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Abstract

Humans can reason at an abstract level and structure information into abstract categories, but the underlying
neural processes have remained unknown. Recent experimental data provide the hint that this is likely to in-
volve specific subareas of the brain from which structural information can be decoded. Based on this data, we
introduce the concept of assembly projections, a general principle for attaching structural information to con-
tent in generic networks of spiking neurons. According to the assembly projections principle, structure-encod-
ing assemblies emerge and are dynamically attached to content representations through Hebbian plasticity
mechanisms. This model provides the basis for explaining a number of experimental data and provides a
basis for modeling abstract computational operations of the brain.

Key words: assemblies; cognition; factorized codes; Hebbian plasticity; spiking neural networks; structural
knowledge

(s )

High-level cognition in the human brain necessitates dynamically changing structured representations of in-
formation. There exists experimental evidence that in cortex, sensory content is enriched with structural in-
formation using a factorized code. We introduce the concept of assembly projections, a general principle
for attaching structural information to content in generic neural networks. Assembly projections provide the
basis for explaining a number of experimental findings. In addition, the model is capable of performing ele-
mentary cognitive processing operations, thus extending the computational capabilities of neural network
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Introduction

The flexibility of human behavior is rooted in the ability
to assign abstract structural information to sensory con-
tent. It has been argued that such handling of structural
knowledge is essential for learning on limited training
data, for generalization beyond simple interpolation of ob-
servations, and for real-world language understanding
(Marcus, 2003, 2018; Behrens et al., 2018; Frankland and
Greene, 2019a). However, the underlying neural proc-
esses that enable flexible assignment of structural infor-
mation to content have remained unknown.

It is widely believed that sparse assemblies underlie the
representation of content in cortex. “Concept cells” have
been found in the medial temporal lobe (Quian Quiroga,
2016), which respond to unique concepts present in the
stimulus regardless of the mode of presentation, giving
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rise to a sparse and highly invariant representation of
input content. There exists experimental evidence that in
cortex, such content is enriched with structural informa-
tion using a factorized code, i.e., sensory content and
structural information are not represented in an inter-
mingled manner, but rather separately. Structural infor-
mation may be of a continuous nature, such as the spatial
or temporal context (Miller et al., 2013; Buzsaki and
Tingley, 2018; Behrens et al., 2018), or non-continuous
categorical such as semantic roles of objects in episodes
(Frankland and Greene, 2019a). In this article, we ask how
the latter type, categorical structural information, can be
attached to sensory content. Findings of Frankland and
Greene (2015) provide some insights into the underlying
cortical mechanisms in the context of human language
processing. They investigated the cortical response to sim-
ple sentences using functional magnetic resonance imaging
(fMRI) and found a subarea of the left mid-superior temporal
cortex (ImMSTC) from which the identity of the agent in the
sentence could be decoded. The patient could be decoded
from another, distinct part of ImSTC. This indicates that
there exist a number of distinct areas in ImSTC, each of
which representing structural information of a specific cate-
gory related to the current stimulus. Analogous findings for
the interpretation of visual scenes suggests that this is a
more general processing principle (Wang et al., 2016).

We show that these hints from experimental data sug-
gest a novel concept for the general task of attaching
structural categories to content and the flexible use of this
structured representation in mental tasks: assembly pro-
jections. According to this concept, structure-encoding
assemblies emerge in distinct subareas for different struc-
tural variables and are attached to content representa-
tions through Hebbian plasticity mechanisms in generic
spiking neural networks. We base our model on a minimal
set of assumptions, in particular, we make no assump-
tions on specific wiring or symmetric connectivity. We
model each structure-encoding subarea (referred to as
“neural space” in the following) as one population of neu-
rons with divisive inhibition (Carandini and Heeger, 2011;
Wilson et al., 2012). The full model may have several such
neural spaces, one for each represented structural cate-
gory. These neural spaces are sparsely connected to a
single “content space” where neural assemblies repre-
sent sensory content, akin to concept cell assemblies
(Fig. 1A). Such a context-invariant representation has
been proposed previously, perhaps situated in the poste-
rior middle temporal gyrus or broadly distributed
(Frankland and Greene, 2019a). We propose that the con-
trol over the attachment of structural information to con-
tent is implemented through disinhibition (Pfeffer, 2014;
Caroni, 2015; Harris and Shepherd, 2015). When a neural
space for structural information is disinhibited while a
content assembly is active, a sparse assembly also
emerges there. Fast Hebbian plasticity ensures that this
assembly is stabilized and synaptically linked to the con-
tent assembly. In other words, the neural space for struc-
tural information now contains a projection of the content
assembly, an assembly projection. We propose that infor-
mation about this assembly is retained in the neural space
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through transiently increased neuronal excitabilities
(Letzkus et al., 2015).

We show that structural information can be flexibly linked
to content assemblies in this model and that the resulting
activity of the network is consistent with the fMRI data by
Frankland and Greene (2015). We further show that this
model is capable of performing additional elementary proc-
essing operations proposed as atomic computational primi-
tives in the brain (Marcus, 2003; Zylberberg et al., 2013;
Marcus et al., 2014a): copying the content from one struc-
tural context to another, and the comparison of contents.
Our results indicate that the concept of assembly projec-
tions extends the computational capabilities of neural net-
works in the direction of cognitive computation, symbolic
computation, and the representation and computational
use of abstract knowledge.

Materials and Methods

General network architecture

The network consists of one content space C as well as
one or several neural spaces S1,So, . . . for structural in-
formation. Both the content space and each neural space
consist of a pool of excitatory and a pool of inhibitory neu-
rons (ratio, 4:1; the number of excitatory neurons is
N =1000 for the content space and N =2000 for each neu-
ral space in our simulations). Excitatory and inhibitory
neurons are sparsely interconnected. Within each space,
excitatory neurons are connected by sparse recurrent
connections with p=0.1 (i.e., for each pair of neurons, a
connection between them is established with probability
p, independently of all other pairs). Excitatory neurons in
each neural space receive sparse excitatory connections
(p=0.1) from the excitatory neurons in the content space
C and vice versa. Since the connections are drawn at ran-
dom, they are generally asymmetric. Neurons in C addi-
tionally receive input from an input population (N;, = 200
in our simulations).

Connections between excitatory and inhibitory
neurons

In the following, £ and Z denote the pool of excitatory
and inhibitory neurons within the content space or a neu-
ral space, respectively. The parameters for these connec-
tions are based on data from mouse cortex (Avermann et
al., 2012; Legenstein et al., 2017); the weights are static
are given in Table 1.

Neuron model

We used a single neuron model for all neurons in our
simulations. In this model, the probability of a spike of neu-
ronj at time t is determined by its instantaneous firing rate

pit) =c1 - Vi'(t)+cz - (€21 — 1), (1)

where ¢4, C», and c3 can be used to achieve linear or expo-
nential dynamics (we use ¢ = 0, ¢, = 1000 Hz, c3 = 1/mV for
excitatory neurons and ¢4 = 10 Hz/mV and ¢, = ¢z = 0 for in-
hibitory neurons). V;'(t) is the effective membrane potential,
which is calculated as V' (t) = Vj(t) +b;sm(t), Where b;ga(t)
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Figure 1. Neural spaces and assembly projections. A, Network structure. Rectangles indicate content space C (light blue, top).
Circles denote neurons (open: inactive; filled: active). Disinhibition is shown on the right of each space (filled black circle: inhibited;
open circle: disinhibited). Concepts are encoded in the content space through stable assemblies (only two assemblies for two con-
tents “ball” and “truck” are shown, strong recurrent connections are shown with colors based on assembly identity). Thin gray lines
between C and S as well as within S show sparse feedforward (FF), feedback (FB), and recurrent connections (randomly initiated,
connection probability p =0.1). Only a subset of 25 neurons is shown per space. B, Presentation of a concept through input neurons
(bottom, arrows) activates the encoding assembly in the content space if it is disinhibited (filled circles: active neurons). Initially, the
neural space S is inhibited, preventing plasticity from occurring at the potential feedforward/feedback and recurrent connections. C,
Disinhibition of the neural space enables the activation of neurons there and results in the formation of an assembly projection.
Hebbian plasticity at the potential connections leads to the emergence of an assembly in the neural space (strong recurrent connec-
tions in S are shown in color), which has strong synaptic connectivity with the active assembly in C (solid colored lines: feedforward
connections, i.e., from C to S; dashed: feedback). This mechanism allows the assignment of values to the variable encoded by the
neural space. Assignment of different values (left: “truck,” right: “ball”) give rise to different assembly projections (i.e., different as-

semblies in S and different connectivity between S and C, color encodes identity of the value assigned to the neural space).

is an adaptive bias which increases by some quantity Qe
every time the neuron spikes (otherwise it decays exponen-
tially with time constant 74,). b sta(t) is also clipped at some
value b, (in our simulations, gsfa = 0.02 MV, 74, = 5 s and
bsa = 0.5 mV for excitatory neurons in neural spaces; for all
other neurons gss, = 0). The membrane potential is calculated
using

Vi(t) = e ™/ ™Vi(t — At) + (1 — e /™)

R., (/,,syn(t) + hn(t — At)+le), ©)

where 7, is the membrane time constant, R, is the mem-
brane resistance, and / is a bias current (7, = 10 ms, R, =
0.5 MQ; furthermore, I, = 0.2 nA for excitatory and /o = 0 for
inhibitory neurons). The current /; 5, (t) results from incoming

spikes and is calculated via /ig,n(t) = > _ w;z(t), where zf)
i

are incoming spikes, and wj; are weights assigned to the spe-
cific connection. /;jn, controls the disinhibition and is set to —
4 nA for all neurons inside a neural space fif it is inhibited,
and 0 otherwise.

