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Abstract

“Good science” means answering important questions convincingly, a challenging endeavor under the best of
circumstances. Our inability to replicate many biomedical studies has been the subject of numerous commentaries
both in the scientific and lay press. In response, statistics has re-emerged as a necessary tool to improve the objectivity
of study conclusions. However, psychological aspects of decision making introduce preconceived preferences into
scientific judgment that cannot be eliminated by any statistical method. The psychology of decision making, ex-
pounded by Kahneman, Tversky, and Thaler, is well known in the field of economics, but the underlying concepts of
cognitive psychology are also relevant to scientific judgments. | repeated experiments carried out on undergraduates
by Kahneman and colleagues four to five decades ago, but with scientists, and obtained essentially the same results.
The experiments were in the form of written reactions to scenarios, and participants were scientists at all career stages.
The findings reinforce the roles that two inherent intuitions play in scientific decision making: our drive to create a
coherent narrative from new data regardless of its quality or relevance and our inclination to seek patterns in data
whether they exist or not. Moreover, we do not always consider how likely a result is regardless of its p value. Low
statistical power and inattention to principles underpinning Bayesian statistics reduce experimental rigor, but mitigating
skills can be learned. Overcoming our natural human tendency to make quick decisions and jump to conclusions is a
deeper obstacle to doing good science; this too can be learned.
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Societal approaches to improving the rigor and reproducibility of preclinical biomedical science have largely
been technical in nature with a renewed focus on the role of statistics in good experimental designs. By
contrast, the importance of preconceived notions introduced by our very human nature has been under-
appreciated for their influence on scientific judgments. Explicitly recognizing and addressing these cognitive
biases, and including such strategies as carrying out a “premortem” before embarking on new experimental
directions, should improve scientific judgments and thereby improve the quality of published findings,
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Introduction
Most failures in advanced (phase 3) clinical trials for
small molecule drug candidates can be traced to insuffi-
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cient efficacy (Hay et al., 2014). Although clinical trial
design fettered by corporate needs and the meager pre-
dictive value of many preclinical animal models undoubt-
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edly contribute to these failures, especially for some
neuropsychiatric disorders, there is a growing realization
that suboptimum experimental practices in preclinical re-
search are also a prominent cause of the problem. Over-
confidence in favorable p values, low statistical power,
and the waning of traditional good experimental design
practices such as blinding and inclusion of both positive and
negative controls have all been highlighted as likely sources
of misleading preclinical research (loannidis, 2005, 2018;
Begley and Ellis, 2012; Button et al., 2013; Marino, 2014;
Halsey et al., 2015; Steward, 2016; Colquhoun, 2017). Re-
cent articles in the lay press make the general public aware
of this issue (Leaf, 2013; The Economist, 2013, 2018; Carroll,
2017). Poor reproducibility of scientific research undermines
public confidence in science and leads to waste of re-
sources when investigators attempt to replicate and extend
fallacious findings.

The scientific community is responding vigorously to this
growing “crisis of confidence” in the reliability of preclinical
science. Universities are reemphasizing a working knowl-
edge of statistics that extends beyond “plug and play” soft-
ware. Professional societies such as the Society for Neuro-
science are providing web-based resources for enhancing
the rigor and transparency of research (https://www.sfn.org/
news-and-calendar/news-and-calendar/news/professional-
development/virtual-conference-scientific-rigor-transparency-
science). Journals are providing checklists meant to
enhance transparency and, in some cases, employing
statisticians on their editorial boards to check the ve-
racity of findings. A checklist has been introduced to
help recognize research that might have one or more
procedural flaws (Begley, 2013). Finally, the National
Institutes of Health has introduced mandatory sections
in grant proposals that are meant to improve rigor
(https://grants.nih.gov/reproducibility/index.htm). This
is all good and helpful, but renewed attention to statis-
tics and good experimental design practices will not, by
themselves, solve this problem. Inherent in the goal of
improving the reproducibility of preclinical science is
the need to change behavior. Accepting the value of
statistics or proper experimental design is rarely
enough to bring about the desired change. In this re-
gard, science can benefit from insights gleaned in the
fields of investing, finances and marketing from consid-
erations of how people arrive at judgments and make
decisions.

