which
posteriors showed a probability of difference (Pp) from

zero that was .0.992 (applying the Sidak adjustment for
multiple comparisons). As seen in Extended Data Figure
2-3, we retain endogenous couplings from IPS to Put, Put
to IPS, Put to pre-SMA, and pre-SMA to IPS (all Pps =1)
and reject endogenous couplings from IPS to pre-SMA
(Pp=0.98) and pre-SMA to Put (Pp=0.66). In contrast, for
the RH, we retained all the endogenous connections.
We applied the same test to the B parameters and

found evidence for a modulatory influence of multitasking
on Put to IPS coupling (Pp=1). Although this specific re-
sult was not found for the RH, we do find that IPS consis-
tently shows multitasking induced coupling changes with
other nodes (see the section of the RH analysis for de-
tails). Therefore, we conclude that the IPS appears to be a
key node in modulating information flow through the net-
work underpinning multitasking limitations, regardless of
lateralization.
As opposed to the RH, for the LH multitasking-induced

modulation of putamen to pre-SMA coupling did not pass
our rather strict threshold of p=0.98. However, it came
very close. Specifically, the posterior distribution for this
parameter did show reasonably strong evidence of multi-
task-induced modulations (Pp=0.96), the variance of this
distribution was more similar to the retained than the re-
jected coupling parameters (s = 0.06 vs s = 0.08), and
unlike the rejected parameters, this connection showed
strong evidence for the endogenous coupling (Pp=1; Fig.
2C). Furthermore, looking ahead to the RH analysis, we
find further evidence that this coupling is modulated by
multitasking demands. We therefore conclude that there
is reasonable evidence that putamen to pre-SMA

Figure 2. The modulatory influence of multitasking on the LH pre-SMA/IPS/putamen network. For the defined endogenous connec-
tions see Extended Data Figure 2-1. A, Posterior probabilities over families, given the data [p(f|Y)], defined by inputs to IPS (left dis-
tribution) or putamen (right distribution). The evidence favors driving inputs via putamen. B, Posterior probabilities over families
differing in the connections modulated by multitasking (from left to right: corticostriatal modulations, corticocortical modulations, or
both). Model evidence favors both corticostriatal and corticocortical couplings [for the posteriors over the endogenous (A) parame-
ters; Extended Data Fig. 2-2). C, Posterior distributions over B parameters. Vertical lines reflect posterior means and 99th percen-
tiles, whereas the dotted black line = 0. Multitasking reliably increased modulatory coupling from the putamen to the IPS. D,
Proposed model for the modulatory influence of multitasking. Connections drawn with a continuous line denote significantly modu-
lated (by multitasking) connections, whereas dashed lines represent the functionally present connections. p(x) = probability of sam-
ple from posterior density. For the location of the individual peaks within each region, see Extended Data Figure 2-4.
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coupling is modulated by multitasking. We reject a modu-
latory influence of multitasking on the remaining parame-
ters (all Pps� 0.88).
To sum up (Fig. 2D), the influence of multitasking is best

explained in the LH by a network where information is
propagated, via Putamen (Put), to the IPS and the pre-
SMA. Information is shared back to the Put via IPS, and
from pre-SMA to IPS. Overall, we conclude that multitask-
ing demands specifically increases the rate of information
transfer sent from Put to pre-SMA, and between the IPS
and other subcortical and cortical nodes. Hence, we can
reject the idea that multitasking costs are solely because
of limitations in a cortical network, rather they also reflect
the taxation of information sharing between the Put and
the other relevant cortical areas, namely, the IPS and the
pre-SMA.