Table 1: Connection parameters for static connections
within each neural space and the content space

Connection  Probability = Synaptic weight  Synaptic delay
pA ms

E—=T 0.575 17.39 0.5

—E& 0.6 -4.76 0.5

A A 0.55 -16.67 0.5

Given are the parameters for connections between the excitatory population £
and the inhibitory population Z as well as for recurrent connections from the
inhibitory pool to itself. Recurrent excitatory connections are plastic and de-
scribed in Table 2.
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After a neuron has spiked, its membrane potential is
reset to zero, and the neuron enters a refractory period.
The duration of the refractory period (in milliseconds) is
randomly chosen per neuron at the start of the simulation
from a I distribution (k=4, u =3.5).

Plastic connections

A simple model for spike timing-dependent plasticity
(STDP) is used in the model for connections between ex-
citatory neurons. Each pairing of a presynaptic and a
postsynaptic spike with At = o — tre leads to a weight
change of

n(e*'“‘/” _ A,)

if At >0
Aw(At) = na(e M/~ — A

if At<0 ©)

where 7,.,7_>0 are time constants determining the
width of the learning window, A_ determines the negative
offset, @ determines the shape of the depression term in
relation to the facilitation term, and 7 is a learning rate.
This rule is similar to the one proposed by Nessler et al.
(2009), but without a weight dependency. The parameters
for all plastic connections are given in Table 2. Weights
were clipped between 0 and an upper bound dependent
on the connection type (see Table 2). As we assume that
disinhibition enables learning, the learning rates for all
synapses within a neural space were set to zero during in-
hibition periods.

Simulation

Network dynamics were simulated using NEST (Gewaltig
and Diesmann, 2007; Eppler et al., 2008) with a time step of
At=0.1ms (using PC hardware, Linux OS).

eNeuro.org
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Table 2: Connection parameters for all plastic connections in the model
Connection Probability Synaptic delay Synaptic weight Plasticity parameters
Initial Bounds a Ty T_ A_ n

ms pA pA ms ms
Content space
X —£& 1 1,10 0,0.8 0,0.8 0 25 0.4 0.01
S—E& 0.1 1,10 0.19%, 0.39" 0,0.87" 0" 20" 0.47" 0.008"
E—E 0.1 1 0 0,0.6 -1 25 407 0.5 0.0025
Neural space
C—E& 0.1 1,10 0.48",0.86" 0, 1.33" 0" 21" 0.28" 0.004"
E—E& 0.1 0.44",0.87" 0, 1.08" -1" 37" 49" 0.52" 0.006"

The parameters are given for incoming connections to the excitatory neurons (€) within the content space from the input population (X) and from neural
spaces (S) as well as for recurrent connections within the excitatory pool in the content space. For neural spaces, the parameters for incoming connec-
tions from the content space (C) and for recurrent excitatory connections are given. Synaptic delays and initial weights are drawn from uniform distribu-
tions within the given bounds. Highlighted parameters (*) were determined using an optimization procedure (see text).

Initial formation of assemblies in the content space

First, the content space learned to represent five very
simple patterns presented by the 200 input neurons. Each
pattern consisted of 25 active input neurons that pro-
duced Poisson spike trains at 100 Hz while other neurons
remained silent (firing rate 0.1 Hz). Each input neuron was
active in at most one pattern. This initial learning phase
consisted of 200 pattern presentations, where each pre-
sentation lasted for 200 ms followed by 200 ms of random
activity of the input neurons (all firing at 12.5Hz to have a
roughly constant mean firing rate of all input neurons).
After the training phase, synaptic plasticity of connections
between the input population and the content space as
well as for recurrent connections within the content space
was disabled.

After the training phase, each pattern was presented
once to the content space for 200 ms, and the neuronal
responses were recorded to investigate the emergence of
assemblies. If a neuron fired with a rate of >50Hz during
the second half of this period, it was classified to belong
to the assembly of the corresponding input pattern. This
yields five assemblies in C; two of these are shown in
Figure 1 (showing a subset of neurons of C, all large
weights between neurons belonging to some assembly,
i.e., >90% of the maximum weight, are shown with the
color reflecting the assembly identity).

We created 10 instances of such content spaces (i.e.,
random parameters such as synaptic delays and recur-
rent connections were redrawn), which were separately
trained.

Creation of assembly projections (CREATE operation)

Depending on the experiment, one or two neural
spaces were added (Sy and S, ), each consisting of
2000 excitatory and 500 inhibitory neurons. Figure 1A
shows the potential connections within the neural
space S as well as potential feedforward and feedback
connections (all existing connections denoted by thin
gray lines). Stable assemblies were induced in each
neural space separately by presenting each input pat-
tern to the content space for 1000 ms (leading to the ac-
tivation of the encoding assembly there; Fig. 1B), while
one of the neural spaces was disinhibited (Fig. 1C). This
was performed for every reported execution of an
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operation to obtain results which are independent of the
specific network wiring.

Figure 1C shows emerging assemblies (measured as
in the content space) in the neural space S during the
CREATE phase for two different contents (all large re-
current, feedforward, and feedback connections involv-
ing the assembly in S, i.e., the active neurons, drawn in
color; dashed lines denote feedback connections, i.e.,
from S to ().

In all following figures, assemblies and connectivity are
plotted as in Figure 1.

When given in the text, statistics of weights for different
connection types were obtained for a single content
space instance (from the test set, see below) after five
CREATE operations as previously described.

Optimization of plasticity parameters

A total of 23 model parameters controlling synaptic
plasticity (see Table 2) were optimized using a gradient-
free optimization technique. All parameters were con-
strained to lie in a biologically reasonable range.

We used the RECALL operation (see Recall of content
space assemblies) to assess the quality of parameters.
The cost function penalized mismatches of neural activity
in both neural spaces during the CREATE and RECALL
periods. We defined the set ASpeare = {n1,N2,...} contain-
ing the neurons n1,n»,..., which were active in the content
space C during the CREATE operation. Similarly, we de-
fined ASgca . for the neurons active in € during the subse-
quent RECALL, as well as AZgeare @nd ASgca for the
neural space. The cost in some iteration was then given by

C C v v
C= ‘ACREATE A ARECALL' +A ‘ACREATE A ARECALL'? (4)

where AAB = (A\B)U(B\A) is the symmetric differ-
ence between sets A and B and A = 10~ * is a trade-off
parameter.

The optimization procedure consisted of two steps: the
initial parameter set was obtained by evaluating 230 can-
didates from a Latin Hypercube sampler (McKay et al.,
1979) and choosing the parameter set with the lowest
cost. Then, a gradient-free optimization technique using a
fixed number of epochs (N = 500) was used to further
tune the parameters: in each iteration, a subset of
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parameters was chosen for modification (Bernoulli proba-
bility p = 0.5 per parameter). For each selected parameter,
a new value was drawn from a uniform distribution cen-
tered around the current value; the width of these pro-
posal distributions was decayed linearly from half of the
allowed parameter range (defined by the constraints as
the difference between upper and lower bound for each
parameter value) in the first iteration to 0.1% of the al-
lowed range in the last. (The proposal distributions were
also clipped to lie within the allowed range.) After evaluat-
ing the cost, the new parameter set was kept if the cost
was lower than the cost of the previous parameter set,
otherwise, the new parameters were discarded.

