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Visual Abstract

Recent work suggests that the brain represents probability distributions and performs Bayesian integration during
sensorimotor learning. However, our understanding of the neural representation of this learning remains limited.
To begin to address this, we performed two experiments. In the first experiment, we replicated the key behavioral
findings of Körding and Wolpert (2004), demonstrating that humans can perform in a Bayes-optimal manner by
combining information about their own sensory uncertainty and a statistical distribution of lateral shifts encoun-

Significance Statement

Generalization provides unique insights into the motor learning process. However, this type of learning has
typically been investigated using fixed or deterministic perturbations and noise-free feedback information,
which are not naturalistic. Here, we replicate important findings indicating that information is integrated in
a Bayes-optimal manner during sensorimotor learning under uncertainty. We then extend these findings by
showing that this learning generalizes to the opposite limb. These results have implications for our
understanding of the neural mechanisms of motor learning as well as practical application to the contexts
of sport training and motor rehabilitation.
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tered in a visuomotor adaptation task. In the second experiment, we extended these findings by testing whether
visuomotor learning occurring during the same task generalizes from one limb to the other, and relatedly, whether
this learning is represented in an extrinsic or intrinsic reference frame. We found that the learned mean of the
distribution of visuomotor shifts generalizes to the opposite limb only when the perturbation is congruent in
extrinsic coordinates, indicating that the underlying representation of learning acquired during training is available
to the untrained limb and is coded in an extrinsic reference frame.

Key words: Bayesian integration; interlimb generalization; motor learning; sensorimotor learning; transfer;
visuomotor adaptation

Introduction
Mounting neural, behavioral, and computational evi-

dence suggests that the brain encodes probability distri-
butions and performs probabilistic or Bayesian inference
(Rao et al., 2002; Knill and Pouget, 2004; Rao, 2004; Ma
et al., 2006; Doya, 2007; Pouget et al., 2013). The Bayes-
ian coding hypothesis (Knill and Pouget, 2004) has been
tested primarily in the context of perception (Knill and
Richards, 1996; Rao et al., 2002; Weiss et al., 2002;
Kersten and Yuille, 2003; Adams et al., 2004; Stocker and
Simoncelli, 2006) and multisensory integration (van Beers
et al., 1996, 1999; Alais and Burr, 2004; Ernst and Banks,
2002; Ma et al., 2006, Ma and Pouget, 2008; Beierholm
et al., 2009; Fetsch et al., 2009, 2011, 2013). However, it
has also been investigated in studies of sensorimotor
learning, albeit to a lesser extent (Körding and Wolpert,
2004; Tassinari et al., 2006; Izawa and Shadmehr, 2008;
Fernandes et al., 2012, 2014). In a seminal study, Körding
and Wolpert (2004) demonstrate that subjects can learn to
adapt their reaches to the mean of a probability distribu-
tion of visual shifts encountered in a modified visuomotor
adaptation paradigm and, importantly, can regulate their
dependence on this learned distribution according to the
current level of sensory uncertainty in the feedback they
are provided. This pattern of results is consistent with
subjects performing Bayesian estimation during sensori-
motor learning. Surprisingly, no subsequent studies have
replicated this important finding and only a few have
sought to test related questions or extend the paradigm
(Wei and Körding, 2010; Fernandes et al., 2012, 2014). In
this article, we report on an approximate replication of the
original Körding and Wolpert (2004) study and an exten-
sion to the context of interlimb generalization (IG).

Generalization, which refers to the process by which
experience or training in one context changes perfor-

mance in another, provides a useful window into the
representational changes underlying various forms of
sensorimotor learning (Thoroughman and Shadmehr,
2000; Poggio and Bizzi, 2004; Shadmehr, 2004; Paz and
Vaadia, 2009). Sensorimotor learning been shown to gen-
eralize across similar tasks or conditions using the same
limb (intralimb generalization) and across limbs (IG). The
extent to which learning generalizes is typically thought to
reflect a common neural representation. By evaluating
error patterns during generalization, inferences can be
made about the reference frame for movement planning
and control (Krakauer et al., 1999; Shadmehr, 2004).

With respect to intralimb generalization, it has been
repeatedly shown that subjects who learn to adapt their
movements in response to altered visual feedback for a
restricted set of movement directions can generalize this
learning to untrained directions (Bedford, 1989; Flanagan
and Rao, 1995; Ghilardi et al., 1995; Wolpert et al., 1995;
Ghahramani et al., 1996; Krakauer et al., 1999, 2000;
Vetter et al., 1999; Malfait et al., 2002; Wu and Smith,
2013). A general finding is that visuomotor learning is
represented in extrinsic (e.g., screen-based) coordinates
(Cunningham and Welch, 1994; Imamizu and Shimojo,
1995; Krakauer et al., 1999, 2000; Vetter et al., 1999; Ghez
and Krakauer, 2000). IG studies similarly indicate that
visuomotor perturbations are represented and learned in
extrinsic coordinates (Wang and Sainburg, 2003, 2004).
However, several recent studies indicate that a combina-
tion or mixture of reference frames may be involved
(Sober and Sabes, 2003, 2005; McGuire and Sabes, 2009;
Brayanov et al., 2012; Carroll et al., 2014; Poh et al.,
2016).

