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Abstract

Perineuronal nets (PNNs) are extracellular matrix (ECM) structures that envelop neurons and regulate synaptic func-
tions. Long thought to be stable structures, PNNs have been recently shown to respond dynamically during learning,
potentially regulating the formation of new synapses. We postulated that PNNs vary during sleep, a period of active
synaptic modification. Notably, PNN components are cleaved by matrix proteases such as the protease cathepsin-S.
This protease is diurnally expressed in the mouse cortex, coinciding with dendritic spine density rhythms. Thus, ca-
thepsin-S may contribute to PNN remodeling during sleep, mediating synaptic reorganization. These studies were
designed to test the hypothesis that PNN numbers vary in a diurnal manner in the rodent and human brain, as well
as in a circadian manner in the rodent brain, and that these rhythms are disrupted by sleep deprivation. In mice, we
observed diurnal and circadian rhythms of PNNs labeled with the lectin Wisteria floribunda agglutinin (WFA+ PNNs)
in several brain regions involved in emotional memory processing. Sleep deprivation prevented the daytime decrease
of WFA+ PNNs and enhances fear memory extinction. Diurnal rhythms of cathepsin-S expression in microglia were
observed in the same brain regions, opposite to PNN rhythms. Finally, incubation of mouse sections with cathepsin-
S eliminated PNN labeling. In humans, WFA+ PNNs showed a diurnal rhythm in the amygdala and thalamic reticular
nucleus (TRN). Our results demonstrate that PNNs vary in a circadian manner and this is disrupted by sleep depriva-
tion. We suggest that rhythmic modification of PNNs may contribute to memory consolidation during sleep.

Key words: circadian rhythms; extracellular matrix; memory consolidation; perineuronal nets; psychiatric disor-
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The mechanisms underlying memory consolidation are not completely understood. Perineuronal nets
(PNNSs) are extracellular matrix (ECM) structures enveloping subsets of neurons and are involved in regulat-
ing synaptic plasticity. Recent studies indicate that PNNs are modified during learning to allow for formation
of new synapses. During sleep, synapses are proposed to undergo modification as memory consolidation
processes occur. Furthermore, microglia are involved in synaptic regulation and produce several proteases
that cleave PNN components. We demonstrate that PNNs are modified in a circadian manner and coincide
with expression rhythms of the protease cathepsin-S. These rhythms may contribute to altered synaptic
plasticity reported during sleep, suggesting a key process through which proteases modify PNNs to allow
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Introduction

Perineuronal nets (PNNs) are extracellular matrix (ECM)
structures surrounding subpopulations of neurons. PNNs
form during the end of critical periods of plasticity, marking
their closure by conferring an adult form of restricted plastic-
ity (Pizzorusso et al., 2002; Gogolla et al., 2009; Mauney et
al., 2013). Although PNNs have been historically considered
stable structures, recent studies suggest they are modified
during learning to allow for formation of synapses (Nagy et
al., 2007; Brown et al., 2009; Ganguly et al., 2013; Banerjee
et al., 2017; Slaker et al., 2018). An important line of evi-
dence comes from studies on matrix metalloproteases,
which cleave ECM components including chondroitin sul-
fate proteoglycans (CSPGs), key components of PNNs, and
contribute to regulation of synaptic plasticity (Muir et al.,
2002; Porter et al., 2005; Bajor and Kaczmarek, 2013).
Expression of these proteases contributes to fear learning
and memory consolidation (Brown et al., 2009; Ganguly et
al., 2013). These effects are mediated through dendritic
spine remodeling (Szklarczyk et al., 2002) and regulation of
long-term plasticity (LTP; Nagy et al., 2006). In addition, in-
creasing number of studies directly show that CSPGs, and
in turn PNNSs, are critically involved in the regulation of syn-
aptic plasticity (Bukalo et al., 2001). Notably, the strength of
LTP has been shown to vary in a circadian manner in the
hippocampus (Chaudhury et al., 2005), a region where PNN
functions in regulating synaptic strength and stability have
been particularly well characterized (Bukalo et al., 2001;
Brakebusch et al., 2002; Geissler et al., 2013). Together,
these observations support the hypothesis that PNN com-
position may be regulated in a circadian manner to allow for
circadian rhythms in synaptic plasticity.

PNN composition is regulated by several cell types in-
cluding astrocytes and neurons, which produce several of
the core PNN components, along with a broad range of en-
dogenous proteases that cleave PNN components pro-
duced primarily by astrocytes and microglia (Pantazopoulos
and Berretta, 2016; Miyata and Kitagawa, 2017; Bozzelli et
al., 2018). We focus on the microglial protease cathepsin-S
as a first step toward identifying molecules that may contrib-
ute to circadian rhythms in PNN composition. Cathepsin-S
has been shown to regulate synaptic plasticity, cleave sev-
eral ECM components, and is expressed diurnally in the ro-
dent cortex (Petanceska et al., 1996; Hayashi et al., 2013b).
Furthermore, several lines of evidence suggest that micro-
glia contribute to diurnal regulation of PNNs. Compelling
data point to the role of microglia in the regulation of
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synaptic plasticity (Wake et al., 2013; Stevens and Schafer,
2018). Furthermore, microglial dysfunction in the hippocam-
pus results in reduction of dendritic spines along with in-
creased ECM expression (Bolds et al., 2018), suggesting
microglia participate in degrading the ECM to allow for in-
creased synaptic plasticity. A recent study demonstrated
that pharmacological depletion of microglia prevented PNN
decreases that normally occur in a mouse model of
Huntington’s disease and improved memory function
(Crapser et al., 2020), suggesting that microglia play a
critical role in regulating PNN composition. Taken to-
gether, the current evidence suggests that cathepsin-S
from microglia is an optimal candidate for contributing
to modification of PNN composition to allow dynamic
regulation of synaptic plasticity during sleep.

PNNs are well represented in neural circuits involved in
emotion processing and critically involved in the regulation
of fear and reward memories (Gogolla et al., 2009; Slaker et
al., 2015; Banerjee et al., 2017; Lasek et al., 2018).
Consistent with these observations, PNNs have been impli-
cated in several brain disorders involving these regions, in-
cluding schizophrenia, bipolar disorder, Alzheimer’s disease
and addiction (Baig et al., 2005; Morawski et al., 2010;
Pantazopoulos et al., 2010, 2015; Mauney et al., 2013; Xue
et al., 2014; Slaker et al.,, 2015; Steullet et al., 2018;
Blacktop and Sorg, 2019). Several of these disorders also
show altered sleep and circadian rhythms (Lim et al., 2013;
McClung, 2013; Wang et al., 2015; Manoach et al., 2016;
Pantazopoulos et al., 2017). Thus, diurnal modulation of
PNNs has a broad range of implications for psychiatric dis-
orders and memory processing.

We tested the hypothesis that PNNs vary in a circadian
manner and that these rhythms are disrupted by sleep de-
privation. In mice, we first assessed densities of PNNs
across the 24-h cycle in brain regions involved in emotion-
al memory processing and implicated in psychiatric disor-
ders (Vyas et al., 2002; Sartorius et al., 2010; Li et al.,
2011; Mahan and Ressler, 2012; Mauney et al., 2013;
Meyer et al., 2014; Pantazopoulos et al., 2017; Wells et
al.,, 2017). We then assessed the relationship between
PNNSs and sleep by testing the effect of sleep deprivation
on PNN densities in several regions including the hippo-
campus, a brain region in which diurnal differences in LTP
were reported (Chaudhury et al., 2005).