This optimization was performed using five pretrained
content space instances: two were used for evaluating the
costs and updating the parameters (cost terms were gener-
ated in two separate runs and summed to get the overall
cost), three for early stopping (i.e., after the optimization, the
parameter set giving the lowest cost when tested on these
three content spaces was chosen as final parameter set).
Using these parameters, the RECALL operation could reli-
ably be performed on the five content space instances used
during the optimization as well as on five new instances
which were not used for optimization (i.e., the similarity crite-
rion was met for each of the five values in each of the 10
content space instances; for details, see Results).

Recall of content space assemblies (RECALL
operation)

To test whether content can be retrieved from neural
spaces reliably, we first presented a pattern to the net-
work for 200 ms with one of the neural spaces S¢ or S»
disinhibited. This corresponds to a brief CREATE opera-
tion. Note that because assemblies in the neural spaces
were already created previously, the previously potenti-
ated synapses were still strong. Hence, the shorter pre-
sentation period was sufficient to activate the assembly in
the neural space. In the following, we refer to such a brief
CREATE as a loading operation. After this loading phase,
a delay period of 5 s followed (no input presented, i.e.,
input neurons firing at 12.5Hz). In order to make sure that
no memory was kept in the recurrent activity, all neural
spaces were inhibited in this period. After the delay, we
retrieved the content of the neural space in a RECALL op-
eration, in which the neural space S was disinhibited for
200 ms. During the first 50 ms of this phase, the content
space remained inhibited.

We used a linear classifier to assess the success of
such RECALL operations. The classifier was trained using
the responses of neurons in C after assembly induction
there (before the neural space was added to the circuit)
by low-pass filtering the spike trains Si(f) of each neuron
according to

Tie s

e = [ e st - sjas. ©)
0

with 7 p =20 ms and T p = 100 ms. The resulting vector of

r; values (at a temporal resolution of 1 ms) was used as
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input to the classifier. We then used the trained classifier
to classify the recalled content during the RECALL.

We also defined a similarity criterion based on the as-
sembly overlap between the responses in C after training
and during the RECALL. Neurons in the content space
were classified as belonging to the assembly correspond-
ing to the input pattern depending whether their firing rate
was >50Hz in the second half of the RECALL phase. We
say that the similarity criterion is met if 80% of the neu-
rons in the content space which belong to the assembly
measured after assembly induction (see Initial formation
of assembilies in the content space) are active during the
RECALL phase while at the same time the number of ex-
cess neurons (active during RECALL but not after training)
does not exceed 20% of the size of the original assembly.

Robustness to parameter variations

We tested the robustness of the model by randomly
varying its plasticity-controlling parameters and testing
the performance of the RECALL operation. We randomly
varied 20 of the parameters (Table 2, all highlighted pa-
rameters except for the « values controlling STDP shapes)
by sampling each parameter value v from a normal distri-
bution with mean v and SD opaamV. Some clipping was
necessary after sampling (time constants were forced to
be non-negative, weight initial values were clipped so that
the higher bound of the uniform distribution was larger
than the lower bound). We generated 100 different ran-
dom parameter combinations this way for a number of
values of oparam. AS 0 param iNCreases, the parameters de-
viate more strongly from their initial values. Still, the read-
out error for the RECALL operation remained quite low
even for substantial changes of the parameter values
(e.g., for oparam = 0.2, the mean readout error was <1%).
We also evaluated the similarity criterion defined in sec-
tion Recall through assembly projections (see Results,
Emergence of assembly projections through Hebbian
plasticity) that was based on the similarity of recalled as-
semblies to input-driven assemblies. The percentage of
trials when this criterion is met is very high even for sub-
stantial parameter variations.

We furthermore tested the robustness to a few model
parameters in particular. In all reported simulations, we in-
duced assemblies in content space C by 200 presenta-
tions of each input pattern. When varying the number of
presentations, we found that assemblies in content space
were also robustly induced with only 25 presentations (for
all input patterns, i.e., each individual pattern was pre-
sented five times on average). When testing the RECALL
operation after such reduced induction, the mean read-
out error remained below 1%. We next asked whether
the firing rates of input neurons had a significant impact
on recall performance. In this second test, we reduced
the firing rates of active input neurons from 100 to 60 Hz
while increasing the rate of inactive neurons from 0.1 to
1 Hz. Again, the mean readout error remained below 1%
when testing the RECALL operation. In our standard
model, both the content space and the neural spaces are
spontaneously active (5.5 and 2.6Hz, respectively).
Spontaneous activity is a hallmark of cortical circuits. In
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our model, it arises from the chosen model for interacting
excitatory and inhibitory populations (Jonke et al., 2017;
Legenstein et al., 2017). In a third test, we asked whether
these specific baseline firing rates were crucial for the
model. We therefore changed the parameters so both C
and S had either low (=~2.7 Hz) or high (~5.5 Hz) base fir-
ing rates in the absence of input. We found that in both
cases, the mean readout error at RECALL remained
below 1%.

Finally, we tested the capacity of the model with respect
to the number of concepts which can be stored in C and
stored/recalled in/from S. We found that increasing the
number of concepts reduced the assembly size per con-
cept. When encoding 30 concepts in C, concept assem-
blies consisted of only (7—29 neurons). Nevertheless,
RECALL still worked reasonably well (mean readout error
2.5%). When further increasing the number of concepts in
C, RECALL performance collapsed (35 concepts: mean
readout error 11.3%, 40 concepts: 46.1%). We have cho-
sen for this study a rather small network, and we were
more interested in general functional questions than in
questions of capacity. Network capacity has been rigor-
ously analyzed for Hopfield-type networks (Amit et al.,
1985). According to these analyses, it is expected that
network capacity should increase linearly with the number
of neurons in the network. While storage capacity in the
content space should in principle follow these classical
analyses, recall performance is an interesting open ques-
tion that needs further investigations.

Details to the attachment of roles to words

These experiments modeled the findings in (Frankland
and Greene, 2015) regarding the attachment of roles to
words in temporal cortex. We again used the network de-
scribed above with one content space C and two neural
spaces for structural information, which we refer to in the
following as Sagent and Spatient- INput patterns to the net-
work were interpreted as words in sentences. We used
the network described above with five assemblies in C
that represented five items (words) As,...,As and five as-
sembly projections in each neural space (created as be-
fore). We defined that A; represents “truck” and A,
represents “ball.” We considered the four sequences, corre-
sponding to four sentences: S1 = (agent = “truck,” patient =
“ball”), S2 = (patient = “ball,” agent = “truck”), S3 =
(patient = “truck,” agent = “ball”), S4 = (agent = “ball,” pa-
tient = “truck”). The processing of a sentence was modeled
as follows. The words “truck” and “ball” were presented to
the network (i.e., the corresponding input patterns) in the
order of appearance in the sentence, each for 200 ms, with-
out a pause in between. During the presentation of a word,
an assembly projection with the active assembly in C was
created in Sagent if it served the role of the agent or alterna-
tively in Spatient I its role was the patient. For example, for the
sentence “The truck hit the ball,” the input “truck” was pre-
sented, and a projection was formed with Sagent, then “ball”
was presented and a projection was formed with Spatient.
The sequence of sentences S1 to S4 was presented twice
to the network. The classifier described in the following was
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trained on the first sequence and tested on the second
sequence.

Spiking activity was recorded in all spaces. The first 50 ms
of each word display were discarded to allow the activity to
settle. Spikes were then low-pass filtered (as above; Eq. 5)
to obtain the filtered activity r{t) for each neuron i. To emu-
late low-dimensional fMRI signals, we randomly divided the
neurons in each space into five groups (“voxels”). The fil-
tered activities were summed over neurons (i.e., over i) with-
in each voxel and averaged over time (i.e., over t), resulting
in a coarse signal. We additionally added independent
Gaussian noise (mean: 0, variance: 5) to each datapoint. We
denote Dy ragent, Fpatents Fs, and re the low-dimensional
noisy signal vector from neural space Sagent, from neural
space Spatient; from both neural spaces (concatenated), and
from the content space, respectively.

The task for the first classifier was to classify the mean-
ing of the current sentence for each presentation (this is
equivalent to determining the role of the truck in the dis-
cussed example). Hence, the sentences S1 and S2 con-
stituted class Cqy and sentences S3 and S4 the class C;.
The classification was based on the network activity rg
from the neural spaces. Using Scikit-learn (version 0.19;
Pedregosa et al., 2011), we trained a classifier for logistic
regression using the traces from the neural spaces. For
comparison, a classifier was also trained in the same
manner on network activity re from the content space.