Interestingly, Körding and Wolpert (2004) tested neither
form of generalization in their original study, but instead
only probed whether subjects could learn the initial train-
ing task. Relatively little is known about how prior learning
of a stochastic visuomotor perturbation involving a prob-
ability distribution of visuomotor rotations or shifts gener-
alizes (Tassinari et al., 2006; Fernandes et al., 2012, 2014).
In one of the most pertinent studies to date, Fernandes
et al. (2012) investigated how different learned visuomo-
tor priors generalize to new reach directions by having
separate groups of subjects adapt to different distribu-
tions of visuomotor rotations with the same mean (30°)
but different standard deviations (SD � 0°, 4°, or 12°).
They found that learning was slower and less complete
when the SD of the imposed distribution was higher,
but interestingly the generalization curves were unaf-
fected. In a subsequent study, Fernandes et al. (2014)
replicated their earlier intralimb generalization findings
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and also showed that reliance on visual feedback about
the current perturbation (the likelihood distribution) is
greater when the prior distribution of visuomotor rota-
tions imposed during training is wider and therefore
associated with more uncertainty. Despite these inves-
tigations, generalization of a statistical prior across
limbs has not been tested.

In the current study, we test the hypothesis that the
mean of a distribution of stochastic visuomotor perturba-
tions learned with one limb generalizes to the other limb.
Based on analogous studies involving deterministic visuo-
motor perturbations, we predict that the representation of
this learning is encoded in extrinsic coordinates.

Materials and Methods
Participants

A total of 35 right-handed subjects (22 males, 13 females,
age 17–49 years) with normal or corrected to normal vision
and no history of motor impairments participated in the
experimental study. All subjects gave informed consent be-
fore the experiment and were either paid and recruited from
the University’s Cognitive Science Participant Register or
were University students participating for course credit. All
experimental protocols were approved by the University’s
Human Research Ethics Committee (protocol number:
5201600282). Subjects were randomly assigned to one of
three experimental groups. Seven subjects participated in
experiment 1, which consisted of a pseudo-replication of
Körding and Wolpert (2004)’s stochastic visuomotor adap-
tation task. Fourteen subjects participated in experiment 2,
which sought to test IG of visuomotor learning using the
same basic task from experiment 1, but with an additional
set of task conditions designed to test the extent to which
learning with one limb is available to the untrained limb and

the nature of the reference frame in which the initial learning
occurs. Seven subjects also participated in an additional
control for experiment 1, which consisted of a variation of
the basic visuomotor adaptation task used in experiment 1.

Experimental procedures
A unimanual KINARM endpoint robot (BKIN Technolo-

gies) was used in all experiments (Fig. 1). The KINARM
robot has a single graspable manipulandum that permits
unrestricted 2D arm movement in a horizontal 2D plane
(the movement plane). A projection-mirror system facili-
tates presentation of visual stimuli that appear in the
movement plane. Subjects received visual feedback
about their hand position via a cursor (solid white circle, 1
cm in diameter) that was controlled in real time by moving
the manipulandum. Mirror placement and an opaque
apron attached to the participant ensured that visual feed-
back from the real hand was not available for the duration
of the experiment.

Although Körding and Wolpert (2004) had subjects per-
form optically-tracked pointing movements on a horizon-
tal table surface rather than reaches with a robotic
manipulandum, the task kinematics in the current study
were closely matched. The task dynamics were also sim-
ilar since the small changes produced by the manipulan-
dum with respect to inertia and friction are negligible
compared to that of the arm itself during unrestricted
reaching and pointing movements. More generally, ro-
botic manipulanda have been successfully used to inves-
tigate visuomotor adaptation in a number of previous
studies (Saijo and Gomi, 2010; Hayashi et al., 2016; Leow
et al., 2017) including studies highly similar to the current
one (Wei and Körding 2010).

Figure 1. A–F, Experimental paradigm. G, Experimental workspace with example hand and cursor paths shown for a representative
trial when a 2-cm lateral visual shift is applied. Dashed white lines indicate feedback windows. H, Midpoint feedback conditions with
different amounts of visual uncertainty. Panels G, H after Körding and Wolpert (2004).
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Subjects were instructed to perform fast and accurate
goal-directed reaching movements with the dominant
(right) arm using cursor feedback whenever it was avail-
able. Reaches were from a start target (solid red circle, 1
cm in diameter) located at the center of the workspace to
a single reach target (solid blue circle, 1 cm in diameter)
located 20 cm away (Fig. 1G). When subjects moved the
cursor within the boundaries of the start target its color
changed from blue to red and the reach target appeared,
indicating the start of a trial. Subjects were free to reach at
any time after the start target color changed. Once the
cursor exited the start target, cursor feedback was extin-
guished and laterally shifted to the right of the true hand
position (positive in the x-plane) by an amount drawn at
random on each trial from a Gaussian distribution with
mean of 1 cm and SD of 0.5 cm (the true prior). At the
midpoint of the movement, displaced cursor feedback
was provided for 100 ms (midpoint feedback).