In the late 1960s, two young psychologists, Daniel Kah-
neman and Amos Tversky, initiated a series of experiments
designed to understand how people make decisions when
presented with fragmentary information of uncertain rele-
vance. Thus seeded the field that evolved into behavioral
economics (Thaler, 2016). Their experiments took the form
of questions that subjects would answer, and a comparison
of their answers with statistically-apt outcomes. Among their
major findings was that preconceived notions and uncon-
scious emotions often dominate decision making when one
is presented with new or unfamiliar data (Tversky and
Kahneman, 1974; Kahneman and Tversky, 1979). In their
explanation, the nature of decision making often involves
over-reliance on intuition, to a degree not explicitly rec-

September/October 2018, 5(5) e0188-18.2018

Societal Impact 2 of 8

ognized, and underappreciation of the role of chance in
events. Kahneman (2011) describes two approaches to
decision making, unconscious, intuitive and reflexive, or
conscious, deliberate and reflective, which he terms fast
and slow thinking, respectively. Fast thinking is easily
influenced by cognitive biases, whereas slow thinking is
more resistant. A major outcome of their work is the
realization that emotion-driven preconceptions and hopes
play a large role in financial, investing, political, and eco-
nomic decisions, for example, the notions that we are all
good investors (Belsky, 2016), that trade wars are quickly
winnable (North, 2017), or in the present context, that our
scientific projects will proceed without insurmountable
hitches.

Findings from cognitive psychology have been applied
to fields as disparate as hostage negotiation (Voss, 2016)
and healthcare system planning (Harrison et al., 2018).
Science prides itself on objective thinking; | wondered
whether insights gleaned from cognitive psychology were
relevant to decisions made by scientists. Kahneman and
Tversky’s subjects were mostly undergraduate students.
My notion, and the hypothesis | tested, was that a scien-
tifically literate population would respond more objec-
tively to the survey questions originally posed in the 1960s
and 1970s. | was wrong.

A three-page questionnaire consisting of five questions
was designed based on the projects originally conducted
by Kahneman and Tversky as described below. The sur-
veys were distributed to research personnel in three basic
science departments, consisting of faculty, postdoctoral
fellows, graduate students, and senior research techni-
cians. Adult English-speaking scientists were the intended
target population without regard for gender or ethnicity.
Voluntary participants then completed the survey anony-
mously, estimated to require <15 min, and the surveys
were returned to the author for analysis. There were 44
respondents out of ~70 surveys distributed. The protocol
was approved by Emory’s IRB.

Prologue

| began this project by seeking the opinions of col-
leagues about difficulties they encounter in their day-to-
day pursuit of biomedical research. When asked what,
aside from the scientific project itself, challenges them the
most in their research, a sampling of postdoctoral fellows,
students, and research technicians had several reactions:

e The PI can become distant from the project; expecta-
tions and reality diverge.

e Lab members without sufficient training can be ex-
pected to work on the project.

* Reproducing a method developed in another lab can
be difficult.

o Getting all parameters of an experiment under control
can be problematic.

» Perverse publishing incentives are rampant — quantity
and impact factor over quality.

e Appropriate controls can sometimes be difficult to
identify.