To model the second experiment from (Frankland and
Greene, 2015), we considered sentences that were formed
by tuples from the set of all five items A+, ..., As (see Results).
Then, the task for a second classifier (“who is the agent”)
was to use the low-dimensional network activity from the
neural space for the agent r.gent to classify the identity of the
current agent during those times when Sagent Was disinhib-
ited. The activity traces were created as in the previous ex-
periment. The data set was divided into a training set and a
test set as described in Results, and a classifier was trained
(as above, “agent decoder”). Finally, the task for a third clas-
sifier (“patient decoder”) was to classify from the sub-
sampled network activity of the neural space for the patient
rpatient the identity of the current patient during those times
when Spaient Was disinhibited. The procedure was analo-
gous to the procedure for the second classifier.

Details to copying of assembly projections (COPY
operation)

We tested the COPY operation using simulations with
one content space and two neural spaces. After a content
was loaded into Sy and a brief delay period (400 ms), a
RECALL operation was performed from S; (duration
200 ms as above). Then, S, was additionally disinhibited
for 100 ms. To test the performance, a RECALL was initi-
ated from S, 400ms later (same similarity criterion as
above). We report the results on the same five network in-
stances as before.

Details to comparison of assembly projections
(COMPARE operation)

The simulations testing the COMPARE operation again
used one content space and two neural spaces. We
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tested 25 comparisons in total, one for each possibility
how two neural spaces S1 and S, can form assembly pro-
jections with the five contents represented by the content
space C. The readout assembly consisted of 50 integrate-
and-fire neurons (resting potential -60 mV, firing threshold
—20 mV, membrane time constant 20 ms, refractory period
of 5ms with reset to the membrane potential) with sparse
incoming connections from excitatory neurons in the con-
tent space (connection probability 0.1) with depressing
synapses (Markram et al., 1998; parameters taken from
Gupta et al. (2000), type F2; connection weight 50 pA).
After two load operations (duration 200 ms, each followed
by 50 ms of random input), which store two assembly pro-
jections (to identical or different contents in C) in the neu-
ral spaces S and S,, we performed a recall operation
from each (400 ms in total, no delay). During this time, the
spike trains Si(t) for neuron i from the readout assembly
were recorded and filtered (as above; Eq. 5) to obtain the
low-pass filtered activity for each neuron i (T p = 100 ms,
7Lp = 20 ms). We calculated the activity of a readout pop-
ulation as Rreadout(t) = Z ri(t).
I

Code accessibility

The code used to produce the results in the paper is
freely available online at https://github.com/IGITUGraz/
structured_information_representation. The code is avail-
able as Extended Data 1.

Results

Generic network model for assembly projections

Experimental data obtained by simultaneous recordings
from large sets of neurons through multielectrode arrays or
Ca®" imaging showed that neural activity patterns in cortex
can be characterized in first approximation as spontaneous
and stimulus-evoked switching between the activations of
different (but somewhat overlapping) subsets of neurons
(Buzsaki, 2010; Bathellier et al., 2012; Luczak and MacLean,
2012). These subsets of neurons are often referred to as neu-
ronal assemblies. Consistent with this experimental data,
both specific content experienced through sensory inputs
and more abstract structural information are represented in
our model by corresponding assemblies of neurons in ge-
neric neural circuits. In particular, we assume that content,
which could be words, concepts, values, etc., is encoded by
assemblies in a content space C (Fig. 1A, bottom).

We assume that there exist specific cortical subareas
for some abstract structural categories. We model such
subareas for abstract categories S+, So,... as a distinct set
of neural spaces S1,Ss,.... A single neural space is indi-
cated in Figure 1A, top. Each neural space can be viewed
as functioning like a register in a computer. But in contrast
to such registers, neural spaces for structural information
do not store content directly. Instead, we hypothesize
that a storage operation leads to the emergence of an as-
sembly in the neural space. This assembly will preferen-
tially include neurons which are linked (by chance) via
sufficiently strong synapses to the assembly representing
the particular content in the content space. The synaptic
connections between these assemblies will further be
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strengthened (in both directions) by synaptic plasticity.
We call these projections of assemblies to neural spaces
assembly projections. In other words, by assembly pro-
jection, we mean the emergence of an assembly in a neu-
ral space as the result of afferent activity by an assembly
in the content space, with the establishment of strong
synaptic links between them.

Importantly, we do not assume specifically designed
neural circuits which enable the creation of such assem-
bly projections. Instead, we assume a rather generic net-
work for the content space and each neural space, with
lateral excitatory connections and lateral inhibition within
the space (a common cortical motif, investigated by
Jonke et al., 2017; Legenstein et al., 2017). Furthermore,
we assume that neurons in the content space are sparsely
connected to neurons in neural spaces and vice versa
(Fig. 1A). We will show that the creation of an assembly
projection in a neural space, implementing the attachment
of structural information to some content, emerges natu-
rally in such generic circuits with random connectivity
from plasticity processes.

In addition, our model takes into account that neurons typ-
ically do not fire just because they receive sufficiently strong
excitatory input. Experimental data suggest that neurons are
typically prevented from firing by an “inhibitory lock” which
balances or even dominates excitatory input (Haider et al.,
2013). Thus, a generic pyramidal cell is likely to fire because
two events take place: its inhibitory lock is temporarily lifted
(“disinhibition”), and its excitatory input is sufficiently strong.
A special type of inhibitory neuron (VIP cells) has been identi-
fied as a likely candidate for triggering disinhibition, since VIP
cells target primarily other types of inhibitory neurons (PV+
and SOM+ cells) that inhibit pyramidal cells (Harris and
Shepherd, 2015). Firing of VIP cells is apparently often
caused by top-down inputs (VIP cells are especially frequent
in layer 1, where top-down and lateral distal inputs arrive).
Their activation is conjectured to enable neural firing and
plasticity within specific patches of the brain through disinhi-
bition (Pfeffer, 2014; Caroni, 2015; Froemke and Schreiner,
2015; Fu et al., 2015; Letzkus et al., 2015). One recent study
also demonstrated that long-term plasticity in the human
brain can be enhanced through disinhibition (Cash et al.,
2016). We propose that top-down disinhibitory control plays
a central role for neural computation and learning in cortex
by initiating, for example, the creation and reactivation of as-
sembly projections. We note that we are not investigating
the important question: which neural processes resulted
in the decision to disinhibit this particular neural space, that
is, to decide whether a specific structural information is at-
tached to the current content. We modeled disinhibition of
neural and content spaces in the following way. As a default,
excitatory neurons received an additional strong inhibitory
current that silenced the neural space. When the space was
disinhibited, this inhibitory current was removed, which en-
abled activity in the neural space if excitatory input was suffi-
ciently strong (see Materials and Methods).

Emergence of assembly projections through Hebbian
plasticity

To test whether the assignment of structural information
to content can be performed by generic neural circuits,
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we performed computer simulations where stochastically
spiking neurons (for details, see Materials and Methods)
were embedded in the following network structure (Fig.
1A): the network consisted of a content space C with 1000
excitatory neurons and a single neural space S for struc-
tural information consisting of 2000 excitatory neurons. In
both spaces, neurons were recurrently connected (con-
nection probability 0.1), and lateral inhibition was imple-
mented by means of a distinct inhibitory population to
ensure sparse activity (excitatory to inhibitory neuron
ratio, 4:1; connectivity between excitatory and inhibitory
neurons was based on data; Avermann et al., 2012; see
Materials and Methods; Table 1). Because of stochastic
spiking of network neurons, both C and any neural space
S exhibited spontaneous activity (mean firing rate for dis-
inhibited C and S in the absence of input: 5.5 and 2.6 Hz,
respectively; specific spontaneous rate values do not
seem too important, see Materials and Methods).
Connections between C and S were introduced randomly
with a connection probability of 0.1. Neurons in the con-
tent space additionally received connections from 200
input neurons whose activity indicated the presence of a
particular input stimulus.

Hebbian-type plasticity is well known to stabilize as-
semblies (Litwin-Kumar and Doiron, 2014; Pokorny et al.,
2020), and it can also strengthen connections bidirection-
ally between neural spaces and the content space. In our
model, this plasticity has to be reasonably fast so that
connections can be strengthened within relatively short
stimulus presentations. As a Hebbian-type plasticity, we
used in our spiking neural network model STDP (Bi and
Poo, 1998; Caporale and Dan, 2008) for all synapses be-
tween excitatory neurons in the circuit (for more details,
see Materials and Methods). Other synapses were not
plastic.