As a first step in testing the hypothesis that matrix pro-
teases are involved in regulating PNN rhythmicity, we char-
acterized rhythms of cathepsin-S expression. We then
demonstrated that cathepsin-S impacts PNN integrity by in-
cubating mouse sections in active cathepsin-S enzyme.
Finally, we tested the hypothesis that PNN rhythmicity is
conserved in humans, focusing on the amygdala and tha-
lamic reticular nucleus (TRN), two regions in which PNN def-
icits in schizophrenia and bipolar disorder were reported
(Pantazopoulos et al., 2010, 2015; Steullet et al., 2018).

Materials and Methods

Antibodies and lectin labeling
Wisteria floribunda agglutinin (WFA)

WFA (catalog #B-1355, Vector Labs), a lectin isolated
from seeds of Wisteria floribunda, binds specifically to N-

eNeuro.org


mailto:cpantazopoulos@umc.edu
https://doi.org/10.1523/ENEURO.0034-19.2020
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

eMeuro

acetyl-D-galactosamine on the terminal end of chondroi-
tin sulfate (CS) chains, with a preference for g8 glycosidic
linkage (Kurokawa et al., 1976). The specificity of WFA as
a marker for these macromolecules is supported by ex-
tensive literature, including ablation of labeling following
CS enzymatic digestion (Galtrey and Fawcett, 2007;
Pantazopoulos et al., 2010).

Cathepsin-S (E-3)

Cathepsin-S E-3 (sc-271619, Santa Cruz Biotechnology
Inc.) is a mouse monoclonal antibody raised against a pep-
tide matching amino acids 302-331 at the C terminus of
human cathepsin-S, shown to detect the 24-kDa form of ca-
thepsin-S (sc-271619 data sheet, Santa Cruz Biotechnology
Inc.).

IBA1

IBA1 (019-19 741, FUJIFILM Wako Chemicals USA) is a
rabbit polyclonal antibody raised against a synthetic pep-
tide to the C terminus of IBA1, shown to detect the 17-
kDa form of IBA1 in rat and mouse brain samples (019-
19741 data sheet, FUJIFILM Wako Chemicals USA).

Immunocytochemistry (mouse samples)

Free-floating tissue sections were carried through antigen
retrieval in citric acid buffer (0.1 m citric acid and 0.2 m
Na,HPO,), heated to 80°C for 30 min, and incubated in bio-
tinylated WFA lectin (catalog #B-1355, Vector Labs) or the
mouse monoclonal primary antibody anti-cathepsin-S
(1:500, sc-271619, Santa Cruz Biotechnology Inc.) for 48 h,
and subsequently in biotinylated secondary antibody (horse
anti-goat 19G; 1:500; Vector Labs), followed by streptavidin
conjugated with horse-radish peroxidase for 2 h (1:5000 pl,
Zymed), and, finally, in nickel-enhanced diaminobenzidine/
peroxidase reaction (0.02% diaminobenzidine, Sigma-
Aldrich, 0.08% nickel-sulfate, 0.006% hydrogen peroxide in
PB). All solutions were made in PBS with 0.2% Triton X-100
(PBS-Tx) unless otherwise specified. Immunostained sec-
tions were mounted on gelatin-coated glass slides, cover-
slipped, and coded for blinded quantitative analysis. All
sections included in the study were processed simultane-
ously within the same session to avoid procedural differen-
ces. Omission of the primary or secondary antibodies did
not result in detectable signal, and preabsorption of mouse
anti cathepsin-S with 300 nanograms of active human ca-
thepsin-S (SRP0292, Sigma-Aldrich) did not result in detect-
able immunolabeling signal.

Dual antigen immunofluorescence

Sections were co-incubated in primary antibodies (cat-
S, 1:500 ul, rabbit anti-IBA1, 1:1000 pl; FUJIFILM Wako,
catalog #019-19741); in 2% bovine serum albumin (BSA)
for 72 h at 4°C. This step was followed by 4-h incubation
at room temperature in Alexa Fluor goat anti-mouse 647
(1:300 pl; A-21235, Invitrogen) and donkey anti-rabbit 555
(1:300 pl; A-32 794, Invitrogen), 10-min incubation in DAPI
1:16000 in 0.1 m PB, followed by 10min in 1 mm CuSQO,4
solution (pH 5.0) to block endogenous lipofuscin auto-
fluorescence (Schnell et al, 1999). Sections were
mounted and coverslipped using Dako mounting media
(83023, Dako).
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Immunocytochemistry (human samples)

Free-floating tissue sections were carried through anti-
gen retrieval in citric acid buffer (0.1 m citric acid and 0.2 m
Na,HPO,), heated to 80°C for 30 min, and incubated in bi-
otinylated WFA lectin (catalog #B-1355, Vector Labs) for
48 h, followed by streptavidin conjugated with horse-
radish peroxidase for 2 h (1:5000 pl, Zymed), and, finally,
in nickel-enhanced diaminobenzidine/peroxidase reac-
tion (0.02% diaminobenzidine, Sigma-Aldrich, 0.08%
nickel-sulfate, 0.006% hydrogen peroxide in PB). All sol-
utions were made in PBS-Tx unless otherwise specified.
Immunostained sections were mounted on gelatin-
coated glass slides, coverslipped, and coded for blinded
quantitative analysis. All sections included in the study
were processed simultaneously within the same session
to avoid procedural differences. Omission of the WFA
lectin or HRP-conjugated streptavidin did not result in
detectable signal.

Data collection (mouse)

In mouse brain samples, serial sections containing
the hippocampus, infralimbic cortex, prelimbic cortex,
TRN, and habenula were quantified using a Leica micro-
scope interfaced with Bioquant Nova Prime v6.0 (R&M
Biometrics). Borders of each region were defined ac-
cording to the Allen Brain Atlas and traced under 4x
maghnification. Each traced region was systematically
scanned through the full x-, y-, and z-axes under 40x
magnification to count each WFA+ PNN or cathepsin-
S-immunoreactive (IR) microglial cell.

Dual immunofluorescence sections labeled for cathep-
sin-S and IBA1 from three adult male mice housed in a
standard light-dark cycle (four sections per mouse) and
killed at zeitgeber time (ZT)6 were quantified using
Stereo-Investigator Image Analysis System (v.10.0; MBF
Biosciences), interfaced with an Olympus BX-61 micro-
scope. Cathepsin-S-IR cells were distinguished from ca-
thepsin-S-IR blood vessels by the presence or absence of
DAPI-stained nuclei.

Data collection (human)

In human postmortem samples, total numbers and nu-
merical densities of PNNs labeled with WFA were quanti-
fied using stereology based sampling (Pantazopoulos et
al., 2007; Dorph-Petersen and Lewis, 2011) in the amyg-
dala and TRN in a cohort of postmortem brain samples
from human subjects (14 amygdala, 15 TRN subjects).
WFA-labeled (WFA+) PNNs were counted in the lateral
(LN), basal (BN), accessory basal (AB), and cortical (CO)
nuclei of the amygdala, and in TRN using a Zeiss
Axioskop-2 Plus interfaced with Stereo-Investigator 6.0
(Microbrightfield Inc.). Intrarater (H.P. and M.A.) reliability
of at least 95% was established before formal data collec-
tion and reassessed regularly. The borders of amygdala
nuclei were traced and confirmed in adjacent Nissl-
stained sections according to cytoarchitectonic criteria
described previously (Sims and Williams, 1990; Amaral et
al., 1992). The nomenclature adopted was used by
Sorvari et al. (1995). The central, medial and anterior
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nuclei could not be quantified because their dorso-medial
portion was damaged in several samples. The borders of
the TRN were identified according to specific landmarks,
such as the internal capsule laterally and the subthalamic
nucleus ventromedially. Each traced region was systemati-
cally scanned through the full x-, y-, and z-axes to count
each WFA-labeled PNN over complete sets of serial sec-
tions (6-10 sections) representing the whole extent of the
amygdala from each subject (section interval 1040 um).
Outcome measures were plotted by time of death (TOD) for
each subject to analyze potential diurnal fluctuations using
approaches reported previously in postmortem studies
(Monk et al., 1997; Dumont et al., 1999; Zhou et al., 2001;
Hofman, 2003; Ilwata et al., 2013; Li et al., 2013; Schmal et
al., 2013; Pantazopoulos et al., 2017).