To test whether Bayesian integration occurs during
sensorimotor learning, following Körding and Wolpert
(2004), the reliability of the sensory feedback information
provided about the true cursor position at the reach mid-
point was varied by introducing different amounts of vi-
sual noise or blur on each trial. Changing the degree of
uncertainty associated with the current sensory evidence
(the likelihood) allowed us to assess the subjects’ reliance
on their previously experienced distribution of shifts (the
prior). One of four visual uncertainty conditions (�0, �M, �L,
��; Fig. 1H) was selected at random on each trial accord-
ing to a ratio of 3:1:1:1 previously used by Körding and
Wolpert (2004). In the zero uncertainty condition (�0),
midpoint feedback was a single white sphere (1 cm in
diameter), identical to the initial cursor. In the moderate
uncertainty condition (�M), midpoint feedback was one of
ten randomly generated point clouds comprised of 50
small translucent white spheres (0.2 cm in diameter) dis-
tributed as a two-dimensional Gaussian with a SD of 1 cm
and a mean centered over the true (displaced) cursor
position on the current trial. In the large uncertainty con-
dition (�L), everything was the same as the moderate
uncertainty condition (�M) except that the point clouds
had a SD of 2 cm. In the unlimited uncertainty condition
(��), no midpoint feedback was provided. Cursor feed-

back was again extinguished for the remainder of the
reach to the end target. Cursor feedback at the endpoint
of the reach (endpoint feedback) was provided only in the
zero uncertainty (�0) condition for a duration of 100 ms.
After movement offset, there was a delay of 150 ms
before the start target reinitialized the next trial by chang-
ing color from red back to blue. The maximum allowable
time to complete a reach was 4000 ms. Irrespective of the
cursor’s position along the x-axis, if subjects did not cross
the lower bound of the end target along the y-axis (Fig.
1G, dashed line) the trial would time out. Timeouts were
signaled by the disappearance of the end target and the
start target changing back to blue.

Experiment 1: Bayesian sensorimotor learning (BSL)
The primary aim of experiment 1 was to test whether

subjects learn to compensate for the imposed stochastic
visuomotor perturbation (lateral shifts drawn from a dis-
tribution with fixed mean and SD) so that we could then
probe whether, and the conditions under which, this
learning generalized to the untrained limb. A secondary
aim was to provide a close or approximate replication of
the findings reported by Körding and Wolpert (2004).
Before the experiment started, each subject performed 10
familiarization trials in which cursor feedback was always
provided and no lateral shift was imposed. Further, for
two of the seven BSL subjects tested, an additional Base-
line task was run to measure each subject’s baseline
motor variability and directional biases when reaching
with each hand. The Baseline task used the same basic
paradigm as the other experiments and consisted of the
following sequence: 10 right hand (RH) feedback trials
(cursor feedback always provided; no lateral shift im-
posed), 10 RH no-feedback trials (no cursor feedback
provided; no lateral shift imposed), 10 left hand (LH) feed-
back trials (cursor feedback always provided; no lateral
shift imposed), and 10 LH no-feedback trials (no cursor
feedback provided; no lateral shift imposed). After com-
pleting the Familiarization and Baseline tasks, all subjects
completed 2160 trials of the task with their RH (Fig. 2A,B).
To preserve the 3:1:1:1 ratio between visual feedback
conditions, we ran 1080 trial blocks (540 �0:180 �M:180
�L:180 ��). For the purposes of comparison with Körding

Figure 2. Experimental design. A, In experiment 1, training and testing phases were nominally defined as the first and last 1080 trials,
respectively. B, C, In experiment 2, the training phase consisted of 1080 RH trials followed by a testing phase of 1080 LH trials. In
the congruent-extrinsic (CE) condition, the imposed visuomotor perturbation was a rightward lateral shift for both RH and LH trials.
In the congruent-intrinsic (CI) condition the imposed visuomotor perturbation was a rightward lateral shift for RH trials and a leftward
lateral shift for LH trials, both of which require elbow flexion. Mean endpoint (��) for trials 980–1080 (RH late training) was used to
compute the percentage of adaptation. The percentage of IG was computed by dividing the mean endpoint (��) for trials 980–1080
(RH late training) by the mean endpoint (��) for trials 1080–1180 (LH early testing).
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and Wolpert (2004), and comparison with data from the IG
experiment (experiment 2) we nominally defined the train-
ing phase as the first 1080 trials in each session and the
testing phase as the second 1080 trials in each session
(Fig. 2A). There were no objective differences between
these phases in the experiment.

Experiment 2: IG
The aim of experiment 2 was to build on the results of

experiment 1, and test whether the learning exhibited in the
BSL task generalizes from one limb to the other. Further, we
were interested in testing whether the initial visuomotor
learning that occurs during training is represented in extrin-
sic or intrinsic coordinates. Like experiment 1, experiment 2
started with 10 trials of a familiarization task in which
cursor feedback was always provided and no lateral shift
was imposed. After completing a training phase with their
RH (1080 trials), subjects completed a testing phase
(1080 trials) using their LH in which they experienced
cursor feedback sampled from the same Gaussian distri-
bution as experienced previously with the RH (mean of 1
cm, SD of 0.5 cm; Fig. 3D). To assess the reference frame
in which transfer occurs, seven subjects experienced a
congruent-extrinsic (CE) condition in which the cursor
was shifted in the same visual direction across both
the training phase with the right arm (Fig. 1C) and the
testing phase with the left arm (Fig. 1D). By design, the
imposed visuomotor perturbation was congruent in ex-
trinsic (screen-based) coordinates (rightward lateral
shift), yet incongruent in intrinsic coordinates (requiring
an elbow joint flexion in the right arm and an elbow joint
extension in the left to compensate for the shift). An-
other seven subjects experienced a congruent-intrinsic
(CI) condition in which the cursor was shifted in oppo-
site visual directions for each arm, and more specifi-
cally a rightward shift for the right arm during the
training phase (Fig. 1E) and leftward shift for the left arm
during the testing phase (Fig. 1F). This time, the visuo-
motor perturbation imposed across both the training
and testing phases was congruent in intrinsic coordi-
nates (requiring joint flexion in both right and left arms),
yet incongruent in extrinsic coordinates.