We will in the following describe the behavior of this ge-
neric neural network model, how assembly projections
emerge, and how structured information can be recalled.
We will use the running example of nouns in sentences as
content and their semantic role as the structural category.
However, we emphasize that the model is not restricted
to semantic roles or language processing, it rather is a
model for the general enrichment of content with struc-
tural categories.

Emergence of content assemblies

We do not model the initial processing of sensory input,
which is in itself a complicated process. Instead, we as-
sume that assembilies in content space act as tokens for
frequently observed input patterns that have already been
extracted from the sensory stimulus. Hence, we induced
assemblies in content space C by an initial repeated pre-
sentation of simple rate patterns provided by 200 spiking
input neurons (see Materials and Methods). We first de-
fined five such patterns P, , Ps that modeled the input to
this space when a given content (e.g., the word “truck” or
“pball”) is experienced. These patterns were repeatedly
presented as input to the disinhibited content space (the
value space remained inhibited during this presentation).
Because of these pattern presentations, an assembly
C(P;) emerged in content space for each of the patterns P;
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(assembly sizes typically between 50 and 90 neurons) that
was robustly activated (average firing activity of assembly
neurons >50Hz) whenever the corresponding pattern
was presented as input (Fig. 1B). STDP of recurrent con-
nections led to a strengthening of synapses within each
assembly (mean weight = SD: 0.59 *+ 0.01 pA), while syn-
apse weights between assemblies were depressed
(0.00 = 0.001 pA,; for details, see Materials and Methods).

Emergence of assembly projections

Assume that an active assembly C(P) in content space
represents some content P (such as the word “truck”). A
central hypothesis of this article is that disinhibition of a
neural space S leads to the creation of an assembly pro-
jection S(P) in S. This projection S(P) is itself an assem-
bly (ike the assemblies in the content space) and
interlinked with C(P) through strengthened synaptic
connections.

To test this hypothesis, we next simulated disinhibition of
the neural space S while input to content space C excited an
assembly there. This disinhibition allowed spiking activity of
some of the neurons in S, especially those that received
sufficiently strong excitatory input from the currently active
assembly in the content space. STDP at the synapses that
connected the content space C and the neural space S led
to the stable emergence of an assembly S(P;) in the neural
space within one second when some content P; was repre-
sented in C during disinhibition of S (Fig. 1C). The emerging
assemblies in the neural space had strong synaptic ties to
the representation of P; in C in both feedforward (weights:
1.25+0.001 pA with the assembly representing P; vs
0.54 = 0.11 pA with assemblies representing other contents)
and feedback (0.86 = 0.03 pA with P; vs 0.00 = 0.02 pA with
others) directions. Further, plasticity at recurrent synapses in
S induced strengthening of recurrent connections within as-
semblies there (weights within assemblies: 1.09 = 0.04 pA,
weights between assemblies: 0.10 = 0.14pA; Fig. 1C;
Materials and Methods). Hence, disinhibition led to the rapid
and stable creation of an assembly in the neural space S,
i.e., an assembly projection. We denote the attachment of
structural information S (by an assembly projection in §) to
content P by CREATE(S, P).

Fast recruitment of assemblies in a neural space neces-
sitates rapid forms of plasticity. We assumed that a (pos-
sibly initially transient) plasticity of synapses occurs
instantaneously, even within seconds. The assumption of
rapid plasticity of neurons and/or synapses is usually not
included in neural network models, but it is supported by
a number of recent experimental data. In particular, Ison
et al. (2015) showed that neurons in higher areas of the
human brain change their response to visual stimuli after
few or even a single presentation of a new stimulus where
two familiar images are composed into a single visual
scene.

Recall through assembly projections

From a functional perspective, the structural informa-
tion that has been attached to some content can be ex-
ploited at a later point by recalling the content linked to
this structural category. In our model, a recall RECALL(S)
for a category S should lead to the activation of the
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Figure 2. Recall through assembly projections. A, Recall of a previously created assembly projection (schematic drawing). After an
assembly projection was formed (CREATE) for the word “truck,” the excitability of assembly neurons in the neural space S is en-
hanced (indicated by red color). When the neural space is disinhibited, these neurons are activated, and in turn, they activate the
“truck” assembly in content space C (RECALL). B, Spike rasters from neural space S (top) and content space C (bottom) in a simu-
lated recall (only 20 randomly selected neurons shown per neural space for clarity). After a CREATE (left, up to 200 ms), and a delay
for 5's, a RECALL is initiated by first disinhibiting the neural space S (at time t=5200 ms) and then disinhibiting the content space C

(50 ms later).

assembly C(P) in content space which was active at the
most recent CREATE(S, P) operation. The strengthened
synaptic connections between assemblies in neural
space S for structural category S and content space C
may in fact enable such a recall. However, an additional
mechanism is necessary that reactivates the most re-
cently active assembly in neural space S. One possible
candidate mechanism is the activity-dependent change
of excitability in pyramidal cells. It has been shown that
the excitability of pyramidal cells can be changed in a very
fast but transient manner through fast depression of
GABAergic synapses onto pyramidal cells (Kullmann et
al., 2012). This effect is potentially related to the match
enhancement or match suppression effect observed in
neural recordings from monkeys, and is commonly used
in neural network models for delayed match-to-sample
(DMS) tasks (Tartaglia et al., 2015). Using such a mecha-
nism, a RECALL(S) can be initiated by disinhibition of
the neural space S while the content space does not re-
ceive any bottom up input (Fig. 2A). The increased excit-
ability of recently activated neurons in S ensures that the
most recently active assembly is activated which in turn
activates the corresponding content through its (previ-
ously potentiated) feedback connections to content
space C.

We tested whether such a mechanism can reliably re-
call previously bound contents from structural categories
in our generic network model. A transient increase in neu-
ron excitability has been included in the stochastic spiking
neuron model through an adaptive neuron-specific bias
that increases slightly for each postsynaptic spike and de-
cays with a time constant of 5 s (see Materials and
Methods). We used an automated optimization procedure
to search for synaptic plasticity parameters that lead to
clean recalls (see Materials and Methods; all parameters
were constrained to lie in biologically realistic ranges).
Figure 2B shows the spiking activity in our spiking neural
network model for an example recall 5 s after the creation
of the assembly projection. One sees that the assembly
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pattern that was active at the create operation was re-
trieved at the recall.

In general, we found that the contents of the projection
can reliably be recalled in our model. In order to test
whether the model can deal with the high variability of in-
dividual randomly created networks as well as with the
variability in sizes and connectivity of assemblies, we per-
formed several simulations with random network initializa-
tions. We used five different content space instances with
randomly chosen recurrent connections. In each of those,
we induced five stable assemblies encoding different
contents as described above. Note that these assemblies
emerged through a plasticity process, so their sizes were
variable. For each of these five content space instances,
we performed 10 simulations where the neural space was
set up and randomly connected in each of these. This pro-
cedure ensured that we did not test the network behavior
on a particular instantiation of the circuit, but rather
whether the principle works reliably for generic randomly
connected circuits.

To quantify the quality of a RECALL operation, we as-
sessed whether a linear readout could identify the recalled
pattern from the activity in the content space C. The read-
out was first trained before any CREATE operation, i.e.,
before an assembly projection in a neural space was es-
tablished. We activated each assembly in C and trained
the linear classifier on the low-pass filtered spike trains of
the neurons in C (for details, see Materials and Methods).
During a RECALL, we then asked whether the readout
could correctly classify the recalled content from activity
in content space at any point in time 50 ms after the start
of the RECALL. We found that the classification error of the
readout was 0.9 * 0.2% (mean = SD) over 250 trials (five
content spaces with five patterns each, and this repeated 10
times for different neural spaces). We hypothesized that this
high classification accuracy was possible due to a strong
similarity between the input-driven assembly activity and the
activated assembly at the RECALL in content space. To test
this hypothesis, we measured the overlap of the assembly
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Figure 3. Robustness of RECALL performance to parameter
variations. Twenty of the model parameters controlling plasticity
(see Table 2, all highlighted parameters except for « values
controlling the overall shape of STDP curves) were randomly
varied by sampling each parameter value v from normal distri-
butions with mean v and SD opaamV. A, Resulting readout clas-
sification error on the RECALL operation for increasing oparam-
Shown are mean errors (dots) and SDs (shaded area) for 100
randomly sampled parameter combinations per value of o param.
Even for substantial parameter changes, the readout error re-
mains small. B, Percentage of trials which met the similarity cri-
terion for increasing o param.

encoding a concept in C directly after this assembly has
been established there and the neurons active in C during
the RECALL. We define a similarity criterion as follows: we
say that a recall meets the similarity criterion if during the
RECALL phase, at least 80% of the neurons that were active
after assembly induction in content space are also active (fir-
ing rate > 50 Hz) during recall, and if the number of errone-
ously active neurons does not exceed 20% of the original
assembly size. All 250 tested RECALL operations met this
criterion. In a typical run, one or two neurons from the origi-
nal assembly were missing (mean * SD: 2.1 * 1.6), but no
excess neurons fired during the RECALL (0.1 = 0.5).