Statistical analysis

Differences between groups relative to the main outcome
measures were assessed for statistical significance using
stepwise linear regression (ANCOVA). Logarithmic transfor-
mation was uniformly applied to all human data values be-
cause data were not normally distributed. Statistical
analyses were performed using JMP PRO v14 (SAS Institute
Inc.). Average daily wheel-running activity was included as a
covariate for all mouse studies. TOD was obtained from the
death certificate for each subject and tested for potential ef-
fects on outcome measures. TOD was also used to divide
subjects into subjective day (s-Day TOD, 6 A.M. to 5:59
P.M.) and subjective night (s-Night, 6 P.M. to 5:59 A.M.)
groups on the basis of previous literature indicating di-
urnal fluctuations in the amygdala of humans and mice
(Berelowitz et al., 1981; Arnold et al., 1982; Rubinow, 1986).
Effects of TOD on outcome measures were analyzed using
two steps: (1) subjects were divided into s-Day versus s-
Night groups for comparisons using stepwise linear regres-
sion analysis; and (2) we used quartic regression analysis on
plots of Ny of WFA-labeled PNNs by TOD for each group ac-
cording to methods used to detect similar relationships in
postmortem studies (Zhou et al., 2001; Hofman, 2003; Li et
al., 2013). Quartic regression models were used as de-
scribed previously (Pantazopoulos et al., 2017) to fit expres-
sion patterns reported in the mouse and human amygdala
consisting of two peaks and two troughs (Albrecht et al.,
2013; Pantazopoulos et al., 2017).

Numerical densities (mouse samples)

Numerical densities were calculated as Ng = Y N/}'V
where N = sum of all PNNs counted in each region for
each animal, and V is the volume of each region per ani-
mal, calculated as V = Y a e z, where z is the thickness of
each section (30 um) and a is area in pm?. Rhythmic rela-
tionships of PNNs and cathepsin-S in mice were analyzed
by plotting means and SD per each time point across the
24-h cycle, as conducted in previous studies (Lamont et
al., 2005; Segall et al., 2009; Harbour et al., 2014).

Numerical densities and total numbers estimates
(human samples)

Total number (N;) of WFA-labeled PNNs was calculated
as Ny =i e Xn, where n = sum of the cells counted in

July/August 2020, 7(4) ENEURO.0034-19.2020

Research Article: New Research 4 of 21
each subject, and i is the section interval (i.e., number of
serial sections between each section and the next within
each compartment = 26) as described previously (Berretta
et al., 2007). Numerical densities were calculated as Ng =
Y'N/Y'V, where V is the volume of each amygdala nucleus
or the TRN, calculated as V = z e ssf ¢ X a, where z is the
thickness of the section (40 um), ssf is the section sam-
pling fraction (1/26; i.e., number of serial sections be-
tween each section within a compartment), and a is the
area of the region of interest.

Animals

Adult male wild-type C57/BL6 mice housed in individual
wheel-running cages in a 12/12 h light/dark (LD) cycle
were used to examine diurnal rhythms of PNN composi-
tion. Three male C57/BL6 mice were killed every 4 h
across the 24-h cycle at ZT0, ZT4, ZT8, ZT12, ZT16, and
ZT20. A separate set of adult male C57/BL6 mice were
used to test for circadian rhythms of PNN composition.
Mice were housed in a 12/12 LD cycles for four weeks, fol-
lowed by three full 24-h cycles in constant darkness, then
killed every 4 h at circadian time (CT)0, CT4, CT8, CT12,
CT16, and CT20, three mice per time point. Wheel-run-
ning actigraphs were used to determine individual CT
times for killing animals housed in constant darkness.
Activity onset over three 24-h cycles was used to predict
CT time in the fourth cycle during which animals were
killed. All animals in the constant darkness study were
killed under dim red light conditions. Circadian rhythm of
each mouse was monitored with ClockLab (Actimetrics)
using wheel-running activity data. Mice were killed using
cervical dislocation in the light or in the dark using a dim
red light, depending on lighting conditions at time of kill-
ing. Mice were perfused intracardially with 4% PFA, and
brains were stored in 0.1 m PB with 0.1% Na azide and
30% sucrose. Brains were then sliced into serial 30-um
brain sections on an American Optical freezing microtome.
The housing and treatment of experimental animals were
approved by the University of Mississippi Medical Center
Institutional Animal Care and Use Committee and followed
guidelines set by the National Institutes of Health.

Human subjects and tissue processing

Tissue blocks containing the whole amygdala or thalamus
from 15 donors were obtained from the Harvard Brain
Tissue Resource Center, McLean Hospital, Belmont, MA
(Tables 1 and 2). Diagnoses were made by two psychiatrists
on the basis of retrospective review of medical records and
extensive questionnaires concerning social and medical his-
tory provided by family members. A neuropathologist exam-
ined several regions from each brain for a neuropathology
report. The cohort for this study did not include subjects
with evidence for gross and/or macroscopic brain changes,
or clinical history consistent with cerebrovascular accident
or other neurologic disorders. Subjects with Braak and
Braak Stages Ill or higher were not included. Subjects had
no significant history of psychiatric illness, or substance de-
pendence, other than nicotine and alcohol, within 10 years
from death.
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Table 1: TRN sample demographic and descriptive characteristics

Case Age Sex Cause of death Brain weight (g) PMI (hrs) Hemisphere TOD
S05735 74 F Cancer (C) 1145 12.2 L 14.00
S16022 68 Cardiac arrest (A) 1330 14.75 R 09.30
S13845 37 M Electrocution (A) 1460 18.75 R 21.00
S14247 72 M Cardiac arrest (A) 1560 28.2 R 07.35
S10160 85 M Cancer (C) 1225 20.3 L 05.30
S18228 78 F Cancer (C) 1100 23.9 L 05.00
S07594 95 F Unknown 1350 71 R 14.50
S06087 69 F Unknown 1280 25.2 R 10.16
S07749 61 M Unknown 1280 10.1 R 12.30
S07429 68 F Unknown 1230 24.8 R 19.45
S14342 70 F Cardiac arrest (A) 1245 18.0 R 07.29
S08987 53 F Cancer (C) 1330 24.0 R 08.32
S11774 74 M Cardiac arrest (A) 1490 15.81 R 08.41
S03774 70 M Aortic aneurysm (A) 1400 17.3 R 20.46
S17165 58 F COPD (C) 1345 17.8 R 00.35
Total/mean = SD 68.8 = 13.5 9F 6M 1318.0 = 1251 18.5*+ 6.0 3L 12R

Tissue blocks were dissected from fresh brains and
postfixed in 0.1 m PB containing 4% paraformaldehyde
and 0.1 m Na azide at 4°C for three weeks, cryoprotected
at 4°C for three weeks (30% glycerol, 30% ethylene gly-
col, and 0.1% Na azide in 0.1 m PB), embedded in agar,
and presliced in 2-mm coronal slabs using an Antithetic
Tissue Slicer (Stereological Research Lab.). Each slab
was exhaustively sectioned using a freezing microtome
(American Optical 860). Sections were stored in cryopro-
tectant at —20°C. Using systematic random sampling cri-
teria, sections through the amygdala were serially
distributed in 26 compartments (40-pum-thick sections; 6-
10 sections/compartment; 1.04-mm section separation
within each compartment). All sections within one com-
partment/subject were selected for histochemistry (i.e.,
WFA), thus respecting the “equal opportunity” rule
(Coggeshall and Lekan, 1996; Gundersen et al., 1999).