The influence of practice on the network underpinning
multitasking
Next, we sought to understand how practice influences

the network that underpins multitasking on both single-
task and multitask trials, for both the practice and control
groups. For example, it may be that practice influences all
the endogenous couplings in the network or a subset of
them. Furthermore, if practice only modulated a subset of
couplings, would it only be striatal-cortical couplings, or
corticocortical, or both? By comparing the practice group
to the control group, we sought to identify which modula-
tions are because of engagement with a multitasking

regimen, and which are because of repeating the task
only at the post-session (and potentially because of en-
gagement with a practice regimen that did not include
multitasking). To address these questions, we con-
structed DCMs that allowed practice (i.e., a pre/post ses-
sion factor) to modulate all the possible combinations of
couplings in the multitasking network defined above (four
possible connections, therefore Mi = 15; Extended Data
Fig. 3-1). We then fit these DCMs separately to the single-
task data and to the multitask data, concatenated across
pre to post sessions. Comparable to above, we decided
to leverage information across models (proportional to the
probability of the model; Extended Data Fig. 3-2) and con-
ducted random-effects BMA across the model space to
estimate posteriors over the parameters. This method can
be more robust when the model space includes larger
numbers of models that share characteristics, as it helps
overcome dependence on the comparison set by identify-
ing the likely features that are common across models
(Penny et al., 2010). We compare the resulting posteriors
over parameters to determine for each group, those
which deviate reliably from zero for single-task trials, for
multitask trials, and also whether they differ between
groups (applying the Sidak correction for each set of
comparisons).
The results from the analysis of posteriors over parame-

ters can be seen in Figure 3. Findings that showed some
generalization in the subsequent RH analysis are as fol-
lows; for single-task trials, in the practice group, the prac-
tice factor modulated coupling from IPS to Put (Pp=0.99,

Figure 3. The modulatory influence of practice on the multitasking network. A, Posteriors over parameters were estimated for the
practice (P; in orange) and control (C; in violet) groups for single-task trials (S) and for multitask trials (M). Posteriors that deviated re-
liably from 0 (.0) are in darker shades, whereas those that did not significantly deviate from 0 are in lighter shades. Asterisks indi-
cate where there were statistically significant group differences. Proposed influences of practice on modulatory coupling within the
multitasking network for single-task (S) B and multitask (M) C trials, for the practice and control groups. For multitask trials, the ar-
rows are shaded to indicate the strength of the effect (i.e., the darker the arrow, the larger the modulation to that parameter between
groups). For the model space considered in this analysis, see Extended Data Figure 3-1. For the expected and exceedance model
probabilities, see Extended Data Figure 3-2.
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. 0.987, Sidak adjustment for multiple comparisons),
which was also larger than that observed for the control
group (Pp practice. control = 0.99). This was partially ob-
served in the RH (see the RH analysis below for details).
For the practice group, no other modulatory couplings
achieved the criteria for significance (all Pps � 0.96). For
the control group, the practice factor modulated Put to
pre-SMA couplings (Pp=1, replicated in the RH, but for
multitask trials), and the influence of practice was larger
on this coupling for the control group than for the practice
group (Pps control . practice =0.99). Practice also
modulated Put to IPS coupling (Pp=0.99), and this modu-
lation was larger for the control than the practice group
(Pp=1). For multitask trials, both groups showed practice
related increases to modulations of the putamen to pre-
SMA coupling (practice group Pp=0.99, control Pp=1,
also see the RH analysis, where this was observed for the
control group on multitask trials). Perhaps counterintui-
tively, these were larger for the control group than for the
practice group (Pp control . practice =1); note: we dis-
sect this relationship further in the discussion. The re-
maining modulatory parameters and group differences
did not achieve statistical significance (all Pps � 0.93).
Overall, practice largely influences coupling changes be-
tween putamen and IPS, and putamen and pre-SMA, and
this is observed for both hemispheres (some additional
coupling changes observed specifically for the RH, which
are discussed in RH analysis).

Interrogating the RH to determine lateralization of
effects
Focusing on the LH afforded a reduced model space

while also eschewing overparameterized models. However,
given that there are known hemispheric asymmetries in the
brain, it is reasonable to wonder which of these results
would hold, had we considered the RH. To establish which
of our conclusions would have still been reached had we
not used LH ROIs, we repeated the above analyses, this
time using the RH data (right IPS, right Put, and pre-SMA).
First, we report the details of the commonalities between
the LH and RH analyses and then report the specifics of the
differences. Comparable to the LH analysis, practice in-
creased the strength of putamen to pre-SMA coupling on
multitask trials, however this time we observed it only for the
control group (Pp=1), and not for the practice group
(Pp=0.79, aSID = 0.991), although we also did not detect a
difference between the two groups (Pp=0.97, aSID = 0.991).
Therefore, we suggest that multitasking influences informa-
tion transfer from putamen to cortex, and that this occurs
for both hemispheres.
Some lateralized differences must also be noted. For