» Rigorous experiments can be labor intensive and
expensive.
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Regarding the last point, it is helpful to separate exper-
iments into two categories (cf. Kimmelman et al., 2014).
Exploratory experiments are quick and sometimes with-
out all necessary controls, are often underpowered, done
to explore and adjust experimental parameters to sharpen
the hypothesis, and do not usually incorporate a blinding
step in analysis. Low statistical power and the absence of
a blinding step result in many false positives and findings
that inevitably regress toward the mean during in-house
replication attempts. The large majority of preclinical re-
search falls into this category, and much of biomedical
graduate training emphasizes this approach. On the pos-
itive side, experimental results from disparate approaches
that test the same hypothesis, each of which is under-
powered statistically, can be combined to produce a
coherent conclusion. In the absence of a blinding step,
however, unconscious bias still reduces confidence. De-
finitive experiments, by contrast, require the experimenter
and/or data analyzer to be unaware of treatment groups,
involve a larger sample size and carefully restrict the
number of comparisons to be made. Often the results and
conclusions will form the basis of a larger effort (e.g., a
multi-year grant application, a Ph.D. thesis project, or a
clinical trial). Definitive experiments can be expensive,
both in time and money, but the results have a better
chance of standing the test of time. Most of what follows
is applicable to both categories of experiment.

The informal responses in the bulleted list above indi-
cate scientists are well aware of logistic impediments to
doing good science. No one, however, raised the possi-
bility that cognitive biases might present difficulties. |
repeated several experiments that Kahneman and Tver-
sky conducted on undergraduates in the 1960s and 1970s
to determine if objectivity is enhanced in a scientifically
literate population. A set of five survey questions that had
been originally designed by Kahneman and Tversky was
distributed to colleagues in several basic science depart-
ments at Emory University School of Medicine, and the
results tabulated. Responses to one of the five questions
suggested that its wording was ambiguous, so what fol-
lows describes responses to four survey questions. The
questions are presented verbatim below.

The Law of Small Numbers
One survey question asked respondents to consider
the following:
“A certain town is served by two hospitals. In the larger hospital about 45
babies are born each day, and in the smaller hospital about 15 babies are
born each day. As you know, about 50 percent of all babies are boys,
although the exact percentage varies from day to day. Sometimes it may
be higher than 50 percent, sometimes lower. For a period of 1 year, each

hospital recorded the days on which more than 60 percent of the babies
born were boys. Which hospital do you think recorded more such days?”

Forty-four respondents answered as follows:

The larger hospital: 3
The smaller hospital: 18
The hospitals are within 5% of each other: 23.

Approximately 59% of scientists thought the large and
small hospitals would be similar or the larger hospital
would have more such days. Sampling theory, however,
indicates that the smaller hospital would have about twice
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as many days in which >60% of infants were boys (98 =
4 vs 48 = 2 d with n = 10 repetitions of a bootstrapped
model). Interestingly, 41% of today’s scientists chose the
correct answer compared to only 20% of the original
sample of 97 undergraduates with little or no background
in probability or statistics. The p value of 0.041 comparing
the two cohorts (Fisher’s exact test) is encouraging of
progress until one calculates the statistical power of the
comparison, which is only 52% (G+power 3.1.9.2). Low
statistical power increases the likelihood of a false posi-
tive (Steward, 2016).

In a second question, a group of faculty, postdocs, and
graduate students reacted to the following scenario:

“The distribution of newly-diagnosed kidney cancer in the 3,141 counties

in the U.S. reveals that the counties with lowest incidence are mostly rural,

sparsely populated, and located in traditional Republican states in the
Midwest, the South and the West. What do you make of this?”

Non-political answers were (with number of respon-
dents in parentheses if >1):

Better diet (5; eating more greens, less processed foods, organic); poor
diagnosis in rural areas (3); lower anxiety and stress (3); rare forms of
cancer less likely if fewer people (2); healthier lifestyle; less medical care;
early mortality due to other causes; counties are undersampled; smaller
population leads to lower numbers with cancer; smaller sample size means
greater variance.

A separate group was presented with the same sce-
nario, except the word “lowest” was replaced by “high-
est.” Their responses:

Low access to health care or preventive care (7); pesticides or other

contaminants in groundwater are carcinogenic (6); increased recent

screening (3); low access to healthy foods (2); socioeconomic status leads
to higher stress; education level; ethnicity; less healthy lifestyle.

It is interesting that stress, diet, and lifestyle feature
prominently in both scenarios but are used to reach op-
posite conclusions. Both scenario statements are correct;
moreover, a county that has a high incidence one year can
have low incidence the next. The two words in both
scenarios most relevant to understanding the nature of
the problem are “sparsely populated,” as shown in Figure
1; low n leads to high variability.