Sleep deprivation

Adult male wild-type C57/BI6 mice housed in 12/12 LD
cycle were used for sleep deprivation experiments. Mice
were either sleep deprived using gentle handling for 5 h

from lights on (7 A.M.) to 12 P.M. (n=12) or handled dur-
ing the dark phase for 5 h the night before (controls;
n=12), to control for potential confounding effects of han-
dling on the outcome measures. Mice were killed immedi-
ately following 5 h of sleep deprivation, and control mice
were killed at the same time (ZT5: 12 P.M.). Mice were
perfused intracardially with 4% PFA, and brains were
stored in 0.1 m PB with 0.1% Na azide and 30% sucrose.
Brains were then sliced into serial 30-um brain sections
on an American Optical freezing microtome. WFA labeling
was used to quantify PNNs in the habenula, prefrontal
cortex, amygdala, thalamus, and hippocampus using
stereology-based sampling methods.

Mouse auditory fear conditioning

Auditory contextual fear conditioning was conducted as
described previously (Gisabella et al., 2016). Mice were
placed in a fear conditioning box at ZTO (7 A.M.; 64cm
wide, 73cm deep, and 68cm high; Med Associates)
placed in a larger, sound-attenuating chamber. Precisely
four mice will be placed in four boxes chamber (one
mouse for each box) at the same time for experimental

Table 2: Amygdala sample demographic and descriptive characteristics

Case Age Sex Cause of death Brain weight () PMI (hrs) Hemisphere TOD
S90122 70 M Cardiac arrest (A) 1360 23.2 L 12.17
S23073 52 M Cardiac arrest (A) - 32.1 L 03.07
S12827 71 M Cardiac arrest (A) 1580 24.0 L 10.10
S13845 37 M Electrocution (A) 1460 18.75 R 21.00
S07340 65 M Cardiac arrest (A) 1240 17.3 L 06.45
S08987 53 F Cancer (C) 1330 24.0 R 08.32
S30877 62 M Cardiac arrest (A) 1300 29.2 L 21.18
S03774 70 M Aortic aneurysm (A) 1400 17.3 R 20.46
S17232 58 M COPD (C) 1066 19.3 R 16.08
S14247 72 M Cardiac arrest (A) 1560 28.2 R 07.35
S05735 74 F Cancer (C) 1145 12.2 L 14.00
S16022 68 F Cardiac arrest (A) 1330 14.75 R 09.30
S10160 85 M Cancer (C) 1225 20.3 L 05.30
S18228 78 F Cancer (C) 1100 23.9 L 05.00
Total/mean = SD 65.4 = 12.2 5F 9M 1315.0 = 161.3 21.8 £ 5.7 8L 6R

A, acute death, no prolonged agonal period; C, chronic, prolonged agonal period; COPD, chronic obstructive pulmonary disease; PMI, postmortem time interval.
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Figure 1. Diurnal rhythms of PNNs in the mouse hippocampus. Analysis of WFA+ PNNs across the 24-h cycle in male mice housed
in a 12/12 h LD cycle revealed a diurnal rhythm of WFA+ PNNs in hippocampal sectors CA1 (A) CA2/3 (B), CA4 (C), and the DG (D)
with peaks at ~ZT20 and troughs at ~ZT8. Error bars represent SD. Representative low-magnification images of WFA labeling in

the mouse hippocampus at ZT8 (E) and ZT20 (F).

comparison. Mice remained in the chamber for 3 min be-
fore delivery of four tones, each of 10-s duration (85dB,
10kHz). Each tone was followed by a footshock lasting
2 s (0.8-mA amplitude) pairings were administered (60- to
200-s variable inter tone interval; total time mice spent in-
side the chamber was 15-18 min). After the test, the mice

July/August 2020, 7(4) ENEURO.0034-19.2020

were placed back into normal housing (four control mice,
or sleep deprived for 5 h before being placed back into
normal housing (four mice).

Mice were returned to the context on the second day
for an extinction session (10-min total inside the chamber
with no shock and tone) then placed back in their cages.
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Figure 2. Diurnal rhythms of PNNs in the mouse amygdala. Diurnal rhythms of WFA+ PNNs were observed in the lateral amygdala
(A) basal amygdala (B), and central amygdala (C) with peaks at ~ZT20 and troughs at ~ZT8. Error bars represent SD.
Representative low-magnification images of WFA labeling in the mouse amygdala at ZT8 (D) and ZT20 (E).

Mice were placed in a novel context on the third day at
7 A.M. for auditory fear extinction inside the chamber
for a total time of 5min (3min pretone; 60 s, 85dB,
10 kHz tone; 60 s posttone period). Low freezing before
the onset of tone presentation indicated that animals
did not generalize fear to the novel context, and also en-
abled us to conclude that freezing observed during the
tone was evoked specifically by the tone. Freezing be-
havior was defined as periods of at least 1 s with the
complete absence of movement except breathing; it
was measured with manual scoring. The percent of time
spent freezing during intervals of interest was quanti-
fied, and these results were analyzed using ANOVA.
Post hoc Fisher’s PLSD tests were performed after a
significant omnibus F ratio.

Cathepsin-S PNN digestion

Free floating mouse brain sections were incubated
with 300 ng of active human cathepsin-S (SRP0292,
Sigma-Aldrich), in activation buffer containing 1.8 mm
DTT, 1.8 mm EDTA, 1% BSA, 12 mwm citric acid, and 43
mm Na,HPO, at 37°C for either 3 h or 24 h. Control sec-
tions were incubated in activation buffer (1.8 mm DTT,
1.8 mm EDTA, 1% BSA, 12 mwm citric acid, and 43 mm
Na,HPO,) at 37°C in parallel. Following cathepsin-S in-
cubation, sections were labeled with WFA and WFA+
PNNs were quantified in the hippocampus as described
above.

July/August 2020, 7(4) ENEURO.0034-19.2020

Results

We use the chronobiology term “circadian” to refer to
rhythms observed in constant darkness, regulated by endog-
enous circadian processes in the absence of environmental
signals that can entrain rhythms such as light-dark cycles.
We use the term “diurnal” to refer to rhythms observed in
light-dark cycles, which may reflect immediate responses to
environmental cycles rather than true circadian rhythms.