the multitasking network, in contrast to the LH model, evi-
dence favored neither input family [expected probability
(p(fPut|Y)): 0.5, exceedance probability (p(fPut|Y . fIPS|Y):
0.48]; therefore, the models from both input families were
included in the subsequent connection family compari-
son. Comparable to the LH model, the evidence favored
the all family [p(fALL|Y): 0.89, p(fALL|Y . fSC, CC|Y) = 1] over
the striatal-cortical family [p(fSC|Y): 0.09] and the cortico-
cortical family [p(fCC|Y): 0.02]. Unlike the LH model,

posterior estimates obtained over parameters using BMA
provided evidence to retain all the endogenous connec-
tions (all Pps= 1). Whereas multitasking did not modulate
corticocortical connections in the LH, there was evidence
that multitasking modulates RH pre-SMA -. IPS, and
IPS -. pre-SMA coupling (both Pps=1, all remaining
Pps, 0.98). This suggests that multitasking exerts great-
er influence on cortical couplings in the RH than the LH,
and that our conclusions are in part sensitive to the hemi-
sphere from which we select our ROIs. Importantly, and
as mentioned above, the observation that multitasking
modulates putamen to pre-SMA coupling is consistent
across hemispheres, thus demonstrating convergent evi-
dence that multitasking limitations stem, at least in part
from modulations in information transfer between these
two nodes of the network.
As the winning RH network underpinning multitasking con-

tained all 6 endogenous connections, we considered all 63
possible combinations of modulation for the practice factor
(Extended Data Fig. 2-2). Additionally, and because of the ab-
sence of evidence favoring either input, we included models
that allowed inputs to the IPS and those that allowed inputs
via Put (Tm = 126). As this constitutes the full model space,
our goal was to first determine whether we could exclude
families of models, before performing BMA to obtain subject
level posterior estimates over parameters. We therefore con-
ducted the same family comparisons as reported above for
the multitasking network analysis. For single-task trials, and
in contrast to the LH, models allowing inputs to the IPS were
favored over those with inputs via Put [expected probability
(p(fIPS|Y)): 0.57, exceedance probability (p(fIPS|Y . fPut|Y):
0.89)], whereas for multitask trials, the evidence was far less
conclusive [expected probability (p(fIPS|Y)): 0.51, exceedance
probability (p(fIPS|Y. fPut|Y): 0.58)]. Therefore, for single trials,
we retained only the fIPS for the next stage of the analysis,
whereas all models were retained for multitask trials. As we
sought to conduct BMA over the winning family for each
group separately in the next stage of the analysis, we split the
practice and control group data before making model family
comparisons based on connectivity patterns. For both
groups, and for both single-task andmultitask trials, evidence
favored the all family [all p(fALL|Y. fSC, CC|Y). 0.99; Fig. 4].
Examination of the posterior estimates over parameters

revealed some differences in the specific couplings modu-
lated by practice for each group. In contrast to the LH analy-
sis, we did not find that practice modulates putamen and
IPS coupling, although we did find that practice modulated
IPS -. pre-SMA coupling for both the control group on sin-
gle-trials (Pp=1) and the practice group on multitask trials
(Pp=1; Fig. 5), suggesting that regardless of laterality, the
IPS is a key site for practice-induced network changes.
Importantly, for both the LH and RH analysis, we detect a
practice related modulation on Put to pre-SMA coupling,
showing that this conclusion is robust to both hemispheric
and model specifications.