Both of these examples demonstrate an inherent belief
in the Law of Small Numbers (Tversky and Kahneman,
1971), which is the tendency to accept data from a small
sample as representative of the whole population. This
inclination likely contributes to the willingness to do un-
derpowered experiments and accept the outcome if one
is lucky enough to have a favorable p value. These data
are congruent with the proposal (Kahneman, 2011) that
our tendency to build a narrative around new data, how-
ever irrelevant, is strong and can prevent us from getting
at the underlying drivers of our observations.

Intuitive Pattern Seeking

People seek patterns, as illustrated by the following
examples. A group of scientists were asked to consider
three possible sequences of the gender of eight infants
born in a row at the same hospital:

BBBBGGGG
GGGGGGGG
BGBBGBGB
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Figure 1. Low sample size produces high variance. A, Map of the average kidney cancer incidence in each of the 3141 counties of
the United States between 2010 and 2014. B, Plot of incidence as a function of county population. C, Five-year trend in incidence
versus population. Data from the CDC National Program of Cancer Registries.

They were asked: “Do these sequences seem equally
likely?”

Yes: 20 respondants
No: 24 respondants

Any specific sequence is as likely as any other, but 55%
of respondents thought otherwise. Their written com-
ments indicated that many thought eight girls in a row was
extremely unlikely, which is true (probability = 2E-8 or
0.4%) but no less likely than the specific sequence below
it. We all try to look for patterns in our data, whether they
exist or not. Random events can produce runs of seeming
regularity (Taleb, 2004), and our pattern-seeking human
nature can easily reach a false conclusion. It can be
particularly difficult to trust the eye when evaluating large
datasets, because seemingly small differences in analysis
procedure can result in substantial visual differences in
patterns, as illustrated by different clustering algorithms of
the same microarray dataset in Figure 2. In Figure 2A, the
data appear to segregate into two main groups, whereas
in Figure 2B, the same data collect into six groups.

A final, somewhat treacherous, example of pattern
seeking is illustrated by the spatial pattern of bombs
dropped on London during the eight-month-long blitz in
1940-1941. Although when viewed from a distance the
bombing pattern appears very dense (Fig. 3, left), a de-
tailed view of smaller regions reveals scattered neighbor-
hoods that were spared throughout the eight-month
period (Fig. 3, right). Reports at the time speculated that
the bombing pattern was not random (Feller, 1950, p 120)
and that German spies might have resided in the spared
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neighborhoods (Kahneman, 2011, p 116), a conclusion
that could only have been socially disruptive during a
trying time. However, a binomial analysis of the spatial
pattern of impact sites was fully consistent with a random
pattern of bomb locations (p = 0.88 by x?; Clarke, 1946).
Taken together, these examples support a tendency of
scientists and non-scientists alike to find patterns in data.

Ignoring the Likelihood of a New Result

The base rate is the probability that a member of a
specific population will have a certain characteristic, as-
suming that we know nothing else about this individual.
Does the base rate influence decisions when new data are
introduced? A group of 43 scientists considered the fol-
lowing scenario:

Chris is of high intelligence, although lacking in true creativity. He has a
need for order and clarity, and for neat and tidy systems in which every
detail finds its appropriate place. His writing is rather dull and mechanical,
occasionally enlivened by somewhat corny puns and flashes of imagina-
tion of the sci-fi type. He has a strong drive for competence. He seems to
have little feel and little sympathy for other people, and does not enjoy
interacting with others. Self-centered, he nonetheless has a deep moral
sense.

Respondents were asked to rank order nine fields by
the likelihood that Chris is in that field (1 = most likely,
9 = least likely). Forty-three scientists replied (Table 1).