These results show that content can be successfully re-
called from established assembly projections in a rather
generic network model. In order to test the robustness of
the model to parameter variations, we performed addi-
tional simulations where parameters were varied ran-
domly (Fig. 3A,B). We found that the model can reliably
recall content even under large random variations of the
parameters. In addition, we found that these results were
robust to changes in input firing rates, spontaneous firing
rates of the recurrent networks, the number of initial pat-
tern presentations, and the number of stored concepts
(for details, see Materials and Methods, Robustness to
parameter variations).

Reproducing experimental data on the attachment of
roles to words and structured information
representation

Two experiments performed by Frankland and Greene
(2015) provided new insights in how structural information
may be attached to words in neocortex. Sentences were
shown to participants where individual words (like “truck”
or “ball”) occur as the agent or as the patient. The authors
then studied how cortex represents the information con-
tained in a sentence. In a first experiment, the authors
aimed to identify cortical regions that encode sentence
meaning. Example sentences with the words “truck” and
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“pball” are “The truck hit the ball” and “The ball hit the
truck.” The different semantics of these sentences can be
distinguished, for example, by answering the question
“What was the role of the truck?” (with the answer “agent”
or “patient”). Indeed, the authors showed that a linear
classifier is able to distinguish sentences meaning from
the fMRI signal of ImMSTC. Using our model for assembly
projections, we can model such situations by attaching to
words either the structural category agent (“who did it”) or
the structural category patient (“to whom it was done”).
Under the assumption that ImSTC hosts neural spaces
(with assembly projections) for the role of words in a sen-
tence, it is expected that decoding of the word’s role is
possible from the activity there, but not from the activity in
content space where the identities are encoded inde-
pendently of their role. We performed simulations where
we sequentially presented input representing the words
“truck” and “ball” to the content space, which activated
corresponding assemblies there. Here, the temporal order
was mimicking the position of the word in the sentence
(e.g., in “The truck hit the ball” and “The ball hit the
truck”). During presentation, assembly projections were
created either to neural space Sagent OF Spatient, depending
on the roles of the words. Note that we did not model the
processing of the verb or other words in the sentence, as
only the representation of the agent and the patient was
investigated by Frankland and Greene (2015). We re-
corded activity from the neural spaces. To mimic fMRI
conditions, we severely reduced spatial and temporal re-
solution by summing activity of neurons within each of
five randomly chosen equally sized groups (representing
“voxels”) as well as averaging activity temporally over the
whole time of the concept presentation. We then added
noise to these five-dimensional signals (see Materials and
Methods). We found that a linear classifier trained on
these signals was able to perfectly classify sentences
from a held-out test set (error 0% over five content space
instances) when using the signals from the neural spaces.
On the other hand, a classifier based on activity of the
content space performed only slightly better than random
with a test classification error of 47.0%.

A second experiment by Frankland and Greene (2015)
revealed that information from ImSTC subregions can
also be used to read out the word that is the agent (or pa-
tient) in the current sentence. More specifically, the au-
thors showed that it is possible to predict the identity of
the agent from the fMRI signal of one subregion of ImSTC
and the identity of the patient from the signal in another
subregion (generalizing over all identities of other roles
and over different verbs). We expected that this would
also be the case in the proposed model since the assem-
blies that are formed in the neural spaces Sagent and
Spatient are typically specific to the linked content. We
tested this hypothesis by training a multinomial logistic re-
gression model to classify the linked content for each of
the two neural spaces (agent and patient) at times when
these spaces were disinhibited (Fig. 4, “agent decoder”
and “patient decoder”). Here, we created assembly pro-
jections for words as before, but we considered all 40
possibilities of how five items (words) A4,...,As (white,
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Figure 4. Decoding of agent/patient identity from assembly projection, as performed by Frankland and Greene (2015). Our model of
structured information representation in the temporal lobe (gray oval) consists of one content space C (white background, left) and
two neural space (light blue background). Neural spaces encode agent (Sagent, top) and patient (Spatient, bottom) in a sentence (as
specific subregions of ImMSTC do; see Frankland and Greene, 2015). Presentation of a word leads to the activation of the corre-
sponding assembly in C (only the words for the agent and the patient were processed, verbs and articles were ignored). Words were
presented in the order in which they appear in the sentence (for “The truck hit the ball,” the input “truck” was presented while the
agent space was disinhibited between t; and t,, likewise disinhibition of the patient space while “ball” was presented between t,
and t3). This resulted in the establishment of assembly projections within the neural spaces for agent and patient (insets show spike
rasters of a subset of neurons from each neural space). Linear classifiers (“agent decoder” and “patient decoder”) were able to de-
termine the current agent and patient in sentences from the corresponding neural spaces, modeling experimental results (Frankland

and Greene, 2015).

bottom) and neural space S can be sequentially linked (for
example, Sagent is attached first to A4, then Spatient is at-
tached to A,; we excluded sentences where the agent
and patient is the same word). Low-pass filtered activity
of a subset of neurons was sampled at every 1 ms to ob-
tain the feature vectors to the classifiers (see Materials
and Methods). Half of the possible sequences were used
for testing where we made sure that the two items used in
a given test sentence have never been shown in any com-
bination in one of the sentences used for training.
Consistent with the results of Frankland and Greene
(2015), the classifier achieved optimal classification per-
formance on test data (classification error <0% for each
neural space). Note that such classification would fail if
each neural space consisted of only a single assembly
that is activated for all possible contents (Zylberberg et
al., 2013), since in this case no information about the iden-
tity of the role is available in the neural space (see
Discussion).

Cognitive computations with assembly projections
Apart from the creation of assembly projections and re-
call of content, the implementation of basic operations on
symbols have been postulated to be essential for many
higher cognitive functions (Marcus, 2003). Two such op-
erations have been considered by Zylberberg et al.
(2013). The first is COPY(S1,S2), which copies (or routes)
the information attached to one structural category to
some other category. Copying of information is trivial in
digital computers, where bits strings can simply be
moved between registers or memory. In neuronal net-
works of the brain however, the common assumption is
that content is represented by currently active assem-
blies, which cannot be moved to other brain regions. In
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our model, the copy operation can be realized by creation
of an assembly projection in neural space S, to the con-
tent which the assembly projection in neural space Sy re-
fers to. We hypothesized that this operation can be
implemented in our generic circuit model simply by disin-
hibiting S1 to activate the corresponding content in C fol-
lowed by a disinhibition of S, to create an assembly
projection there (Fig. 5A).

To test this hypothesis, we performed simulations of
our spiking neural network model with one content space
and two variable spaces. The performance was tested
through a recall from the target assembly projection
400 ms after the projection was copied (Fig. 5B). We de-
ployed the same setup as described above where five as-
semblies were established in the content space, again
considering five different pretrained content space instan-
ces (see above). For each of these, we performed 10 copy
operations (testing twice the copying of each content as-
sembly) and assessed the assembly active in the content
space after a recall from the target variable space. Again,
the readout error was negligible (0.9 = 0.6%), and all of
the 50 considered cases met the similarity criterion as de-
fined above.

A final fundamental operation considered by Zylberberg
et al. (2013) is COMPARE(S+,S2), which assesses
whether the content attached S is equal to the content
attached to S,. One possible implementation of this oper-
ation in our model is established by a group of readout
neurons which receive depressing synaptic connections
from the content space. Then, when the contents of S
and S, are recalled in sequence, the readout synapses
will be depressed for the content of S, if and only if the
content of S, equals the content of S;. Such a “change
detecting” readout population thus exhibits high activity if
the contents of Si and S, are different (Fig. 6A).
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Figure 5. Assembly projection copy operation. A, Copying information from one structural category to another through the creation
of a new assembly projection (schematic drawing). Disinhibition of neural space S recalls its content in content space C (left). A
subsequent disinhibition of neural space S» creates an assembly projection for this content there (right). B, Spike rasters from neural
spaces S» (top), S1 (middle), and content space C (bottom) in a simulated copy operation from S to a S, (600-900 ms; only 20 ran-
domly selected neurons are shown per space for clarity). After a 400-ms delay, the success of the copy operation is tested by per-
forming a recall from neural space Sz at time 1300 ms. The assembly is correctly recalled into the content space.

