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Abstract

Functional MRI studies in primates have demonstrated cortical regions that are strongly activated by visual
images of bodies. The presence of such body patches in macaques allows characterization of the stimulus
selectivity of their single neurons. Middle superior temporal sulcus body (MSB) patch neurons showed similar
stimulus selectivity for natural, shaded, and textured images compared with their silhouettes, suggesting that
shape is an important determinant of MSB responses. Here, we examined and modeled the shape selectivity of
single MSB neurons. We measured the responses of single MSB neurons to a variety of shapes producing a wide
range of responses. We used an adaptive stimulus sampling procedure, selecting and modifying shapes based
on the responses of the neuron. Forty percent of shapes that produced the maximal response were rated by
humans as animal-like, but the top shape of many MSB neurons was not judged as resembling a body. We fitted
the shape selectivity of MSB neurons with a model that parameterizes shapes in terms of curvature and
orientation of contour segments, with a pixel-based model, and with layers of units of convolutional neural
networks (CNNs). The deep convolutional layers of CNNs provided the best goodness-of-fit, with a median
explained explainable variance of the neurons’ responses of 77%. The goodness-of-fit increased along the
convolutional layers’ hierarchy but was lower for the fully connected layers. Together with demonstrating the
successful modeling of single unit shape selectivity with deep CNNs, the data suggest that semantic or category
knowledge determines only slightly the single MSB neuron’s shape selectivity.

Key words: body patch; convolutional neural networks; inferior temporal cortex; macaque; object recognition;
shape selectivity

(s N

Functional MRI studies have shown regions in the temporal cortex that are selectively activated by bodies.
In agreement with the fact that animals can be identified from their silhouette, recording studies showed that
the stimulus selectivity of single units of the middle superior temporal sulcus body patch (MSB) is strongly
determined by shape. Using adaptive stimulus sampling, we examined for the first time the shape selectivity
of single MSB neurons, which produced a wide range of responses to a variety of shapes. Deeper layers of
deep convolutional neural networks provided excellent models of the observed shape selectivity of single
neurons in the fMRI-defined MSB. Overall, the data suggest that semantic or category knowledge deter-
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Introduction

Functional MRI (fMRI) studies in primates have shown
cortical regions that are activated more strongly by bodies
compared with other object categories (Downing et al.,
2001; Tsao et al., 2003; Pinsk et al., 2005, 2009; Bell et al.,
2009; Popivanov et al., 2012; Lafer-Sousa and Conway,
2013; Premereur et al., 2016). In macaques, three such
body patches have been identified, and at least two lo-
cated in the Superior Temporal Sulcus (STS) are function-
ally connected (Premereur et al., 2016). Single neurons of
the middle STS body (MSB) patch show, on average, a
greater response to bodies compared with images of
other categories (Popivanov et al., 2014). The MSB neu-
rons show a marked within-body category selectivity,
responding only to some images of bodies, and some MSB
neurons respond also to images of objects (Popivanov et al.,
2014, 2016).

Recently, Popivanov et al. (2016) attempted to define
the features that MSB neurons respond to by randomly
occluding parts of the image (“bubbles”) that effectively
drove the neuron. That study suggested that the majority
of MSB neurons respond to body image fragments such
as extremities or torso parts. However, characterizing the
stimulus selectivity of an MSB neuron by reducing a single
image to fragments has limitations, because the selectiv-
ity likely results from hierarchical nonlinear processing
(DiCarlo et al., 2012), and thus cannot be fully character-
ized by “effective” fragments of a single image.

Here, we examined the selectivity of MSB neurons not
by identifying critical features that drive the response to a
single image, but by measuring and modeling their re-
sponse to a large variety of stimuli. To reduce image
space, we examined shape selectivity, measuring the
responses of MSB neurons to silhouettes of the original
shaded and textured stimuli. Previous work found that
MSB neurons show similar selectivity for silhouettes and
the original images (Popivanov et al., 2015), suggesting
that the shape selectivity is a strong determinant of the
overall stimulus selectivity of MSB neurons.

Our previous single unit studies suggest that MSB neu-
rons respond to only a small portion of the vast shape
space. Given such high degree of shape selectivity, pre-
senting a fixed set of randomly chosen shapes will likely
undersample the portions of shape space in which shape
variations produce marked differences in response. Fur-
thermore, such relevant portions of shape space will differ
between neurons. Thus, to have a more efficient explora-
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tion of relevant portions of shape space for each neuron,
we used an adaptive stimulus sampling strategy (Yamane
et al., 2008; Okazawa et al., 2015). We modified the shape
of silhouettes to which the neuron responded, presented
these modified shapes together with randomly selected
shapes, and measured the response of the neuron to
those stimuli. Then, we again modified shapes that elic-
ited a response from the neuron. This adaptive procedure
of response-based shape selection and modification fol-
lowed by measurement of the responses to the newly
generated shapes was repeated in successive iterations,
resulting in a wide range of responses of the neuron for a
variety of shapes.