Data analysis
Kinematic data including hand position and velocity

was recorded for all trials using BKIN’s Dexterit-E exper-
imental control and data acquisition software (BKIN Tech-
nologies). Hand position data were recorded at 200 Hz
and logged in Dexterit-E. Custom scripts for data pro-
cessing and analysis were written in MATLAB. Hand po-
sition, velocity, and cursor shift values were extracted
from the c3d files in MATLAB. A combined spatial- and
velocity-based criterion was used to determine movement
offset and corresponding reach endpoints (Georgopoulos
et al., 1982; Moran and Schwartz, 1999; Scott et al.,
2001). Specifically, movement offset was defined as the
first point in time t at which the movement dropped below
a minimum velocity threshold (�5% of peak velocity),
after a minimum reach of 19 cm from the start target in the
y-plane. Reach endpoints were defined as the x and y
values at time t. The additional spatial criterion ensured
that data from the start of the trial (also �5% of peak
velocity) was not included in subsequent analysis.

Since the visual shift was systematically applied along
the x-axis, the primary measure of the subject’s estimate
of the visuomotor perturbation (the estimated prior) was
their mean hand position (x-coordinate only) at the end of
the reach (henceforth endpoint) for all reaches completed
during the unlimited uncertainty (��) condition. Because
no midpoint feedback is provided during unlimited uncer-
tainty (��) trials, these provide a relatively uncontaminated
measure of the estimated prior. In experiment 1, the mean
endpoint was computed across the entire testing phase
(trial 1080–2160; testing phase; Fig. 2A). In experiment 2,
the degree of generalization was assessed by comparing
the mean endpoint (��) at the end of the training phase
(trial 980–1080; late training phase) with the mean end-
point (��) at the start of the testing phase (trial 1080–1180;
early testing phase) for the respective groups.

The second measure of statistical learning was cursor
deviation from target at movement offset as a function of
the applied shift (cursor error). We compared the slopes of
the linear fits for these plots, stratified by visual uncer-
tainty condition, to determine the degree to which sub-
jects compensated for visual uncertainty by changing

Figure 3. Computational models considered for experiment 1. The average lateral cursor deviation from the target (cursor error) as
a function of the imposed shift for the models. Full compensation model (A), minimal mapping model (B), and Bayesian estimation
model (C). (Transparent bands indicate the relative degree of variability in estimation.) The colors of the linear fits correspond to the
visual condition (matching Fig. 1H), as do the bands of variability in C. D, The experimentally imposed prior distribution of shifts is
Gaussian with a mean of 1 cm (in black). The probability distribution of possible visually experienced shifts under the clear, moderate,
and large uncertainty conditions are represented with solid lines (colors as in Fig. 1H) for a trial in which the imposed shift is 2 cm.
The Bayes-optimal estimate of the shift that combines the prior with the evidence is represented by dashed lines (colors also as in
Fig. 1H). After Körding and Wolpert (2004).
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their reliance on their stored prior (Körding and Wolpert,
2004). In experiment 1, cursor error as a function of shift
(slope) was determined by averaging across the entire
testing phase (trials 1080–2160). If subjects compensate
fully for the visual feedback, then the average deviation
from target for all conditions in which visual feedback is
provided should be zero. If, however, subjects integrate
both the learned prior and current visual evidence while
performing the task, then endpoints should be biased
toward the mean of the prior and should depend on
sensory uncertainty (Körding and Wolpert, 2004). Accord-
ingly, reach endpoints should be more biased toward the
mean of the prior when sensory uncertainty is high (re-
flecting a higher weighting of this information) than when
sensory uncertainty is low (reflecting a stronger reliance
on or lower weighting of this information). Hence, if sub-
jects perform Bayesian estimation, a linear relationship is
predicted between cursor error and the imposed shift.
More specifically, the linear fit should intercept the ab-
scissa at the mean of the prior (1 cm) and have a slope
that increases as a function of visual uncertainty.

A repeated measures ANOVA with planned pairwise
comparisons was used to analyze mean endpoints across
all subjects within experimental groups and the slopes for
all experiments. The Mauchley test was used to assess
the sphericity of repeated measures effects of visual con-
dition as it constitutes a four-level factor. If sphericity was
violated, Greenhouse–Geisser degree of freedom correc-
tions were applied. The significance level for all non-
corrected contrasts was � � .05. Statistical analysis was
performed using SPSS v22.0 for Windows.