Diurnal rhythms of PNNs in the mouse brain

In a cohort of adult male C57/BL6 mice, housed ina 12/
12 LD cycle, we observed diurnal rhythms in the density
of WFA+ PNNs in the hippocampus, amygdala, prefrontal
cortex, habenula, and TRN (Figs. 1-5). WFA+ PNN
rhythms in the hippocampal sectors displayed consistent
peaks at ZT20, and troughs at ZT6 across hippocampal
sectors (Fig. 1). WFA+ PNN density rhythms in the amyg-
dala were similar to hippocampal rhythms, with peaks at
ZT20 and troughs at ZT8 across amygdala nuclei (Fig. 2).
Similar relationships were observed in the prefrontal cor-
tex, with WFA+ PNN densities displaying peaks at ap-
proximately ZTO and troughs at ZT8 (Fig. 3). WFA+ PNN
density rhythms in the habenula (Fig. 4) and TRN (Fig. 5)
also displayed consistent diurnal rhythms, with peaks at
approximately ZT20 and troughs at ZT8. ANCOVA models
testing the main effect of ZT time and the effect of average
daily amount of wheel running activity showed significant ef-
fects of ZT time on WFA+ PNN densities in all regions

eNeuro.org



eMeuro

PNNs/mm3

PNNs/mm3

at ZT8 (E) and ZT20 (F).

A IL Superficial Layers
1401
1201
100
80 1
60 1 i
40 1
20 1
0 ZT0 ZT4 ZT8 ZT12 ZT16 ZT20 ZT24
ZT Time
c IL Deep Layers
1004
80
60 4 1
40 4
20 +
ZT0 ZT4 ZT8 ZT12 ZT16 ZT20 ZT24

PNNs/mm3

PNNs/mm3

B

1204
100+
80 1
60 4
40

20 4

Research Article: New Research

PL Superficial Layers

¥

D

140
120 {
100 {
80 |
60 -

40

20

ZT0

ZT4 ZT8 ZT12 ZT16

PL Deep Layers

ZT20 ZT24

KX

7T0 T4

July/August 2020, 7(4) ENEURO.0034-19.2020

ZT12

Figure 3. Diurnal rhythms of PNNs in the mouse prefrontal cortex. Diurnal rhythms of WFA+ PNNs were observed in the infralimbic
superficial (A) prelimbic superficial (B), infralimbic deep (C), and prelimbic deep (D) layers of the mouse, with peaks at ~ZT0 and
troughs at ~ZT8. Error bars represent SD. Representative low-magnification images of WFA labeling in the mouse prefrontal cortex
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Figure 4. Diurnal rhythms of PNNs in the mouse habenula. Analysis of WFA+ PNNs across the 24-h cycle in male mice housed in a
12/12 h LD cycle revealed a diurnal rhythm of WFA+ PNNs in the lateral habenula (A) and medial habenula (B), with a peak at ~ZT0
and trough at ~ZT8 for the lateral habenula, and a peak at ~ZT16 and trough at ~ZT8 for the medial habenula. Error bars represent
SD. Representative low-magnification images of WFA labeling in the mouse habenula at ZT8 (C) and ZT20 (D).

examined (Table 3). In comparison, average daily amount of
wheel-running activity showed a significant effect on den-
sities of WFA+ PNNs in only the central amygdala and TRN
(Table 3).

Circadian rhythms of PNNs in the mouse brain

These studies were designed to assess whether diurnal
rhythms in mice reflect a true circadian rhythm, and to
confirm the existence of PNN density rhythms in a sepa-
rate strain of mice. We used adult male C57/BI6 mice
housed in a 12/12 LD cycle and then placed into constant
darkness for three full 24-h cycles to quantify WFA+ PNN
rhythms in free-running circadian conditions. In mice kept
in constant darkness, numerical density of WFA+ PNNs
displayed circadian rhythms in all regions identical to diur-
nal rhythms described above, with consistent peaks at
approximately CT20 and troughs at approximately CT8
across regions (Fig. 6).

Sleep deprivation prevents the decrease of PNNs
during the day in the mouse hippocampus

Sleep deprivation by gentle handling has been previ-
ously shown to prevent synaptic modification that occurs
in the hippocampus during sleep in rodents (Havekes et

July/August 2020, 7(4) ENEURO.0034-19.2020

al., 2016; Raven et al., 2019). Here, we use the same ap-
proach to test the hypothesis that sleep deprivation pre-
vents the decrease of WFA+ PNN densities in the mouse
hippocampus. Mice that were sleep deprived for 5 h
(ZT0-ZT5) starting from the beginning of the light cycle
had significantly higher numerical density of WFA+ PNNs
in the dentate gyrus (p =0.01) and sectors CA4 (p = 0.01),
CA3/2 (p = 0.01), and CA1 (p = 0.001; Fig. 7B-D). Similar
differences in WFA+ PNN densities were observed in the
amygdala, habenula, and prefrontal cortex (Fig. 7E-G). In
a set of animals that underwent auditory fear conditioning,
5 h of sleep deprivation significantly enhanced fear mem-
ory extinction (Fig. 7A).

Association of cathepsin-S microglia with diurnal PNN
rhythms

Cathepsin-S has been reported to be rhythmically ex-
pressed in the mouse prefrontal cortex and associated
with diurnal rhythms in dendritic spines and electrophysi-
ological properties of prefrontal cortex neurons (Hayashi
et al., 2013b). As a first step in testing whether cathepsin-
S may contribute to circadian modification of PNN integ-
rity, we tested the hypothesis that its expression in micro-
glia may vary according to a diurnal rhythm, antiphase to
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Figure 5. Diurnal rhythms of PNNs in the mouse TRN. Analysis of WFA+ PNNs across the 24-h cycle in male mice housed in a 12/
12 h LD cycle revealed a diurnal rhythm of WFA+ PNNs in the TRN (A) with a peak at ~ZT20 and a trough at ~ZT8. Error bars rep-
resent SD. Representative low-magnification images of WFA labeling in the mouse TRN at ZT8 (B) and ZT20 (C).

WFA+ PNN rhythms. We observed a diurnal rhythms of
cathepsin-S-IR microglia densities in the mouse hippo-
campus, antiphase to the rhythms of WFA+ PNNs in this
region (Fig. 8), with peaks at approximately ZT6 and
troughs at ZTO0. Similar diurnal cathepsin-S rhythms were
observed in the amygdala and prefrontal cortex (Fig. 9).
No significant effects of average daily wheel-running ac-
tivity on cathepsin-S-IR cell densities were observed
(Table 3). Finally, to confirm that cathepsin-S degrades

PNNs, we incubated mouse sections in active cathepsin-S
(8 and 24 h). Our results show an incubation time-depend-
ent decrease of WFA+ PNN labeling, with a significant
54.5% decrease after 3 h (p < 0.02) and a complete elimina-
tion after 24 h (p < 0.0001; Fig. 10A-F). Dual immunohisto-
chemistry confirmed that virtually all (88.12-92.95%) of
cathepsin-S-IR cells in the mouse hippocampus, infralimbic
and prelimbic cortex, amygdala, habenula, and TRN corre-
spond to IBA1-positive microglia (Fig. 10G-N).