Signal comparisons between LH and RH, and
interregional correlations
It may at first appear counterintuitive that we find some

differing results between the LH and RH. We know from
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our original analysis (Garner and Dux, 2015) that our ROIs
from both hemispheres interact with our experimental fac-
tors (i.e., show a group � session � condition interaction).
We have confidence in these results owing to our large

sample size (N=100), and suitable corrections for multiple
comparisons. As DCM models BOLD responses using a
GLM, with the addition of a forward model that projects
GLM parameters to a predicted BOLD response (Friston

Figure 4. The modulatory influence of multitasking on the RH network (see control analysis section). A, Posterior probabilities over
families, given the data [p(f|Y)], defined by inputs to IPS (left distribution) or putamen (right distribution). B, Posterior probabilities
over families differing in the connections modulated by multitasking (from left to right: corticostriatal modulations, corticocortical
modulations, or both), averaged across families with input to either IPS or putamen. C, Posterior distributions over B parameters.
Vertical lines reflect posterior means and 99th percentiles, whereas the dotted black line = 0. D, Proposed model for the modulatory
influence of multitasking in the RH. p(x) = probability of sample from posterior density.

Figure 5. A, Showing group-level posteriors over parameters estimated for the practice (P, in orange) and control (C, in violet)
groups for single-task trials (S) and for multitask trials (M). Posteriors that deviated reliably from 0 (.0) are in darker shades, where-
as those that did not significantly deviate from 0 are in lighter shades. Asterisks indicate where there were statistically significant
group differences. B, Proposed influences of practice on modulatory coupling within the multitasking network for single-task (S) and
multitask (M) trials, for the practice and control groups. For the posterior probabilities over family comparisons conducted for this
knowledge, see Extended Data Figure 5-1.
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et al., 2003), we are well placed to use DCM to model our
current dataset.
Albeit with a robust motivation, it is still useful to con-

duct some basic checks to inform whether the observed
hemispheric differences are because of noise or are likely
to be produced by genuine lateralized differences in func-
tion, particularly when they have the capability to shed in-
sight into how robust the current observations may be.
We therefore considered what analyses we could conduct
to instill such confidence (or skepticism) in the current
finding of hemispheric differences in the results of the
DCM analysis. As DCM serves to model the time series
data from each ROI, we reasoned that it is sensible to
check the noisiness of the data underlying our current
DCM analysis. We assume that a noisier time series
would be more difficult to model, or indeed, may motivate
overfitting of the models to the data (Lever et al., 2016).
We therefore checked the “noisiness” or variance of our
time course data across participants, to determine
whether differences between the two hemispheres could
be driven by noise differences, rather than signal differen-
ces. As each time course is mean centered and adjusted
for effects of no interest, we opted to take the SD of the
time course as a proxy of noisiness, rather than a signal-
to-noise ratio. We therefore computed the SD of each
time course for each participant, region, hemisphere and
DCM analysis (pre, single-task pre-post, multitask pre-
post). The results are presented in Figure 6. For each re-
gion, and time course and analysis, we compared the dis-
tributions between hemispheres (e.g., left IPS vs right IPS)

using the z score tests. All comparisons were not signifi-
cant (z range: [�0.3, 0.12], all ps. 0.75). Therefore, the
variance in the signal across participants was broadly
comparable between LH and RH, suggesting that the ob-
served differences are less likely to be driven by random
noise.
A second possible approach, suggested during the re-

view process, would be to apply a simple correlation anal-
ysis between interregional time series data to see whether
the observed statistical dependencies reflect what was
observed for the DCM analysis, for example, do correla-
tions between putamen and pre-SMA increase in strength
as a function of multitasking demands or practice? The
caveats for applying such an analysis are as follows: cor-
relation and DCM analyses do not test the same relation-
ships in the data. Correlative measures test for statistical
dependencies in the signal, i.e., to what extent is time se-
ries x associated with time series y? In contrast, DCM ex-
amines effective connections in the data, i.e., it asks at
what rate does the theoretical neural source of time series
x have to affect the theoretical source of time series y, to
generate the best match to the observed data? Indeed,
this fundamental difference has been shown to yield dis-
sociative effects. For example, autoregressive coeffi-
cients between two time series can be high, even in the
absence of a direct effective connection (David et al.,
2008; Friston et al., 2014). Thus, even if the correlation
analysis were to show different relationships relative to
the DCM analysis, we would be unable to draw definitive
conclusions regarding the viability of the latter analysis.