The same dependent measures were also used to test
IG in experiment 2. The predictions of experiment 2 relate
to the reference frame in which the initial learning oc-
curred. If the learning that occurs during the training
phase is represented in an extrinsic reference frame, this
predicts that generalization will be relatively strong in the
CE condition and relatively weak in the CI condition. If the
learning that occurs during the training phase is repre-
sented in an intrinsic reference frame, this predicts that
generalization will be relatively strong in the CI condition
and relatively weak in the CE condition. IG was quantified
according to the following generalization equation (Shad-
mehr and Mussa-Ivaldi, 1994; Wang and Sainburg, 2005;
Brayanov et al., 2012):

%Generalization�
mean early LH endpoints
mean late RH endpoints

�100 (1)

Finally, it is important to note that since we were pri-
marily interested in assessing the degree of generalization
of the learned prior, only endpoints from the (��) trials
were used in the analysis (as in experiment 1). In these
trials, the influence on the prior is relatively uncontami-
nated by current sensory evidence (see above, Experi-
mental procedures).

Model predictions
For experiment 1, following Körding and Wolpert (2004),

we considered three models of sensorimotor integration
reflecting different computational strategies that subjects

could use to reach accurately to the target on the basis of
the visual feedback provided. One possibility is that sub-
jects fully compensate for the sensed lateral shift (full
compensation model; Fig. 3A). According to this model,
increasing the uncertainty of the feedback for an imposed
shift would increase endpoint variability (variance) without
changing the mean. Importantly, this model does not
require subjects to estimate either visual uncertainty or
the prior distribution of shifts applied. The minimal map-
ping model involves an iterative mapping from visual feed-
back about cursor error to an estimate of the imposed
shift. This crucial error signal can be reduced over re-
peated trials, and an accurate estimate of the shift can be
attained. While this model predicts a mean endpoint of 1
cm to the left of the target (for a 1 cm rightward shift),
indicating that the mean of the prior had been learned, it
does not require an explicit representation of either the
prior distribution or visual uncertainty (Körding and Wol-
pert, 2004). All that is required to learn this mapping is
information about cursor error at the end of the move-
ment. However, in our paradigm, cursor error is only
provided for the clear feedback condition (�0). Therefore,
a mapping may only be learned based on this condition
and then applied to all other conditions (�M, �L, ��; hence
the term minimal, for minimal condition mapping). Impor-
tantly, the minimal mapping model predicts a compensa-
tion pattern that is the same for all trials, regardless of
visual uncertainty (Fig. 3B). The final model we considered
is the Bayesian estimation model, according to which
subjects use information about the prior distribution and
the uncertainty associated with the visual feedback to
estimate the imposed shift. The posterior probability dis-
tribution can be obtained by applying Bayes’ rule as
follows:

P�xtrue�xsensed� �
P�xsensed�xtrue�P�xtrue�

P�xsensed�
(2)

Where xtrue is the imposed shift, xsensed is the sensed shift
(the visual evidence), and P�xtrue� is the prior distribution of
shifts. Assuming that the noise of each measurement is
independent and Gaussian (Fig. 3D) then the optimal
estimate of the imposed shift is a sum of the mean of the
prior and the sensed feedback position��estimate� weighted
by their relative variances [(�p

2)and ��s
2�, respectively]:

�estimate �
�s

2

�s
2 	 �p

2
�1cm� 	

�p
2

�s
2 	 �p

2
xsensed (3)

Where (�s
2 / �s

2 	 �p
2 ) and ��p

2 / �s
2 	 �p

2 ) is the “weight-
ing” (degree of influence) attributed to the prior and visual
information relative to their respective variance. Accord-
ingly, the joint variance (�sp

2 ) of the posterior is given by:

�sp
2 �

�s
2�p

2

�s
2 	 �p

2
(4)

The Bayesian estimation model predicts that as visual
uncertainty increases, the subject’s estimate of the im-
posed shift moves away from the sensed shift and tends
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toward the mean of the learned prior distribution (Fig. 3D).
For example, consider an imposed shift of 2 cm. Given
sensory uncertainty there are multiple shifts that can pro-
duce a sensed shift of �2 cm (i.e., within the range of
1.8–2.2 cm). However, if visual uncertainty is a function of
Gaussian noise on the visual feedback, then, according to
the Bayesian model, the most probable shift is �2 cm,
due to the influence of the learned prior. Hence, the
estimated shift will tend toward the prior by an amount
that depends on both the prior distribution and the degree
of uncertainty in the visual feedback (Fig. 3D). Further-
more, without visual feedback (��) the estimate should
approximate the mean of the learned prior (because the
likelihood distribution is flat).

Based on the previous results of Körding and Wolpert
(2004), we predicted that subjects would not only learn
the prior distribution of imposed shifts but would apply it
in a fashion consistent with the Bayesian estimation
model. Accordingly, we predicted that the (sign-inverted)
mean endpoint across the entire testing block (trials
1080–2160) would closely approximate the mean of the
learned prior of 1 cm, and that subjects would integrate
the degree of visual uncertainty when estimating the im-
posed shift. It was also expected that cursor error would
increase as a function of increasing visual uncertainty as
depicted in Figure 4A, where increasing error is indicated
by a larger slope. That is, subjects will estimate the im-

posed shift with a greater degree of accuracy during trials
in which visual feedback is more reliable, and with accu-
racy decreasing across less reliable visual feedback con-
ditions (accuracy during �0 � �m � �L � ��).