Table 3: Summary table of ZT time and average daily running activity effects on WFA+ PNN and CatS-IR cell densities

ZT time ZT time Avg daily wheel running Avg daily wheel running
F ratio p value activity F ratio activity p value
CA1 PNNs 12.51 0.004 0.01 0.92
CA2/3 PNNs 20.21 <0.0001 4.07 0.07
CA4 PNNs 26.55 <0.0001 23.71 0.12
DG PNNs 7.38 0.003 0.02 0.91
Lateral amygdala PNNs 9.16 0.001 0.02 0.98
Basolateral amygdala PNNs 10.81 0.0007 1.72 0.22
Central amygdala PNNs 48.66 <0.0001 18.15 0.002
TRN PNNs 4.69 0.02 5.71 0.03
Lateral habenula PNNs 10.25 0.0009 0.88 0.37
Medial habenula PNNs 5.31 0.01 0.07 0.78
IL superficial PNNs 14.72 0.001 0.03 0.96
IL deep PNNs 10.94 0.003 0.88 0.38
PL superficial PNNs 28.16 0.0002 2.51 0.16
PL deep PNNs 31.77 <0.001 0.94 0.37
CA1 CatS 9.48 0.008 2.29 0.18
CA2/3 CatS 5.88 0.02 1.12 0.33
CA4 CatS 6.79 0.01 3.01 0.13
DG CatS 54.10 <0.0001 5.59 0.06
Lateral amygdala CatS 6.01 0.02 0.22 0.65
Basolateral amygdala CatS 26.25 0.0002 3.95 0.09
Central amygdala CatS 14.21 0.001 0.02 0.88
IL superficial CatS 8.20 0.05 0.17 0.71
IL deep CatS 7.67 0.04 0.50 0.52
PL superficial CatS 28.21 0.009 0.18 0.70
PL deep CatS 93.77 0.002 0.009 0.92

Values represent F ratios and p values derived from ANCOVA models testing effects of ZT time and average daily wheel-running activity on WFA+ PNN densities
and cathepsin-S-IR cell densities. Statistically significant differences are indicated in bold = p < 0.05.
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Figure 6. Circadian rhythms of PNNs in the mouse brain. Circadian rhythms in the density of WFA+ PNNs were observed in mice
housed in constant darkness. In the hippocampus, these rhythms were similar to the diurnal rhythms observed in the CA regions
and the DG (A-D); circadian rhythms in the density of WFA+ PNNs in the mouse prefrontal cortex also paralleled the observed diur-
nal rhythms in these regions, with peaks at ~CTO and troughs at ~CT8 (E-H), with the exception of the deep layers of the IL cortex,
which showed a peak at ~CT20 and trough at CT8 (F). Circadian rhythms of WFA+ PNN densities were also observed in the lateral,
basal, and central amygdala nuclei in constant darkness, with a peak at ~CT16 and a trough at ~CT6 (/I-K). Circadian rhythms of
WFA+ PNN densities in the lateral and medial habenula and TRN paralleled diurnal PNN rhythms in these regions (L-N). Error bars

represent SDs.

Diurnal rhythms of PNNs in the human amygdala and
TRN

For these studies, we used TOD for each subject as a
proxy for diurnal rhythms (ZT; see Discussion) to test the
hypothesis that WFA+ PNN numbers vary in a diurnal
manner in the human amygdala and TRN. We observed
differences in WFA+ PNN numbers in subjects with a
TOD during the day in comparison to subjects with a TOD
during the night in the human amygdala (Fig. 11A-D).
Quartic regression analysis revealed a diurnal rhythm of
WFA+ PNNs Nt in the human amygdala (Fig. 11D), with
peaks at noon and midnight, and troughs at 4 A.M. and 8
P.M. In contrast, we observed day/night differences in
WFA+ PNN numbers in the human TRN that are opposite
to the human amygdala, with higher numbers of PNNs at
night and lower numbers during the day (Fig. 11E-H).
Quartic regression plots revealed peaks of WFA+ PNN
numbers in the TRN at night during 4 A.M. and 8 P.M,,
and the lowest numbers at 12 P.M. and midnight (Fig.
11H).

Discussion

We present, to our knowledge for the first time, evi-
dence that WFA+ PNN vary according to diurnal rhythms
in the human brain and to diurnal and circadian rhythms in

July/August 2020, 7(4) ENEURO.0034-19.2020

the rodent brain. Our data add to a growing number of
studies demonstrating that PNNs are dynamic structures,
responding to the environment and potentially contribut-
ing to memory consolidation during sleep (Balmer et al.,
2009; Brown et al., 2009; Banerjee et al., 2017; Dingess et
al., 2018; Slaker et al., 2018), We show that numbers of
WFA+ PNN follow diurnal rhythms in several brain re-
gions in mouse and in human. Importantly, we show that
WFA+ PNN rhythmicity occurs in mice kept in constant
darkness, supporting the claim that these changes reflect
circadian rhythms rather than a response to light-dark
cycles (Fig. 6). Our results also provide evidence for a role
of the microglia-derived matrix protease cathepsin-S,
known to contribute to synaptic plasticity (Hayashi et al.,
2013b). We show a diurnal rhythm of cathepsin-S expres-
sion in microglia, opposite to the observed PNN rhythms,
and demonstrate that cathepsin-S eliminates WFA+ PNN
labeling. Taken together, these results support the hy-
pothesis that cathepsin-S may represent one of the en-
dogenous proteases contributing to WFA+ PNN rhythms.
PNN rhythms in the mouse hippocampus coincide with
reported rhythms in LTP, suggesting that WFA+ PNNs
decrease during sleep, when lower levels of LTP were
reported to occur (Chaudhury et al., 2005), and in-
crease during wakefulness when higher levels of LTP
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Figure 7. Sleep deprivation prevents PNN decreases. Five hours of sleep deprivation, from lights on (7 A.M.) to 12 P.M. following
auditory fear conditioning, resulted in rapid extinction of fear memory (A), along with significantly higher numerical density of WFA+
PNNs in the hippocampus (B). Representative photomicrographs of the hippocampus labeled with WFA from a control mouse (C)
and a sleep-deprived mouse (D). Scale bar= 1000 um. Similar increases in densities of WFA+ PNNs in SD mice were also observed
in the amygdala (E), habenula (F), and prefrontal cortex (G). Error bars represent 95% confidence intervals.

occur as animals encode new memories (Hou et al.,
2013; Fig. 6). We suggest that diurnal rhythms of WFA+
PNNSs in the regions examined may have broad implica-
tions for emotional memory processing and psychiatric
disorders.

Technical considerations
Interpretation of WFA+ PNN rhythms

PNNs are highly complex structures formed by several
glycoproteins and proteoglycans, link proteins and hya-
luronan (Maeda, 2010; Miyata et al., 2012). WFA detects a
specific sulfation motif on N-acetylgalactosamine at the
terminal ends of CS chains (Caterson et al., 1990; Miyata
et al., 2012). CS chains can be modified by addition of sul-
fation groups at the two, four, or six positions along the
chains, allowing for highly complex and dynamic modifi-
cation (Caterson et al., 1990; Maeda, 2010; Miyata et al.,
2012; Pantazopoulos et al.,, 2015). Furthermore, CS
chains can be cleaved at varying points along the chain