There is no right or wrong answer to this puzzle of
course, but even a cursory perusal of the results suggests
that the respondents paid little attention to, or were un-
aware of, the base rates of employment; the four fields
deemed least likely have, together, approximately six-fold

eNeuro.org
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A Pearson distance measurement B Euclidean distance measurement

Figure 2. Microarray clustering procedure drastically alters the visual pattern. The data were from dentate granule cells provided by
seven laboratories and consist of median log2 expression values of 398 genes that were differentially expressed (FDR < 0.05) with
=2-fold expression change between control rats and rats in three status epilepticus (SE) models at different times after SE (Dingledine
et al., 2017). Complete linkage and row (gene)-clustering only; the relative positions of columns (treatment groups) in A, B are
unvarying. The only difference in the two procedures was the distance measurement used. The Heatmapper tool was used for

clustering and visualization (http://www1.heatmapper.ca/expression/).

higher employment than the four deemed most likely. A
full 67% of respondents felt that Chris was more likely to
be in library science than in business administration, a
field that has 64-fold higher employment. Interestingly,
the rank order of fields was nearly identical to that found
when the study was originally done, although the re-
sponding cohorts were as different as undergraduates
and scientists, and the tests were separated by 45 years
(Fig. 4; Kahneman and Tversky, 1973).

&e g

A related problem arises when one does a properly
designed experiment and obtains a result with a statisti-
cally significant p value. The minimalist conclusion is that
the null hypothesis is unlikely to be true, although what we
are actually interested in is whether our hypothesis is
correct. These are two very different statements. Falsify-
ing the null hypothesis does not imply that our hypothesis
is correct; other explanations might serve better. What
determines whether a statistically significant result is ac-

Figure 3. Pockets of seeming regularity in a random process. The left panel shows the location of each of the bombs dropped on
London during the eight-month blitzkrieg of 1940-1941. Although the city was blanket-bombed, there were isolated neighborhood-
size areas in which no bombs fell as shown on the right panel (from http://www.dailymail.co.uk/sciencetech/article-2243951/The-
astonishing-interactive-map-EVERY-bomb-dropped-London-Blitz.htmi).
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Table 1. Failure to take employment numbers into account
when guessing professional field.

2016 United

2018 Mean States

Rank score Field employment:
1 2.7 Computer science 4,165,140
2 3.0 Engineering 2,499,050
3 3.5 Physics or biology 150,970
4 4.4 Library science 222,760
5 4.8 Law 1,075,520
6 5.5 Business administration 14,371,980
7 6.3 Healthcare 12,361,980
8 7.0 Humanities and education 12,928,630
9 7.9 Social sciences and social work 2,264,070

+#Bureau of Labor Statistics.

tually correct rather than being a false positive? Tradi-
tional Fisherian statistics highlights the role of statistical
power and « (the probability of observing that result or
more extreme results, assuming the null hypothesis is
correct) in estimating the probability that a statistically
significant finding is actually correct. However, the
thought experiment presented in Figure 5 indicates that «
seriously underestimates the proportion of false positive
findings which, in the three examples shown, ranges from
20 to 60% as explained below.

We begin by considering an experiment that tests 1000
hypotheses, 100 of which are expected to be true based
on our experience. If our experimental design yields 80%
power, only 80 of these true hypotheses will be identified
as such and the remaining 20 will be missed, i.e., false
negatives. With « = 0.05, the remaining 900 hypotheses
are also separated into two groups, with 45 (=0.05+900)
being false positives and the remaining 855 appropriately
identified as “no effect” or true negatives. These predic-
tions are distributed into the outcomes table in Figure 5A.
Given this situation, the probability that any single hypoth-
esis that tests positive is actually correct is 80/(80 + 45) =
64%, a far cry from the 95% that is often mistakenly
assumed with « = 0.05. Thus, the probability of a false
positive is 36% in this case, not 5%. Going on, if our
experimental design only allowed a statistical power of
30%, as is common in many published neuroscience
papers (Button et al., 2013), the predicted outcomes table