Results
Experiment 1

The mean endpoint (��) across the experimental group
was -1.51 � 0.15 cm (mean � SD) to the left of the target
indicating that subjects had learned to compensate for
the average experienced shift of �1 cm (mean of the
imposed prior) over the ensemble of trials. As full com-
pensation for the average shift would be -1 cm, the ob-
served mean overshoot of -0.51 cm was unexpected. One
possible explanation for this relates to the size of the
cursor relative to that of the reach target and the associ-
ated spatial tolerance built into correct trials. The use of a
2 cm in diameter reach target and a 1 cm in diameter
cursor meant that although subjects were instructed to
reach as accurately to the target as possible, all trials in
which the cursor stopped anywhere within the circumfer-
ence of the target were counted as correct. Any pre-
existing bias in any direction up to � 1 cm (the radius of
the target) might therefore remain uncorrected through
the experiment. To determine whether this was the case,
we collected baseline reach data for the last two of the

Figure 4. Effect of visual uncertainty. A, Cursor error at the end of the trial as a function of the imposed shift for a representative
subject. Colors as in Figure 1H. Values represent Cartesian (screen) coordinates. Horizontal dotted lines indicate the full compen-
sation model prediction and diagonal dashed lines indicate the minimal mapping model prediction. Solid lines provide the Bayesian
estimation model fits to the data as a function of sensory uncertainty. Due to trial scheduling statistics, applied shift values differ
slightly across each subject. To reflect this difference, error bars denote SD instead of SEM. Importantly, every subject experienced
the same overall statistical distribution of shifts during training and testing. B, Slopes of the linear fits for all subjects in experiment
1. The first bar in each grouping corresponds to the subject represented in panel A.
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seven subjects in experiment 1 and performed baseline
corrections on their endpoint data. Baseline-adjusted
mean endpoint averaged over those two subjects indicate
a compensation of -1.16 � 0.12 cm (mean � SD) provid-
ing a closer correspondence to the mean of the true prior
and the results reported by Körding and Wolpert (2004).

Next, we examined the relationship between the im-
posed shift and cursor error (Fig. 4). Cursor error as a
function of shift was averaged across 11 bins of applied
shift values and plotted for all visual feedback conditions
(representative subject in Fig. 4A). The slope of the linear
fit was analyzed to investigate the relationship between
cursor error and the imposed shift (Fig. 4B). Mauchly’s
test for sphericity was violated (p � .01), requiring Green-
house–Giesser correction. According to the corrected re-
peated measures ANOVA, slope increased significantly
(F(3,81) � 14.1 p � .002) with increasing uncertainty in the
visual feedback. A planned comparison of the slopes
between visual conditions indicated significant differ-
ences for all visual conditions except the �0 conditions
which was similar (p � .46) to condition �M. This pattern,
in which reliance on the learned prior is inversely related to
changes in visual uncertainty, is consistent with the
Bayesian estimation model and inconsistent with both the
full compensation and minimal mapping models.

The influence of visual uncertainty on cursor error was
also evident when averaged across all the subjects tested
(n � 7). The mean slope increases significantly with in-
creasing visual uncertainty across three of the conditions
(�M, �L, ��), although not for the clear condition (�0); Fig.
4B). One possible explanation for this is that the clear and
moderate uncertainty conditions provide highly similar
information about the imposed shift (Fig. 1H). Although
the stimuli used for the moderate uncertainty condition
were randomly generated Gaussian point cloud distribu-
tions of 25 small translucent spheres with a SD of 1 cm,
the origin of the moderate uncertainty feedback is, on
qualitative inspection, still relatively easy to discern.
Hence, from the subject’s perspective, there might have
been little effective difference between the clear and mod-
erate uncertainty feedback conditions, which could have
produced the similar slopes observed across these two
conditions. Nevertheless, the influence of visual uncer-
tainty on cursor error remains significant for all other
comparisons.

Experiment 2
In this experiment, a training phase of 1080 RH trials

was followed by 1080 LH trials for both the CE and CI
conditions (Fig. 2B,C). The percentage of IG was deter-
mined by comparing the mean endpoint (��) during late
training (trials 980–1080) against the mean endpoint (��)
from the early LH trials (1080–1180), as per Equation 1. To
rule out the possibility that training differences between
subjects participating in Experiments 1 and 2 could influ-
ence our results, mean endpoints during late RH training
(980–1080) were compared across all experimental
groups. Endpoints were similar: -1.52 � 0.2, -1.23 � 0.32,
and -1.34 � 0.22 cm (mean � SD in all cases) for all
groups (Fig. 5A), and the observed differences were not
significant (BSL vs CE, p � .069; CE vs CI, p � .31; BSL
vs CI, p � .15). This result indicates that learning of the
prior distribution for CE and CI subjects in experiment 2
was comparable to the learning that occurred for subjects
in experiment 1. In addition, the mean endpoint during late
training (980–1080) for BSL subjects was similar to both
late training (1980–2160), and the entire block of 1080
trials from the testing phase (early vs late, p � .63; early vs
entire, p � .99; late vs entire, p � .64), thus reinforcing the
use of late testing reaches (980–1080) as a suitable indi-
cator of prior learning.

During early LH trials (1080–1180), a mean endpoint of
-1.22 � 0.1 cm (mean � SD) was observed for subjects in
the CE group, which is similar to BSL endpoints during the
same period (p � .094; Fig. 5B). This indicates strong
(98%) generalization of the learned prior when the visual
perturbation is congruent in an extrinsic reference frame.
In contrast, an endpoint of 0.31 � 0.26 cm (mean � SD)
during early LH reaches was observed for CI subjects,
which is significantly different to both CE and BSL end-
points during the same period (p � .0001 in both cases;
Fig. 5B). This indicates that the learned prior incompletely
generalized (23%) when the perturbation is congruent
only in an intrinsic reference frame.