July/August 2020, 7(4) ENEURO.0034-19.2020

by several matrix proteases (Muir et al., 2002; Porter et
al., 2005; Pantazopoulos et al., 2015). Together, these
considerations suggest that it is unlikely that the complex
PNN structure may be entirely degraded and rebuilt on a
24-h cycle. We propose that the diurnal and circadian
WFA+ PNN rhythms we observed may reflect modifica-
tions of the biochemical characteristics of these struc-
tures, perhaps impacting the CS chain sulfation pattern
detected by WFA. It is important to emphasize that grow-
ing and compelling evidence shows that PNN and ECM
functions are dictated by dynamic posttranslational modi-
fications of their components mediated by matrix pro-
teases (Pantazopoulos and Berretta, 2016; Lasek et al.,
2018; Wen et al., 2018). Notably, these modifications de-
termine whether effects of ECM components on synaptic
plasticity are inhibitory or permissive (Miyata et al., 2012;
Foscarin et al., 2017; Yang et al., 2017). Our data showing
cathepsin-S rhythms antiphase to PNN rhythms, and the
ability of cathepsin-S to eliminate WFA+ PNN labeling,
support this interpretation and represent the first step in
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Figure 8. Cathepsin-S diurnal rhythms in the mouse hippocampus. Diurnal rhythms in densities of cathepsin-S-IR cells were ob-
served in CA1 (A), CA2/3 (B), CA4 (C), and the DG (D) in mice, with expression peaking during the middle of the light cycle, when
WFA+ PNN numbers are low in these regions, and decreasing during the dark cycle, when WFA+ PNN densities are high. Error
bars represent SD. Representative photomicrographs of the hippocampus labeled with cathepsin-S at ZT8 (E) and ZT20 (F).
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Figure 9. Cathepsin-S diurnal rhythms in the mouse amygdala and prefrontal cortex. Diurnal rhythms in densities of cathepsin-S-IR
cells were observed in the lateral amygdala (A), basal amygdala (B), and central amygdala (C), with expression peaking during the
middle of the light cycle, when WFA+ PNN numbers are low in these regions, and decreasing during the dark cycle, when WFA+
PNN densities are high. Similar diurnal rhythms were also observed in the infralimbic cortex superficial layers (D), prelimbic cortex
superficial layers (E), infralimbic cortex deep layers (F), and prelimbic cortex deep layers (G). Error bars represent SD.

examining this process. However, a significant limitation
is that our current data show associations but do not
demonstrate mechanistic effects of cathepsin-S expres-
sion rhythms on PNN rhythms. Our data showing diurnal
rhythms of cathepsin-S expression represents the first
step in testing a broad range of proteases from several
cell types. Circadian regulation of PNNs is likely to consist
of a complex molecular signaling system involving multi-
ple proteases and ECM molecules, encompassing several
cell types. Future studies focused on circadian expression
of specific PNN components, matrix proteases and sulfo-
transferases will provide insight into the mechanisms

July/August 2020, 7(4) ENEURO.0034-19.2020

underlying circadian PNN modification and direct effects
on memory processing.

TOD in human postmortem subjects as a proxy for diurnal
rhythms (ZT)

Human postmortem studies have successfully used
TOD as a proxy for diurnal rhythms (approximate ZT), to
study diurnal rhythms of gene and protein expression in
human brain. An obvious limitation is that TOD represents
a single measure per subject at a specific time point,
rather than repeated measures across time. However,
several human studies demonstrated predicted rhythmic
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vast majority of cathepsin-S-IR cells in the mouse hippocampus co-express the microglial marker IBA1 (G-N). Scale

bar=50 um.

expression of clock genes in several brain regions, and of
SST in the amygdala (Li et al., 2013; Bunney et al., 2015;
Chen et al., 2016; Pantazopoulos et al., 2017). Im-
portantly, rhythmic patterns, such as peak phase relation-
ships between clock molecules, demonstrated in human
were consistent with those reported in rodents, including
staggered phase relationship between Per1, Per2, and
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Per3 genes (Lamont et al., 2005; Ramanathan et al., 2010;
Albrecht et al., 2013; Li et al., 2013). Molecular rhythms
reported in the human cortex have been independently re-
plicated, providing further support for the validity of this
approach (Li et al., 2013; Chen et al., 2016). The WFA+
PNN rhythms observed in the amygdala nocturnal mice
(Figs. 1, 6) are antiphase to the PNN rhythms observed in
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Figure 11. Diurnal rhythms of PNNs in the human brain. WFA+ PNN numbers vary with TOD in the human brain. Photomicrograph
depicting PNN labeling by WFA lectin in the human amygdala during the day (A) and at night (B). WFA+ PNNs displayed a signifi-
cant day/night difference in the human amygdala (C), with peaks PNN numbers at noon and midnight, and troughs at 4 A.M. and 8
P.M. D, Photomicrograph depicting PNN labeling in the human TRN during the day (E) and at night (F). Significant day/night differ-
ences were observed in total numbers of WFA+ PNNs in the TRN (G). Quartic regression plots revealed a dual peak rhythm in the
TRN that is antiphase to the rhythm observed in the amygdala (H). Error bars represent 95% confidence intervals.

diurnal human subjects in the same region (Fig. 11), pro-
viding further support for the approach of using TOD to
analyze rhythmic relationships in human postmortem
samples.

Implications for synaptic plasticity and memory
consolidation

Several hypotheses have been put forth to link wake/
sleep cycles to synaptic mechanisms underlying memory
consolidation. For instance, studies from Tononi and
Cirelli support the synaptic homeostasis hypothesis of
sleep (Tononi and Cirelli, 2006, 2014). Briefly, neurons
form and strengthen many new synapses during
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wakefulness, as organisms interact with their environment
and encode new memories. During sleep, when the active
encoding process is offline, synapses are downscaled, to
enhance the signal-to-noise ratio, thus improving memory
function (Tononi and Cirelli, 2006, 2014). Consistent with
this hypothesis, decreases of dendritic spines and synap-
ses during sleep have been reported in sensory and
motor cortical regions (Maret et al., 2011; de Vivo et al.,
2017). An alternative theory, suggested by Rasch and
Born, postulates that memories are reorganized during
slow wave sleep in a process called systemic consolida-
tion (Rasch and Born, 2013). During systemic consolida-
tion, memory representations are reactivated and
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transferred from short-term storage sites, such as the hip-
pocampus, into long-term storage in neocortical areas
where they are integrated into existing schemas (Rasch
and Born, 2013). Memories are then strengthened in
these long-term storage areas during REM sleep, in a pro-
cess called synaptic consolidation, while the short-term
storage memories are removed via synaptic pruning
(Rasch and Born, 2013).

We speculate that diurnal molecular modifications of
PNNs may contribute to memory formation and consoli-
dation mechanisms during the wake/sleep cycle, favoring
activity-driven synaptogenesis and synaptic refinement,
respectively. For instance, our results on the effects of 5-h
sleep deprivation on WFA+ PNNs in the mouse hippo-
campus are consistent with reports that 5 h of sleep de-
privation prevents changes in dendritic spine densities
in the hippocampus occurring during sleep (Havekes et
al., 2016; Raven et al., 2019; Spano et al., 2019;
Gisabella et al., 2020). PNN rhythms observed in our
study may reflect ongoing systemic and synaptic con-
solidation during sleep proposed by Rasch and Born
(Rasch and Born, 2013). For instance, WFA+ PNNs
changes in mice the hippocampus are more active dur-
ing wakefulness, as suggested by enhanced LTP in
this region during the night (Chaudhury et al., 2005).
Regional differences in PNN rhythms may also reflect
phase differences in molecular clock rhythms of these
regions. Region specific rhythms in the clock protein
Per2 have been described previously in rodents and
humans (Lamont et al., 2005; Li et al., 2013; Harbour et
al., 2014; Chen et al., 2016).

Recent evidence shows that cathepsin-S deletion in
knock-out mice contributes to failure to downscale syn-
apses during sleep (Hayashi et al., 2013b). In these mice,
reduced EEG 6 wave power and failure to reduce ampli-
tude and frequency of action potentials and to reduce
dendritic spines during sleep supports a role for cathep-
sin-S in downscaling synaptic strength during sleep
(Hayashi et al., 2013b). Our results show that rhythms of
cathepsin-S expression are antiphase with respect to
WFA+ PNNs rhythms, i.e., high cathepsin-S expression is
associated with low WFA+ PNN numbers, and that ca-
thepsin-S reduces WFA+ PNN labeling. Together, these
findings suggest that increased cathepsin-S during sleep
may represent one of several molecules that contribute to
modifying PNN composition. In turn, such modifications may
contribute to synaptic downscaling and remodeling during
memory consolidation (Fig. 12). This hypothesis is supported
by evidence for the involvement of the microglial circadian
molecular clock in the regulation of microglial morphology,
immune response, and synaptic regulation (Hayashi et al.,
2013a,b; Fonken et al., 2015). Our results suggest an addi-
tional circadian role for microglia in synaptic regulation,
through PNN modification potentially modulating memory
consolidation processes.