2018 ranking

- N W A OO N O ©
P S S S S
[ J

1@
1 2 3 4 5 6 7 8 9
1973 ranking

Figure 4. Similarity of judgments in populations of undergradu-
ates and scientists separated by 45 years.
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indicates that the chance of a single measured positive
result actually being true is reduced to only 40% (Fig. 5B),
i.e., a measured positive will be a false positive 60% of the
time. Now the critical part. Assume that with increased
knowledge of our experimental system we test hypothe-
ses in a restricted space such that now 40% of the
hypotheses are expected to be true (Fig. 5C). Under these
conditions, our chance of correctly identifying a single
hypothesis that measured true rises to 80%, i.e., the false
positive rate is reduced to 20%, although « and statistical
power are unchanged.

Thus, the p value, by itself, does not provide good
evidence favoring any non-null hypothesis. Your chance of
correctly interpreting a statistically significant result depends
on «, statistical power, and the probability of the result based
on prior knowledge (Fig. 5D). Similar arguments have been
made by Colquhoun (2014) and Button (2016), among oth-
ers. The prior knowledge component built into a Bayesian
framework can build formal confidence in an hypothesis as
results from successive experiments are added (Goodman,
1999; van de Schoot et al., 2014; Buchinsky and Chadha,
2017), always recognizing, however, that an hypothesis, no
matter how many supportive repetitions exist, can be re-
futed by a single well-conceived negative finding (Popper,
1959). The major problem with a Bayesian approach is that
it is often difficult to estimate the prior probability of a result
before the experiment is conducted, although workarounds
have been suggested (Matthews, 2001; Held, 2013;
Colguhoun, 2017). A proposed alternative to a Bayesian
approach would be to accept a result as statistically signif-
icant only if p < 0.005 rather than p < 0.05 (Benjamin
et al.,2018; loannidis, 2018); this would reduce the false
positive rates in Figure 5 to0 5.3%, 13%, and 2.4% in panels
A, B, and C, respectively, which are more palatable than the
typical situations with p < 0.05.

Conclusions and Recommendations

Why is it so hard to do good science? The work of
Kahneman, Tversky, and Thaler, supported by the recent
tests described here, points out that a major part of the
problem is rooted in our human nature, which makes us
prone to jump to conclusions. We have tendencies to
favor the law of small numbers, to spin narratives out of
datasets of questionable relevance, and to seek patterns
in noisy data. Kahneman and Tversky’s biases are prom-
inent in the best of us: it is easier, more social, and more
comfortable to think intuitively and quickly, whereas ra-
tional, contemplative thinking is difficult, can be tiring, and
is frequently a solitary exercise. Second, we often have
too much confidence in a favorable p value, and some-
times do not pay enough attention to whether a new result
is likely to be true regardless of statistical significance.
One pernicious outcome of this situation is the proclivity
for some journals to publish “very unexpected” findings
that nonetheless have statistical significance.

The experiments and scenarios described here are rele-
vant to how people evaluate tests of hypotheses, not how
we form hypotheses. The critical thinking skills required to
rigorously test hypotheses are quite distinct from the cogni-
tive processes involved in the initial generation of hypothe-
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A 1000 hypotheses tested B 1000 hypotheses C 1000 hypotheses
10% are true 10% are true 40% are true
o =0.05 o =0.05 o =0.05