Figure 6. Showing the densities, boxplots and individual data points of the SDs of the mean centered time courses, across sub-
jects, for the session 1 data (panel A), the Pre-Post single-task data (panel B) and the Pre-Post multitask data (panel C). Data are
shown for each ROI (x-axis) for the LH (left) and the RH (right). ST = single-task, MT = multitask.
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Although this does not provide a genuine sanity check for
the DCM analysis, we present this analysis as a means of
comparison for the interested reader.
For each hemisphere (left or right) and analysis (pre

practice S v M, pre-post S, and pre-post M), we extracted
the mean centered time course data for each participant
and ROI and concatenated the time points relevant to
each condition. For example, for the pre practice S v M
task, we concatenated all the time points that mapped to
the S regressor in the GLM defined for the DCM analysis
and repeated the process for time points that mapped to
the M regressor. For each participant and condition, we
correlated the time series between each possible pairing
from our three ROIs (IPL-Put, Put-SMA, IPL-SMA), thus
obtaining an r value for each participant, condition, and
region pair. The resulting r values were then entered into
the relevant second-level statistical comparison. For each
analysis, we applied the Sidak adjustment for multiple
comparisons.

Pre-practice S v M data
For the LH, although correlations for each interregion

pairing numerically increased in the multitask condition,
relative to the single-task condition (Fig. 7), none of these
comparisons were statistically significant (all ts(95), 1.98,
all ps � 0.05). In contrast, for the RH, we observed a stat-
istically significant increase for multitask, relative to sin-
gle-task correlations for the IPL-SMA pairing (t(97) =
�2.71, p=0.008), whereas the other two comparisons
were not statistically significant (ts(97) � 1.92, ps � 0.058).
This is in accordance with the observation yielded from
the DCM analysis that multitasking modulates coupling
between these two regions.

Pre-post S
For each hemisphere and region pair, a two (group: prac-

tice vs control) � two (condition: pre vs post) mixed ANOVA
was applied to compare the time series correlations for

Figure 7. Showing the densities, boxplots and individual Pearson r values obtained between each pair of regions (x-axis), for each
condition of interest. A, Single (S) versus multitask (M) comparison. B, Pre-Post single-task data (S). C, Pre-Post multitask (M) data.
Data shown for the LH (left) and the RH (right) separately. P = practice group, C = control group.
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single-task trials. For both hemispheres, there was a
statistically significant decrease in the correlation size
observed between pre-practice and post-practice for
the Put-SMA pairing, (LH: F(1,93) = 11.96, MSE= 0.13,
p= 0.0008, pre S r mean: 0.39, SE: 0.02, post S r mean:
0.34, SE: 0.02, RH: F(1,92) = 10.44, MSE= 0.12, p= 0.002,
pre S r mean: 0.4, SE: 0.01, post S r mean: 0.35, SE:
0.02), which converges with our conclusion that practice
modulates coupling between these brain regions. For
the RH, and again, in concert with the observations
yielded by the DCM analysis, we observe a significant
decrease in correlation strength for the IPL-SMA pairing
(F(1,92) = 7.34, p= 0.008, pre S r mean: 0.32, SE: 0.02,
post S r mean: 0.28, SE = 0.02). No other comparisons
were statistically significant (all ps. 0.1).

Pre-post M
For both hemispheres, no comparisons were statisti-

cally significant (all Fs(1,90), 1.3, all ps. 0.2).