Simulation results from our spiking neural network model
are shown in Figure 6B,C. Using a set of five contents as
above, we tested 25 comparisons in total, one for each
possibility how these five contents can be attached to two
neural spaces St and S,. Figure 6B shows readout activ-
ity for the case when the same content was stored by
both S; and S, (five cases). The readout activity of the
second recall (starting after time 200 ms) was virtually
absent in this case. In contrast, if the different contents
were stored (20 cases), the second recall always induced
strong activity in the readout population (Fig. 6C).
Hence, this simple mechanism is sufficient to compare
contents attached to structural categories with excellent
precision by simply thresholding the activity of the read-
out population after the recall from the second assembly
projection.

Discussion

It has often been emphasized (Marcus, 2003; Marcus et
al.,, 2014a; Behrens et al., 2018) that there is a need to
understand brain mechanisms for information processing
via factorized structured representations and variable-like
mechanisms. We show in this article how structured

May/June 2020, 7(3) ENEURO.0533-19.2020

information representation and processing can be per-
formed in a generic network of spiking neurons by means
of assembly projections. Our model is consistent with re-
cent findings on cortical assemblies and the encoding of
sentence meaning in cortex (Frankland and Greene,
2015). Our neural network model is not specifically con-
structed to perform such tasks. Instead, it is based on ge-
neric sparsely and randomly connected neural spaces
that organize their computation based on fast plasticity
mechanisms. The model provides a direct link between
information processing on the algorithmic level of sym-
bols and sentences and processes on the implementation
level of neurons and synapses. The resulting model for
brain computation supports top-down structuring of in-
coming information, thereby laying the foundation of goal
oriented “willful” information processing rather than just
input-driven processing. The proposed synaptic plasticity
that links assembilies in neural spaces with content repre-
sentations can be transient, but could also become more
permanent if its relevance is underlined through repetition
and consolidation. This would mean that some neurons in
the neural space are no longer available to form new pro-
jection assemblies, but this does not pose a problem if
each neural space is sufficiently large.
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Figure 6. Comparison with assembly projections. A, Comparing the content of two neural spaces (schematic drawing). A population
of readout neurons (bottom, teal) receives sparse depressing connections from the excitatory neurons in the content space. The
comparison consists of a recall from neural space Sy (left; red neurons indicate neurons with higher excitability) followed by a recall
from Sy (right). During the first recall, readout weights become depressed and readout activity decreases (indicated by teal trace
inset right of readout). Next, a second recall is performed (right). If the patterns are identical, the readout weights are still depressed
and the readout response is therefore weak (teal trace at readout). If the content changes (i.e., S» # S1), readout weight from active
neurons in C is not depressed, which leads to strong readout activity (dashed orange trace at readout). B, C, Resulting readout as-
sembly activity in spiking neural network model. Each trace shows the population activity (filtered with an exponential kernel) of the
readout population for one comparison operation between two assembly projection contents (25 comparisons in total, one for each
possible way of assigning five values to two neural spaces Sy and S»). At time 0 ms, the content of neural space Sy was recalled
(during the first 50 ms of each recall, the content space remains inhibited and thus there is no readout activity), and the readout re-
acted in a similar manner to all contents. From time 200 ms on, the content of neural space S, was recalled. Because of depressed
synaptic connections, the readout response was weak when the content of Sy matched the content of S, (panel B). In case S¢ and

S» stored different values, the response was as strong as during the first recall phase (panel C).

Related work

A large body of modeling studies have tackled related
problems in the context of the general binding problem.
We study in this work not the standard form of a binding
task, where several features are bound together to consti-
tute an object representation (Treisman, 1996). Instead,
we are addressing the problem of binding abstract cate-
gories, i.e., structural information, to content. This is more
closely related to variable binding. In the example of lan-
guage processing alluded to above, each neural space
can in this view also be interpreted to represent one vari-
able (one for “agent” and one for “patient”) that is bound
to the content (the word in the sentence). The main
classes of models in this direction are pointer-based
models, models based on indirect addressing, anatomic
binding models, neural blackboard architectures, and
vector symbolic architectures. We discuss the relation of
our model to these proposals in the following. Pointer-
based models (Zylberberg et al., 2013) assume that
pointers are implemented by single neurons or co-active
populations of neurons which are synaptically linked to
content. In contrast, our model is based on the assump-
tion that distributed assemblies of neurons are the funda-
mental tokens for encoding symbols and content in the
brain, and also for projections which implement in our
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model some form of pointer. We propose that these as-
sembly projections can be created on the fly in some neu-
ral spaces and occupy only a sparse subset of neurons in
these spaces. Frankland and Greene (2015) showed that
the identity of a thematic role (e.g., the agent in a sen-
tence) can be predicted from the fMRI signal of a subre-
gion in temporal cortex when a person reads a sentence.
As shown above, this finding is consistent with assembly
projections. It is, however, inconsistent with models
where a variable engages a population of neurons that is
independent of the bound content, such as pointer-based
models. In comparison to pointer models, the assembly
projection model could also give rise to a number of func-
tional advantages. In a neural space S for some variable
S, several instantiations of the variable can coexist at the
same time, since they can be represented there by in-
creased excitabilities of different assemblies. These con-
tents could be recalled as different possibilities in a
structured recall and combined in content space C with
the content of other variables to answer more complex
questions.

Another class of models is based on the idea of indirect
addressing. These models assume that a neural space for
a variable encodes an address to another brain region
where the corresponding content is represented (Kriete et
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Figure 7. Extension of the assembly pointer model to multilevel
pointers (conceptual figure). Conceptual architecture that sup-
ports a MERGE operation that merges two assembly represen-
tations in a neural space for verbs Syer, and a neural space for
patients Spatient into a neural space for verb-patient phrases.

al., 2013). The data of Frankland and Greene show that
the stored content can be decoded from the brain area
that represents its thematic role. If ImSTC represents this
address, this implies that the address should include
some aspects of the content represented there, similar to
the proposed assembly projection model. Another possi-
bility is that ImSTC corresponds to the addressed brain
region. In this case, the data suggest that the address is
relatively stable across the experiment. In conclusion, the
data do not invalidate the indirection model. While its
basic idea is quite distinct from the assembly projection
concept, a hybrid model with aspects of both is another
interesting possibility. We note that indirection models
also often involve a disinhibitory gating mechanism (Kriete
et al., 2013; for a more detailed discussion of this aspect,
see O’Reilly, 2006). This provides further evidence that
disinhibition is a powerful computational mechanism. The
use of disinhibition is however quite different from our
model. There, disinhibition is used to gate outputs of neu-
ral circuits, while in the assembly projection model, whole
neural spaces are inhibited or disinhibited to suppress or
enable activity and plasticity mechanisms there.

In anatomic binding models, different brain areas are re-
garded as distinct placeholders (similar to the neural
spaces in this work). As each placeholder may have a
unique representation for some content, anatomic binding
models are consistent with the findings of Frankland and
Greene (2015). A problem in anatomic binding models lies
in providing a mechanism that allows to translate between
the different representations. Building on previous work
(Hayworth, 2012), a recent non-spiking model shows how

May/June 2020, 7(3) ENEURO.0533-19.2020

Theory/New Concepts 14 of 17
external circuitry can be used to solve this problem
(Hayworth and Marblestone, 2018). Each pair of place-
holders requires multiple external processing circuits
which are densely connected to the placeholders to allow
transferring and comparing contents. The number of
these processing circuits increases quadratically with the
number of placeholders if contents should be transferable
from and to every placeholder. While this may not be a
problem if the number of placeholders is small, the model
presented in this work avoids the need for additional cir-
cuitry altogether by using the content space as a central
hub.

In neural blackboard architectures, one assumes that
besides assemblies for content, there exist also assem-
blies for structural entities such as phrases, semantic
roles, etc. Specialized circuits (so-called gating circuits
and memory circuits) are then used to bind content to
structure (van der Velde and de Kamps, 2006). This way,
complex syntactic structures can be built. The concept
shares some similarities with the assembly projection
model. In particular, the “neural blackboard” is similar to
our proposed content space. Assemblies there are then
enriched with structural information. The way that this en-
richment is implemented is quite orthogonal however. In
neural blackboard architectures, activity is gated by spe-
cialized neural circuitry, while we propose that Hebbian
plasticity leads to changes in connectivity and thus the
emergence of structure encoding assemblies. It is not ob-
vious how the findings in ImMSTC can be interpreted from
the perspective of a neural blackboard architecture, since
structural assemblies are assumed to be fixed and inde-
pendent of bound content. It is however possible that the
bound content could influence the exact activity of the as-
sembly, which could explain why content can be decoded
from ImSTC (Frankland and Greene, 2015).