Although the mean endpoint averaged across the first
100 trials of the testing phase provides one measure of
generalization, it may also reflect some degree of new
learning with the opposite limb. We therefore performed a
moving average window analysis (window size � five
trials) on early LH reaches (1080–1180), which provides a
higher temporal resolution measure (Fig. 6A,B). We also

Figure 5. A comparison of endpoints (��) for all experimental groups. A, Mean endpoint during late RH training. B, Mean endpoints
during early LH testing. All p values represent significance levels of independent samples t tests. Error bars denote SEM. Color coding
is the same as in Figure 2.
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ran a post hoc analysis which confirmed that the selected
window size provided a representative (relative frequency-
preserving) sampling of visual uncertainty conditions in-
cluding �� trials and representative distributions of shift
values. For the CE group, the moving average shows a
mean endpoint of -0.56 � 0.17 cm (45%) over the first five
trials, -0.86 � 0.29 cm (68%) over the next five trials,
before the mean endpoints stabilize from trial 30 onwards
and become statistically indistinguishable across the re-
maining trial windows in the testing phase (1180–2160).
The mean endpoint during this part of the testing phase
was -1.22 cm � 0.24 cm (Fig. 6C). For the CI group, the
moving average shows a mean endpoint of -0.60 � 0.18
cm (45%) in the first five trials and -0.75 � 0.23 cm (55%)
between 5 and 10 trials, with endpoints reaching a plateau
at a mean of 0.37 � 0.14 cm (30%) after 100 trials (Fig. 6B)
which persisted for the remainder of the testing phase.
The mean endpoint during this part of the testing phase
was 0.51 � 0.19 cm (Fig. 6D).

Interestingly, there was no significant difference be-
tween mean endpoints for both CE and CI groups after

five trials (p � .71) or after 10 trials (p � .39). Both CE and
CI groups show the same percentage generalization of
the prior mean (45%) during early LH reaches. Impor-
tantly, this pattern of results is not readily interpretable in
terms of new learning or adaptation with the opposite
limb. Since new learning would be expected to occur in
the same reference frame as initial learning, this should
produce endpoints that diverge rather than converge
across the CE and CI groups. For example, if initial and
new learning of the imposed perturbation are encoded in
extrinsic coordinates, endpoints should tend toward -1
cm for the CE group and �1 cm for the CI group. By
contrast, if initial and new learning are encoded in
intrinsic coordinates, endpoints should tend toward �1
cm for the CE group and -1 cm for the CI group. No
divergence in endpoints was observed during early LH
reaches. Instead, a significant difference between CE
and CI groups only begins to emerge after 15 trials (p �
.003) and is maintained over the remaining trials, indi-
cating that new learning involving the opposite limb
does eventually take place.

Figure 6. Moving average plot for early LH (��) trials. A, B, A moving average of endpoints across the first 100 trials in the LH testing
phase for CE (A) and CI (B). Each bar represents the average across seven subjects using a window size of five trials. Error bars denote
SD not SEM to reflect the disparate number of values included in each window. All p values represent significance levels from
independent Welch t tests. C, D, Average endpoints for CE (C) and CI (D) conditions for the remaining reaches in the testing phase
(1180–2160). In C, D, error bars denote SEM. The dashed line represents the mean across reaches 1180–2160. Color coding is the
same as in Figure 2.
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Discussion
In the current study, we demonstrate that subjects

integrate their current level of uncertainty about the avail-
able visual evidence with the prior distribution learned
from the task to generate motor behavior that optimally
compensates for the imposed shift. In other words, they
perform Bayesian integration during sensorimotor learn-
ing. Our results therefore replicate those of Körding and
Wolpert (2004). We also wanted to go beyond simply
replicating these important results by further probing the
nature of the underlying representations that are learned
during the task. By investigating generalization of the
learned prior distribution to the other limb, we were able to
assess the reference frame in which initial learning occurs.

Both early CE and CI endpoints suggest the prior
learned during RH adaptation is encoded in an extrinsic
reference frame and this representation is available to the
opposite limb. This finding parallels a number of earlier
results demonstrating that intralimb generalization of
visuomotor perturbations occurs in extrinsic coordinates
(Flanagan and Rao, 1995; Wolpert et al., 1995; Vetter
et al., 1999; Krakauer et al., 2000) and IG occurs in
extrinsic coordinates (Imamizu and Shimojo, 1995; Sain-
burg and Wang, 2002; Wang and Sainburg, 2004, 2005;
Taylor et al., 2011). Nevertheless, it differs from several
more recent findings. For instance, Carroll et al. (2014)
report strong and immediate interlimb transfer only when
the (non-stochastic) visuomotor perturbation was congru-
ent across both intrinsic and extrinsic reference frames.
Transfer was limited when the visuomotor perturbation
was only congruent in a single reference frame (19%
during an extrinsic-congruent condition and 8% during an
intrinsic-congruent condition). An important difference
between the paradigm employed by Carroll et al. (2014)
and the current study is that they used an isometric force
aiming task in which subjects generated small forces or
torques in their index finger that were in turn mapped into
cursor movements. Isometric movements, which by def-
inition involve muscle contraction without corresponding
changes in joint angle and muscle length, differ from
natural multi-joint movements both in terms of muscle
activity and proprioception (Sergio et al., 2005). It is there-
fore plausible that visuomotor learning in an isometric
task, which involves learning new dynamics, more likely
requires coding in intrinsic, joint-based coordinates (Shad-
mehr and Mussa-Ivaldi, 1994; Rotella et al., 2015). Be-
cause our paradigm does not require subjects to learn a
new mapping from forces into cursor movements, this
could explain the lack of alignment between our findings
and those of Carroll et al. (2014).