Circadian rhythms in PNN composition may also be regu-
lated by proteases and CSPG production from several cell
types including astrocytes and neurons, which produce
many of the core PNN components as well as endogenous
proteases known to modify PNNs (Pantazopoulos and
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Figure 12. Microglial expression of cathepsin-S may modify
PNNs to allow for memory consolidation during sleep. In the
mouse hippocampal sector CA1, diurnal rhythms in the numeri-
cal density of WFA+ PNNs decreases during the day as mice
sleep, reaching the lowest density in WFA+ PNN numbers be-
tween ZT4-ZT10 (green curved line). This coincides with the
peak expression of cathepsin-S (red curved line) and the re-
ported daytime decrease in LTP (blue circles; from Chaudhury
et al.,, 2005). In comparison, the numerical density of WFA+
PNNs peaks during the dark at ~ZT20 during the active period
for nocturnal mice, coinciding with the low point of cathepsin-S
immunoreactivity in this region as well as the reported increase
in LTP at night in mice (pink circles; from Chaudhury et al,,
2005). These results suggest that cathepsin-S modifies PNN
composition, coinciding with decreased TLP during sleep, to
allow for memory consolidation, and PNN composition is re-
stored during the active wake periods to allow for optimal en-
coding of novel information.

Berretta, 2016; Miyata and Kitagawa, 2017; Bozzelli et al.,
2018). Furthermore, although our evidence suggests that
circadian rhythms in PNN composition may contribute to
synaptic regulation during sleep, we do not demonstrate a
mechanistic effect on synaptic regulation or memory con-
solidation. PNN circadian rhythms may be involved in other
processes such as resolution of oxidative stress during
sleep. Several studies suggest that sleep deprivation con-
tributes to increased oxidative stress in in the brain (Silva et
al., 2004; Ramanathan and Siegel, 2011; Alzoubi et al.,
2012; Harkness et al., 2019), and PNNs are critically in-
volved in protecting fast-firing neurons from oxidative stress
(Cabungcal et al., 2013). Thus, rhythms in PNN composition
may reflect periods of reduced neuronal activity and resolu-
tion of oxidative stress during sleep. A recent study report-
ing increased oxidative stress in parvalbumin (PVB) neurons
together with increased WFA labeling of PNNs following
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sleep deprivation supports this hypothesis (Harkness et al.,
2019).

Implications for psychiatric disorders

In the present study, we focused on brain regions in-
volved in emotional memory processing and implicated in
psychiatric disorders (Vyas et al., 2002; Sartorius et al.,
2010; Li et al., 2011; Mahan and Ressler, 2012; Mauney et
al., 2013; Meyer et al., 2014; Pantazopoulos et al., 2017;
Wells et al., 2017). Diurnal rhythms of PNNs in human
subjects have broad implications for psychiatric disor-
ders. PNN deficits have been reported by several groups
in the amygdala, entorhinal cortex, hippocampus, pre-
frontal cortex, and TRN in schizophrenia and bipolar dis-
order (Pantazopoulos et al., 2010, 2014, 2015; Mauney et
al.,, 2013; Enwright et al., 2016; Steullet et al., 2018).
Disruption of PNNs in these disorders may alter rhythms
of synaptic plasticity and in turn contribute to shared syn-
aptic deficits (Penzes et al., 2011; Glausier and Lewis,
2013; Shelton et al., 2015; MacDonald et al., 2017). Such
deficits may arise from disrupted memory consolidation
processes allowing for decreased synaptic formation
and/or increased synaptic pruning in brain regions in-
volved in emotional memory processing.

Abnormalities in sleep and circadian rhythms have also
been consistently reported in these disorders (McClung,
2013; Manoach et al., 2016; Pantazopoulos et al., 2017;
Seney et al., 2019). Decreased sleep spindles, generated
by the TRN, and memory consolidation deficits are
emerging as consistent characteristics of schizophrenia
(Ferrarelli et al., 2007; Manoach et al., 2010, 2014).
Decreased sleep spindles have been reported in several
independent studies, including in unmedicated patients
with schizophrenia, and in first-degree relatives, suggest-
ing that this represents a core genetic component of the
disease rather than medication effects or consequence of
disease progression (Ferrarelli et al., 2007; Manoach et
al., 2010, 2014). Disruption of WFA+ PNN rhythms in sub-
jects with schizophrenia may contribute to sleep spindle
and memory consolidation deficits in several ways.
WFA+ PNNs regulate firing rates of neurons expressing
PVB, including those in the TRN that generate sleep spin-
dles (Csillik et al., 2005; Katsuki et al., 2017). Furthermore,
decreases of PVB neurons were detected in the TRN of
subjects with schizophrenia (Steullet et al., 2018). PNNs
protect PVB neurons from oxidative stress (Cabungcal et
al., 2013), thus disruption of PNN rhythms may leave PVB
neurons more susceptible to accumulation of oxidative
damage during sleep, resulting in loss of PVB neurons in
subjects with schizophrenia (Steullet et al., 2018). PVB
deficits in TRN function have been proposed by several
groups to contribute to memory consolidation deficits
in schizophrenia (Manoach et al., 2016; Ferrarelli and
Tononi, 2017). Disrupted PNN rhythms in the TRN may
contribute to a decreased ability of this region to generate
sleep spindles and, in turn, memory consolidation deficits.
In addition, disrupted PNN rhythm composition by ca-
thepsin-S in expression from microglia in subjects with
schizophrenia may contribute to memory consolidation
deficits through disruption of local synaptic downscaling
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and reorganization proposed to occur during sleep
(Tononi and Cirelli, 2006, 2014; Rasch and Born, 2013).
Cathepsin-S knock-out mice, in which diurnal rhythms of
dendritic spine density were reported (Hayashi et al.,
2013b), also display deficits in social interaction and novel
object recognition (Takayama et al., 2017), supporting the
hypothesis that cathepsin-S rhythms regulate key roles of
PNNs in memory processing and social behaviors that are
disrupted in subjects with schizophrenia.

Our findings may also be relevant to the pathophysiol-
ogy of PTSD. PNNs are strongly involved in fear memory
processing, which is enhanced in this disorder (for review,
see Parsons and Ressler, 2013; see also Gogolla et al.,
2009; Banerjee et al., 2017). Sleep deprivation has been
proposed as an early therapeutic approach for PTSD fol-
lowing a traumatic experience (Kuriyama et al., 2010;
Cohen et al., 2012, 2017). Disruption of molecular proc-
esses involved in PNN rhythms may represent one of the
potential mechanisms through which sleep deprivation
may impact memory consolidation as a possible thera-
peutic approach for alleviating the strength of fear memo-
ries contributing to PTSD.

In summary, we provide evidence for diurnal and circa-
dian rhythms of WFA+ PNN numbers in the human and
rodent brain, suggesting that their composition is modi-
fied on a daily basis. Rhythms in PNN composition may
be mediated in part by cathepsin-S expression originating
from microglia. These rhythms may contribute to de-
creased LTP reported during sleep in the hippocampus,
suggesting a key process through which multiple cell
types including microglia modify PNNs to allow for to
memory consolidation.
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