Although previous studies of body patch neurons
showed, on average, greater responses to bodies com-
pared with other stimulus categories, those studies used
a relatively small number of stimuli, providing a limited
description of their stimulus selectivity and effective stim-
uli. Here we used a much larger set of shapes, adapted to
the individual neurons’ response, which allowed us to
examine whether their effective stimuli resemble bodies or
instead shapes that are not bodies. Furthermore, we
aimed to provide a predictive model of MSB neuron’s
shape selectivity. A previous study described the shape
selectivity of posterior inferotemporal (IT) neurons (Brincat
and Connor, 2004) by a model that parameterizes shapes
in terms of curvature and orientation of local contour
segments. Thus, we examined to what degree such a
model can describe the shape selectivity of MSB neurons.
The performance of this model was compared with that of
a pixel-based gray-level model and multilayered convolu-
tional neural networks (CNN), including deep neural net-
works (Krizhevsky et al., 2012; Kriegeskorte, 2015). Deep
CNNs, trained with natural images for classification, have
been shown to outperform other models (e.g., HMAX;
Riesenhuber and Poggio, 1999) in predicting the stimulus
selectivity of IT multiunit activity (Cadieu et al., 2014).
However, it is unknown how well these deep neural net-
works model shape selectivity of single neurons of an
fMRI-defined body patch. To address this, we fitted the
shape selectivity of MSB neurons with a linear weighting
of the activations for each deep neural network layer and
compared the fits across layers.

Materials and Methods

Single unit recordings
Subjects

We used the same two male rhesus monkeys (Macaca
mulatta) as in our previous studies of MSB (Popivanov
et al,, 2014, 2015, 2016). They were implanted with a
headpost and a recording chamber targeting MSB. Animal
care and experimental procedures complied with national
and European laws, and the study was approved by the
Ethical Committee of the Katholieke Universiteit Leuven.

Recordings

We recorded from the left MSB, as defined by fMRI in
the same subjects by contrasting images of headless
monkey bodies and control objects (for details, see Pop-
ivanov et al. [2014]). For each guide tube position target-
ing the fMRI-defined body patch, we verified that MSB
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neurons responded to the images of monkey bodies,
human bodies, mammals, or birds that were used in the
fMRI study of Popivanov et al. (2014). Single unit record-
ings were performed with Epoxylite-insulated tungsten
microelectrodes (FHC; in situ measured impedance 0.8-
1.7 MQ) using techniques described previously (Popiv-
anov et al., 2014). Briefly, the electrode was lowered with
a Narishige microdrive into the brain using a guide tube
that was fixed in a standard Crist grid positioned within
the recording chamber. After amplification and filtering
between 540 Hz and 6 kHz, single units were isolated
online using a custom amplitude- and time-based dis-
criminator.

The position of one eye was continuously tracked by
means of an infrared video-based tracking system (SR
Research Eyelink; sampling rate 1 kHz). Stimuli were
presented on a CRT display (Philips Brilliance 202 P4;
1024 X 768 screen resolution; 75 Hz vertical refresh rate)
at a distance of 57 cm from the monkey’s eyes. The onset
and offset of the stimulus were signaled by means of a
photodiode detecting luminance changes of a square in
the corner of the display that was invisible to the animal.
A digital signal processing—based computer system con-
trolled stimulus presentation, event timing, and juice de-
livery while sampling the photodiode signal, eye positions,
spikes, and behavioral events. Time stamps of the spikes,
eye positions, stimulus, and behavioral events were
stored for offline analyses.

Stimuli

Responsive MSB neurons were searched with two fixed
sets of 100 stimuli each. Both search sets included sil-
houettes of 10 monkey bodies and 10 human bodies
(excluding the head), 10 monkey faces and 10 human
faces, 10 four-legged mammals (with head), 10 birds (with
head), 10 fruits/vegetables, 10 body-like sculptures, and
20 human-made objects. The first set of 100 silhouettes
corresponded to the same images used by Popivanov
et al. (2015) and were used in 79 of 100 tested neurons.
The remaining 21 neurons were tested with silhouettes of
the “odd” images of Popivanov et al., (2012). The silhou-
ettes were resized so that their area equated that of a
circle of 4° diameter (12.56 deg?). The silhouettes had
black pixels (0.01 cd/m?) and were presented on a uniform
colored background (54 cd/m?; R 230, G 230, B 250).
Examples of stimuli of each search set that were used to
find responsive neurons are presented in Fig. 1A, B.