Discussion
We sought to understand how multitasking demands

modulate underlying network dynamics and how practice
changes this network to reduce multitasking costs. We
adjudicated between previously hypothesized models
posing that multitasking demands modulate connectivity
within (1) a frontal-parietal cortical network (Jiang, 2004;
Marois and Ivanoff, 2005; Dux et al., 2006; Erickson et al.,
2007; Sigman and Dehaene, 2008; Hesselmann et al.,
2011; Tombu et al., 2011; Watanabe and Funahashi,
2014; Marti et al., 2015); or (2) or a striatal-cortical net-
work (Badre and Nee, 2018; Caballero et al., 2018;
Yartsev et al., 2018). We demonstrate evidence in keeping
with the latter. Specifically, having previously identified
that practice-related improvements correlate with activity
changes in the pre-SMA, the IPS, and the putamen
(Garner and Dux, 2015), we applied DCM to ask how mul-
titasking and practice modulates connectivity between
these regions. Regardless of whether we analyze ROIs
from the LH or RH, we observe that multitasking consis-
tently modulates striatal-cortical connectivity, and most
consistently, information transfer from putamen to pre-
SMA. Therefore, multitasking appears to modulate infor-
mation sharing within a broader network than has been
implied by previous studies focusing on cortical brain
regions only. Rather, our results accord with models of
single-task decision-making implicating a distributed
striatal-cortical network. Our results build on this work by
specifically showing that attempting to multitask bilater-
ally increases rates of information sharing from putamen
to the IPS and pre-SMA (among other modulations), and
we propose that practice overcomes multitasking costs
by alleviating taxation on information transfer from puta-
men to pre-SMA.

Network dynamics underpinning cognitive
performance in multitasking, implications
We found that during multitasking, the currently interro-

gated network is driven by inputs to the putamen (LH and

RH), and likely also the IPS (RH). While information is
propagated between cortical and subcortical areas, multi-
tasking most consistently modulates coupling from the
putamen to pre-SMA. Moreover, although multitasking
and practice consistently modulates the coupling be-
tween the IPS and the other nodes of the network, exactly
which node appears to be dependent on the hemisphere
under interrogation (putamen for LH and pre-SMA for the
RH).
The IPS is assumed to contribute to the representation

of stimulus-response mappings (Bunge et al., 2002;
Goard et al., 2016; Pho et al., 2018), and the pre-SMA is
assumed to arbitrate between competitive representa-
tions of action plans (Nachev et al., 2007). Thus, both re-
gions potentially constitute key nodes in the cortical
representation of current and upcoming stimulus-re-
sponse conjunctions. Given that we observed consistent
evidence that putamen to pre-SMA coupling is modulated
by multitasking and practice, we propose that multitask-
ing limitations stem, at least in part, from constraints on
the rate at which the striatum can, on the basis of incom-
ing sensory information, sufficiently excite the appropriate
cortical representations of stimulus-response mappings
to reach a threshold for action. This leads to the intriguing
possibility that previous observations that cognitive con-
trol operations are underpinned by a frontal-parietal net-
work (Dux et al., 2009; Cole et al., 2013; Duncan, 2013;
Watanabe and Funahashi, 2014) may actually have been
observing the cortical response to striatally mediated ex-
citatory signals. In fact, our findings are in line with a re-
cent application of meta-analytic connectivity modeling
showing that when frontal-parietal regions associated
with cognitive control operations are used as seed re-
gions, the left and right putamen are likely to show signifi-
cant co-activations across a range of sensorimotor and
perceptual tasks (Camilleri et al., 2018). Taken together,
these data suggest that the striatum, or at least the puta-
men, should be included in the set of brain regions that
contribute to cognitive control, at least during sensorimo-
tor decision-making and multitasking.
It was perhaps surprising that the best network only re-

ceived inputs via the putamen when the analysis was con-
ducted on the LH data, and via both the putamen and the
IPS with the RH data. However, given that a right-lateral-
ized network incorporating the IPS has been implicated in
the reorienting of attention to less probable stimuli (Vossel
et al., 2012), it may be that the second stimulus on multi-
task trials, which only occurred on one third of the trials,
engaged the network that responds when events demand
reorientation to a new sensory input. Furthermore,
although the RH IPS showed multitasking-induced and
practice-induced modulations of coupling with the pre-
SMA, the lack of consistency between groups and hemi-
spheres suggest that coupling activity between these
nodes does not necessarily reflect the bottleneck of infor-
mation processing that gives rise to multitasking costs.