Vector symbolic architectures are a very powerful
method to implement binding through neural networks
(Plate, 1995; Eliasmith et al., 2012). Content as well as
structural categories can be encoded as high-dimension-
al vectors, which could correspond to activity vectors of
neurons in the brain. Rather complex mathematical oper-
ations can then be used to combine these vectors into
composed representations where the structural informa-
tion is bound together with the content. It has been shown
that these operations can be implemented with spiking
neural networks, and that higher-level cognitive func-
tionality can result from such architectures (Eliasmith et
al., 2012). While vector symbolic architectures necessi-
tate quite precise synaptic connectivity patterns to im-
plement the mathematical operations (Marcus et al.,
2014b), we propose in this work that structure can be
bound through plasticity processes in generic randomly
connected networks.

In summary, the presented model combines the
strengths of pointer-based (Zylberberg et al., 2013) and
anatomic binding models (Hayworth and Marblestone,
2018). Like anatomic binding models (Hayworth and
Marblestone, 2018), the dynamics of the proposed model
match experimental data on the encoding of variables in
human cortex (Frankland and Greene, 2015), but using
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the content space as a central hub eliminates the need to
add circuitry as the number of variables increases. This is
achieved by using a pointer-based mechanism (Kriete et
al., 2013; Zylberberg et al., 2013).

Experimental predictions

The validity of the assembly projection model could be
tested experimentally, since it predicts quite unique network
dynamics during mental operations. First, attachment of
some structural category to a content employs disinhibition
of a neural space. This could be implemented by the activa-
tion of inhibitory VIP cells which primarily target inhibitory
neurons, or by neuromodulatory input. Similar disinhibition
mechanisms would be observed during a recall of the con-
tent. Another prediction of the model is that the assembly
projection that emerges in a neural space for some content
should be similar to another one for the same content if it is
re-established on a short or medium time scale. On the
other hand, a significant modification of the assembly that
encodes a concept will also modify the assembly projection
that emerges in a neural space. Further, our model suggests
that inactivation of an assembly projection to some content
in neural space S1 would not abolish the capability to create
an attachment of the associated structural category S; to
this content: if the trial that usually creates this linking is re-
peated, a new assembly projection in the neural space for
Sy can emerge. Finally, the model predicts that a mental
task that requires to copy (or compare) the contents of a
structural category Si to another structural category S»
causes sequential activation (disinhibition) of the neural
spaces S and S, for categories.

The assembly projection model assumes that there is
sufficient connectivity between the content space and
neural spaces in both directions such that assemblies can
be mutually excited. The most prominent language re-
lated areas in the human brain are Broca’s area and
Wernicke’s area. In addition, it has been speculated that
word-like elements are stored in the middle temporal cor-
tex (Berwick and Chomsky, 2016), perhaps correspond-
ing to the content space in our model. As discussed by
Berwick and Chomsky (2016), these areas are connected
by strong fiber pathways in adult humans, which could
provide the necessary connectivity for the creation of as-
sembly projections. The authors further point out that
some of the pathways are missing in macaque monkeys
and chimpanzees, possibly explaining the lack of human-
like language capabilities in these species. We have pro-
posed that ImSTC is one possible area hosting neural
spaces for language-related structural categories. Synaptic
pathways between STC and middle temporal cortex exist,
consistent with the idea that the latter serves as a content
space (data from Joshi et al., 2010, visualized in the human
connectome project, Marcus et al.,, 2011; Laboratory of
Neuro Imaging and Martinos Center for Biomedical Imaging,
2020).

Model extensions and relation to other experimental
work

We presented in this article a basic implementation of
the assembly pointer concept. The model could be
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extended in several directions. The current model sup-
ports only recall of the most recently stored content of the
neural space. However, by blocking activity of these neu-
rons, previously stored content could be retrieved as well,
since neural excitabilities and recurrent connections re-
main elevated for some extended time.

In a recent magnetoencephalography (MEG) study, Liu
et al. (2019) found evidence for factorized structural repre-
sentations of the position of a visual stimulus in a se-
quence. In the context of the assembly projection model,
each of the four possible sequence positions in this ex-
periment could be encoded by one neural space for posi-
tion in a sequence, and appearance of an object at a
position could result in an assembly projection to this neural
space. Interestingly, they found that during spontaneous re-
play of these representations, the structural representation
preceded the content representation by 40-60 ms. This tim-
ing is consistent with the timing of a recall in our model that
starts from the neural space for sequence position. In this
study, sequence position could be decoded first, at a point
in time when stimulus identity (i.e., content) could not be de-
coded yet. We attribute this result to the quite coarse spatial
resolution of MEG. Hence, position could be decodable
from which neural space for sequence position is disinhib-
ited and therefore shows activity, while the specific assem-
bly pattern in this space (that is content-specific) might be
indistinguishable.

In a recent modeling study, it was proposed that the
hippocampus binds together spatial information repre-
sented in medial entorhinal cortex (EC) and content infor-
mation from lateral EC (Whittington et al., 2018). Since
this model is concerned with analog structural informa-
tion, it is quite different from the assembly projection idea
which works with structural categories. Nevertheless, it
suggests an interesting extension of our model where the
neural space is in addition driven by some other area that
could, for example, represent an analog context variable
such as time or space. In this case, the projection would
not be a fully random assembly (defined by the network
connectivity structure), but rather be formed by both con-
nectivity structure and the momentary driving input.
Hence, this assembly activation pattern would encode
both the current content and the context variable.

In this article, we are presenting simulations in a realistic
model that are compatible with experimental results of
Frankland and Greene (2015) for binding words to roles in
a sentence. Other recent experimental results (Zaccarella
and Friederici, 2015; Ding et al., 2016; see also Friederici,
2017) seem to suggest that another assembly operation is
at work in the processing of simple sentences: the opera-
tion MERGE proposed by Chomsky as the fundamental
linguistic operator mediating the construction of senten-
ces and phrases (Chomsky, 2014; Berwick and Chomsky,
2016). In related work (Papadimitriou and Vempala, 2018),
it is shown that a MERGE operation on assemblies can
indeed be realized by neurons in a simplified model. To il-
lustrate MERGE within the assembly projection frame-
work, suppose that there is a third neural space where
verbs are projected, and an assembly for the word “hit” in
content space has been projected to this space (Fig. 7).
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MERGE of the projected assemblies “hit” and “truck” in
neural space would then create a new assembly in anoth-
er subregion, which can be called phrase space (a brain
area suspected to correspond to phrase space is the pars
opercularis of Broca’s area, or BA 44; see Zaccarella and
Friederici, 2015; Friederici, 2017; for a recent study sug-
gesting such representations can be found in more ante-
rior parts of prefrontal cortex, see also Frankland and
Greene, 2019b). The resulting assembly would then repre-
sent the creation of the phrase “hit the truck,” and would
have strong synaptic links to and from the two corre-
sponding assemblies in neural space. Hence, MERGE en-
tails the orchestration of two convergent streams, each
consisting of two stacked projection operations, which to-
gether result in the flexible creation of a phrase assembly
out of the two syntactic units (verb assembly and patient
assembly). A second MERGE would then combine the
agent and the phrase to create an assembly in sentence
space (presumably the pars triangularis of Broca’s area,
or BA 45) that represents the whole sentence “the ball hit
the truck.” One may speculate that such stacking of as-
sembly projections is what makes human language possi-
ble, and in fact it may be implicated in other cognitive
functions such as deduction and planning. An interesting
question in this regard is whether brains of non-human pri-
mates or even mice do implement mechanisms similar to
assembly projection (thus enabling these animals to per-
form binding), and whether humans eventually evolved a
more complex hierarchical variant of assembly projection.

We have presented in this article assembly projections,
a portable model for structured information representa-
tion in generic spiking neural networks. The comprehen-
sive repertoire of operations on assemblies of neurons
identified in the present paper, and the apparent effective-
ness of these operations, seem to give credence to an
emerging hypothesis that assemblies and their operations
may underlie and enable many of the higher mental facul-
ties of the human brain, such as language, planning,
story-telling, and reasoning.
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