Power = 80%

Power =30% Power = 30%

J

True + True — True + True — True + True —
Expected { 80 855 30 855 120 570
SuLemes 45 20 45 70 30 280
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Chanceofa
single positive 64% 40% 80%
result being true
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Figure 5. Demonstration of the value of a Bayesian approach when interpreting a single experiment. A, Consider the scientist facing
the challenge of testing 1000 hypotheses, for example, in a proteomics or drug screening experiment, in which each protein measured
or compound assayed tests the hypothesis that the protein expression is changed or the compound is active. Without knowledge of
the target class only a small fraction of these hypotheses (say 10%) are true. If the power of the experiment is 80%, 80 hypotheses
will be correctly identified as true (marked “true +”) and 20 will be false negatives (“false —”) as shown in the expected outcomes table.
Of the 900 remaining false hypotheses, 45 will be incorrectly ascribed as being true (“false +” in the table) with « = 0.05, and 855
will be correctly ascertained as negatives (“true -”). Thus, the chance of correctly interpreting a positive outcome (equivalent to
precision in a ROC analysis) is only 64% (=80/125). B, If the statistical power of the experiment is 30%, the chance of correctly
interpreting a positive result drops to only 40% (=45/75). Blue in the outcomes table represent numbers that have changed from the
previous panel. C, Now imagine that, with experience, one is working in a more restricted target space in which 40% of hypotheses
are expected to be true: the chance of correctly interpreting a positive result jumps to 80% even when power = 30% (=120/150). D,
A plot of these variables (plus the 10% power case) shows that the chance of correctly interpreting a single outcome depends on «,

power, and the a priori probability that the hypothesis is true.

ses. It is striking that answers to the survey questions were
so similar regardless of whether respondents were under-
graduates in the 1960s and 1970s, or scientific investiga-
tors engaged this year. Admittedly, the outcome of the
experiments reported here only show that scientists ex-
hibit human features and do not directly demonstrate that
we are subject to cognitive biases when planning and
evaluating scientific projects. This could be the subject of
future work that addresses the circumstances under
which scientific decisions are influenced, although senior
scientists | have spoken with recognize the relevance to
their own research.

Deciding when it is allowable to exclude an outlier, how
to incorporate both positive and negative controls, how to
determine the number of subjects that will provide an
appropriate level of confidence in one’s findings, and
selection of the proper statistical test, are all important
technical skills that can be learned. Circumvention of
cognitive biases, however, is also important in most ex-
periments but particularly preclinical animal trials, cell
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culture experiments, any experiment in which outcomes
are compared among two or more experimental groups.

Notwithstanding the above, plenty of excellent science
that stands the test of time is reported by reputable
journals every month. How can the substantive investiga-
tor improve the quality of scientific endeavors, develop
more confidence in our findings, and guard against a
premature exit from a research career? First and probably
foremost, it is helpful to recognize explicitly the human
nature features that can lead us astray; we can then
attempt to use Kahneman'’s “slow thinking” strategy, rec-
ognizing and trying to avoid common biases that unhelp-
fully support our preconceived notions. Second, we could
more often employ good experimental practice that
avoids the red flags identified by Begley (2013). It can be
helpful in this regard to openly separate experiments into
exploratory and definitive categories, and to commit to
performing a definitive experiment once the parameters
are sufficiently well understood. Of course, there is a need
to balance this suggestion against resource availability
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and time deadlines. Incorporating a Bayesian framework
into experimental design could also allow quantification of
confidence in the outcome of several small experiments
that are considered together. With a Fisherian outlook,
accepting a result as “statistically significant” only if p <
0.005 will also reduce false positives.

Finally, before embarking on a new line of experiments
it can be helpful to perform a “premortem,” i.e., assume
the experiment failed and list all potential reasons (cf.
Klein, 2007). When setting out in an unfamiliar direction, it
is too easy to overestimate the benefits and underesti-
mate the chance of failure with its associated costs. A
premortem can present the opportunity to improve rather
than autopsy a project. During a premortem, a group of
participating scientists would likely identify a wider range
of potential problems than just one or two scientists.
Framing the discussion by assuming the experiment failed
can provide a means for the thoughtful yet somewhat
timid members of a group to voice their concerns. | have
found that this exercise often encourages the addition of
new controls that help us understand why the initial ex-
perimental outcome was not as hoped, which in turn
accelerates progress toward eventual success.

All of these suggestions would have us acting more like
the ancient Greek Titan, Prometheus, and less like his
brother, Epimetheus. Prometheus has come to symbolize
“forethought” and effective planning, with Epimetheus
representing “afterthought.” Recall that in the Greek leg-
ends, Prometheus helped advance mankind in many
ways, whereas Epimetheus, in a rush, married Pandora
and helped open her box.
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