Implications of practice induced plasticity in
remediating multitasking costs
Here, we can both model the dynamics of the network

that underpins multitasking limitations, and also identify
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which connections change with practice, for both single-
tasks and for multitasks. By comparing this to modula-
tions observed in the control group, we can make inroads
to identifying which couplings not only correspond to
multitasking limitations, but also those that may be critical
in determining the extent of their presence and remedia-
tion because of practice. We interpret the control group
as showing modulations that occur as a consequence of
being at an earlier stage of practice (i.e., repeating the
task for a second time after having practiced a regimen
not expected to improve multitasking; Garner et al., 2014,
2016; Verghese et al., 2018). In contrast, the practice
group is at a longer-term stage of practice (i.e., they are
repeating the task for the fifth time). It may appear coun-
terintuitive that we observed modulations for the active
control group from pre to post. However, merely repeat-
ing a task without any intervening practice is sufficient to
produce performance gains (Boot et al., 2013). Moreover,
we have observed these behavioral effects in our other
practice studies (Garner et al., 2014, 2015; Verghese et
al., 2018) and in the current study. Importantly, here and
elsewhere, practice groups show larger behavioral bene-
fits relative to such control groups.
In light of this framework, putamen to pre-SMA cou-

pling appears to be consistently modulated by both short-
term and long-term practice (the latter being more evident
in the LH). We found that being at an earlier stage of prac-
tice corresponds to an increase in the rate of information
transfer from putamen to pre-SMA and that later stages
are also associated with an increase of information trans-
fer between these regions (in the LH) but to a lesser extent
than is observed for short-term practice. We interpret
these results as reflecting a trajectory of practice induced
changes in putamen to pre-SMA coupling. Namely, re-
peating a task increases putamen to pre-SMA information
transfer. We speculate that extended practice results in
decreased requirement for faster information transfer be-
tween these two regions, potentially reflecting decreased
reliance on this pathway with extended practice. Rodent
studies consistently demonstrate that when a task is
novel, firing in the dorsolateral striatum corresponds to
the full duration of a trial. As the behavior becomes habit-
ual, firing patterns transition to coincide with the begin-
ning and end of chunked action sequences (Jog et al.,
1999; Barnes et al., 2005; Jin and Costa, 2010; Thorn et
al., 2010; Smith and Graybiel, 2013). These results imply
a novel physiological substrate for the amelioration of
multitasking limitations; namely, the duration of informa-
tion transfer from putamen to pre-SMA during task
performance.

Further considerations
It is worthwhile considering why the previous fMRI in-

vestigations into the neural sources of multitasking limita-
tions did not implicate a role for the striatum. As far as we
can observe, our sample size, and thus statistical power
to observe smaller effects, is substantially larger than pre-
vious efforts (Szameitat et al., 2002, 2006; Jiang, 2004;
Jiang et al., 2004; Dux et al., 2006, 2009; Marois et al.,
2006; our N=100, previous work N range: 9–35, Stelzel et

al., 2006; Erickson et al., 2007; Sigman and Dehaene,
2008; Borst et al., 2010; Hesselmann et al., 2011; Tombu
et al., 2011; Nijboer et al., 2014). One fMRI multitasking
study has reported increased striatal activity when there
is a higher probability of short temporal overlap between
tasks (Yildiz and Beste, 2015). Moreover, meta-analytic
efforts into the connectivity of the frontal-parietal network
during cognitive control tasks implicate the putamen
(Camilleri et al., 2018). Lesions of the striatum and not
the cerebellum have been shown to correspond to im-
paired multitasking behaviors (Thoma et al., 2008), and in-
tracranial EEG has revealed that fluctuations in oscillatory
ventral striatal activity predicts performance on the atten-
tional blink task (Slagter et al., 2017); a paradigm which is
assumed to share overlapping limitations with those re-
vealed by sensorimotor multitasks (Jolicoeur, 1998; Arnell
and Duncan, 2002; Zylberberg et al., 2010; Tombu et al.,
2011; Garner et al., 2014; Marti et al., 2015). Therefore,
our findings do converge with more recent efforts that do
indeed implicate a role for the striatum in cognitive con-
trol. We extend these findings to demonstrate how the
striatum and cortex interact to both produce and over-
come multitasking limitations.
Of course, we have only examined network dynamics in