More recently, Poh et al. (2016) report stronger transfer
when the visuomotor perturbation is congruent in both
extrinsic and intrinsic coordinates as compared to when
the perturbation is aligned in only a single extrinsic or
intrinsic reference frame. Because they used a more stan-
dard (non-isometric) reaching task, the above consider-
ations do not apply. Although their results appear at odds
with those reported here, one important difference is that
they focus on the degree of transfer relatively late in the
testing phase with the untrained limb (specifically the last

two blocks of “probe” trials). By contrast, our primary
focus was on early transfer. Although paradigm differ-
ences make a direct comparison difficult, the pattern of
transfer Poh et al. (2016) observed in early blocks of probe
trials appears less consistent with their mixed reference
frame conclusion than the transfer pattern observed in
late blocks (Poh et al., 2016, their Fig. 4, p 1245).

Several other features of our IG data warrant discus-
sion. One especially striking feature is the rapid adapta-
tion following immediate generalization observed in both
CE and CI groups. This may suggest the operation of
cognitive strategies or heuristics, which can occur at fast
timescales (Malfait and Ostry, 2004; Hwang et al., 2006).
It has recently been argued that generalization between
effectors and across workspaces may involve both im-
plicit and explicit learning processes (Taylor and Ivry,
2013; Taylor et al., 2014; McDougle et al., 2015). With
these distinct learning processes in mind, Poh et al. (2016)
investigated the contribution of explicit processes to the
transfer of visuomotor learning and found that explicit
learning is typically encoded in extrinsic coordinates and
is fully available early during opposite limb reaches. If
explicit cognitive strategies are recruited, an early and
abrupt error-corrective switch is predicted corresponding
to the time at which subjects explicitly recognize a change
in task context and adopt a novel explicit strategy (e.g.,
reach to the right of the target). This explicit strategy might
help subjects achieve relatively rapid compensation in the
task in contrast to the slower learning expected if an
implicit, error-based process is exclusively relied on. Al-
though an interesting source of speculation, the current
paradigm was not designed to disentangle implicit and
explicit learning processes.

Another interesting result is the learning plateau exhib-
ited in the CI reaches over the course of the testing block
(Fig. 6D). One possible explanation for this CI-specific
effect might be anterograde interference. Interference has
been demonstrated when a counter-rotation equal in
magnitude but opposite in direction is learned shortly
after an initial visuomotor rotation is learned and consol-
idated in memory (Wigmore et al., 2002; Krakauer et al.,
2005). Once consolidation occurs, the newly acquired
internal model is thought to become increasingly resistant
to modification by a competing model (Krakauer, 2009).
Not only does consolidation commence rapidly (signif-
icant consolidation after �5 min), but it appears to
strengthen as a function of time and is strongly correlated
with number of adaptation trials performed (Krakauer
et al., 2005). Given that our subjects adapted to the
extrinsically encoded perturbation over a large number of
trials (n � 1080), consolidation may make the learned
prior more resistant to change. Accordingly, consolidation
predicts rapid and early stabilization toward a mean end-
point of -1 cm over the course of LH reaches for the CE
group. In contrast, for the CI group, it is plausible that the
consolidated prior is erroneously applied to visual shifts
that are incongruent in extrinsic coordinates and remains
difficult to unlearn leading to the observed plateau at a
mean of 0.51 cm by the end of the testing block. Addi-
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tional experiments are required to determine whether the
anterograde interference hypothesis has merits.

Although the current study provides valuable informa-
tion about the reference frame in which the mean of the
learned prior generalizes across limbs, a number of im-
portant questions remain open. Since we were interested
in replicating the results of Körding and Wolpert (2004),
elements of their paradigm were preserved in our exten-
sion to the context of IG which placed limitations on the
questions we could probe. For example, the current par-
adigm did not allow us to ask whether immediate gener-
alization increases when the imposed visuomotor
perturbation is congruent across both extrinsic and intrin-
sic reference frames (Carroll et al., 2014). Another limita-
tion is that our study, like that of Körding and Wolpert
(2004), was not designed to address the extent to which
the visual likelihood was learned (Sato and Körding,
2014). Relatedly, our paradigm was not optimised to in-
vestigate likelihood integration when subjects switched to
the untrained limb. Since generating our slope plots (Fig.
4) requires a full Gaussian distribution of imposed shift
values for each visual uncertainty condition, it was not
possible to address this question with the current design.
Future studies with modified designs are required to ad-
dress these and other important questions about Bayes-
ian integration in sensorimotor learning.

In this study, we extended the findings of Körding and
Wolpert (2004) to the context of interlimb generalization.
We found that, in our task, the learned prior is available to
the untrained limb and is coded in an extrinsic reference
frame. These findings open pathways for future investiga-
tion into the nature of statistical learning in sensorimotor
adaptation.
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