a few areas of a wider system that correlates with multi-
tasking (Garner and Dux, 2015), and we are unable to
know whether we observe an interaction in these specific
regions because the interaction exists nowhere else, or
because the interactions are more readily observable be-
tween these regions. Indeed, we have also observed in
the current dataset that the volume of the rostral dorsal
lateral prefrontal cortex inversely correlates with multi-
tasking improvements in the practice group (Verghese et
al., 2016). However, in this and our previous work (Garner
and Dux, 2015), functional activation of the DLPFC did
not meet criteria for inclusion in our analysis of the func-
tional data. In the current study, we utilized simple senso-
rimotor tasks. The networks underpinning the translation
of more complex sensorimotor mappings may well invoke
more reliable functional activity in anterior ROIs than we
observed here (Dux et al., 2006; Woolgar et al., 2011;
Crittenden and Duncan, 2014; Badre and Nee, 2018).
Therefore, future work should determine whether more
complex stimulus-response mappings would yield evi-
dence warranting the addition of more anterior regions,
such as the DLPFC, to the currently defined network.
With the current analysis, we sought to maintain parsimony

by reducing the model space (and parameters) to one hemi-
sphere, and to ascertain the findings we would have drawn
regardless of which hemisphere was under interrogation.
Given the bilateral nature of the observations reported in our
previous work, yet the precedents in the literature for a LH
bias in the networks underpinning multitasking (Erickson et
al., 2005, 2007; Dux et al., 2006, 2009; Filmer et al., 2013), we
were agnostic as to whether or not we should hypothesize
differences between the two hemispheres. Our analysis ap-
proach enabled us to determine that multitasking limitations
and their practice-related remediation are consistently related
to changes in putamen to pre-SMA coupling, regardless of
which hemisphere (i.e., which subset of the reduced model
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space) is selected for study. It remains a little more challeng-
ing to interpret the findings that were specific for each hemi-
sphere. Given the questions of lateralization of function raised
by the current and previous work, a principled and systematic
investigation is warranted. For example, future work could
simulate fMRI data in the absence and presence of genuine
lateralized differences, to observe the sensitivity and robust-
ness of DCM under these differing conditions. This simulation
approach could also be applied to other degrees of freedom
in the DCM analysis process. For example, we opted to use
for each participant the ROI within the anatomic ROI that
showed strongest sensitivity to our contrast of interest.
Another approach would be to apply a fixed functional ROI
based on the group average. In both cases, individual outliers
can be mitigated using a random effects procedure during
model comparison (as we have done here). However, it re-
mains unknown exactly how sensitive DCM analysis is to
these differences in procedure. This issue is certainly not
unique to our study. We are not able to test this rigorously in
our own data as we do not have ground truth, i.e., we could
apply a fixed ROI based on the group contrast, but as we
have not generated the data that would go into each analysis,
we do not exactly know howmuch the results of DCM analy-
sis should differ between these analysis choices, nor exactly
what these differences would mean with regards to what is
the “correct” model to explain the data. Once again, a prin-
cipled investigation using simulated data, where the ground
truth is known, is required to meaningfully address these
questions but is beyond the scope of the current work.

Conclusions
Here, we asked whether multitasking limitations are

better associated with activity changes in a frontal-parie-
tal, or a striatal-cortical network. Using DCM, we show
evidence for the latter. Specifically, multitasking demands
were associated with increased rates of coupling between
the putamen and cortical sites. We interpret this as sug-
gesting that performance decrements are due, at least in
part, to a limit in the rate at which the putamen can excite
appropriate cortical stimulus-response representations.
Moreover, the observation that coupling strength be-
tween putamen and pre-SMA is modulated with practice
and that the extent of the modulation differs between the
practice and control groups suggests that multitasking
limits may be remediated by changes in the rate of infor-
mation transfer between the putamen and the pre-SMA,
which can be observed early in practice. We also suggest
that modulated rates of corticostriatal information transfer
gained from practice over multiple days may be a key
mechanism for supporting action representations under
conditions of high cognitive load. These results provide
clear empirical evidence that multitasking operations may
not just be mediated by a frontal-parietal network. Rather,
the interface between the putamen and key cortical
nodes appear to correspond to multitasking operations,
and the modulation of multitasking limitations.
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