For the adaptive stimulus sampling procedure, novel
shapes were created online. To do so, we parameterized
the contours of the shapes with elliptical Fourier coeffi-
cients (Kuhl and Giardina, 1982) using 128 harmonics.
This number of harmonics was sufficient to obtain an
approximation of the silhouette of a body or object that
was perceptually similar to its original. Note that we used
this parameterization as a computationally efficient and
fast tool to manipulate and generate a wide variety of
shapes, but we do not assume or imply that the neurons
encode elliptical Fourier features. The novel shapes either
were derived from the silhouettes of the search set (see
below) or were randomly generated. The latter we label
“random shapes,” since they occupy a random position in
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Figure 1. Examples of stimuli. A, B, Examples of silhouettes of
the two stimulus sets used during the search task. C, Examples
of “random shapes” used in adaptive stimulus sampling test. D,
Examples of two local and two global shape deformations. The
parent image is shown in the middle panel.

shape space. The random shapes were created by ran-
domizing each of the four coefficients of the 128 harmon-
ics. The range of the values for each of the harmonics was
constrained to decrease monotonically, so that lower har-
monics were allowed to have a larger amplitude than the
higher harmonics. This was done to ensure that the fre-
quency spectrum of the random shapes and the body
silhouettes were similar. Examples of random shapes are
shown in Fig. 1C.

We also derived novel shapes from stimuli, which we
label “parent stimuli,” shown during the search test or
during earlier generations of the adaptive stimulus sam-
pling procedure (see below). We generated four novel
shapes from each parent stimulus, two with “local” shape
deformations and two with “global” shape deformations.
First, we put a 3 X 3 rectilinear grid (4 X 4 vertices) on top
of the contour of the parent shape. The outer dimensions
of this transformation grid equaled the bounding box of
the shape. A local deformation consisted of a random
displacement (within an arbitrarily chosen range) of one
randomly chosen vertex of the grid, whereas a global
deformation consisted of random displacements of each
of five different randomly chosen vertices. The initial

eNeuro.org



eMeuro

shape was then deformed according to the transforma-
tion grid, using cubic interpolation. The novel shape gen-
erated was then approximated by 128 elliptical Fourier
harmonics. Examples of such deformed shapes are
shown in Fig. 1D.

The outer contour of all novel shapes was required to
be closed while avoiding any self-intersections. Further-
more, their maximal extent was constrained to be 12°
while maintaining their area equal to 12.56 deg® The
mean width and height of the shapes was 5.3° and 6°,
respectively. The stimuli were shown centrally, exceptin a
minority of neurons that failed to show sizable responses
to foveal presented stimuli, in which we presented the
stimuli eccentrically (based on receptive field mapping).
The silhouettes were centered according to their center of
mass.

Tests

In all tests, stimuli were presented for 200 ms each, with
an interstimulus interval of at least 300 ms during passive
fixation (fixation window size 2° X 2°). Fixation was re-
quired in a period from 100 ms prestimulus to 200 ms
poststimulus. Only unaborted trials were taken into ac-
count. Juice rewards were given with decreasing intervals
(exact values depending on the animal) as long as the
animal maintained fixation. Reward delivery was not
locked to the stimulus presentations.

Search test

Neurons were tested with pseudorandom, interleaved
presentations of the 100 silhouettes of either set (Popiv-
anov et al., 2014). The number of unaborted presentations
per stimulus was three. Based on this test, stimuli were
selected for subsequent tests. In some neurons, only
weak responses were present for foveally presented stim-
uli. For these neurons (n = 16), we performed receptive
field mapping (Popivanov et al., 2015), followed by repe-
tition of the search test with presentation of the stimuli at
the hotspot of the receptive field.

Adaptive stimulus sampling test

This test was run automatically online with a Matlab-
based program. Firing rates were computed for each ftrial
using a window whose poststimulus onset ranged from 50
to 250 ms and were then averaged across presentations
per stimulus. After finishing the search test, the program
selected those stimuli that produced the five greatest
mean firing rates. These five stimuli became the parent
stimuli of the first generation of the adaptive stimulus
sampling test. We used two adaptive stimulus sampling
procedures.

The first procedure was run on 26 neurons. In this
procedure, four novel shapes were derived of each parent
stimulus, totaling 20 new shapes. In addition, we gener-
ated 25 random shapes. These 45 stimuli constituted the
first-generation stimuli. The next generations of stimuli
were defined as follows. The eight images that produced
the greatest firing rates of all stimuli of all preceding
generations were selected, and four novel shapes were
derived for each of them. These 32 novel shapes, together
with eight novel random shapes and five shapes of the
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preceding generations, constituted the 45 stimuli of the
next generation.

The second stimulus sampling procedure aimed to
sample a more uniform spread of responses than the first
procedure. It had the same stimulus selection of first-
generation stimuli as the first procedure. However, for the
next generations, we used a different stimulus selection
procedure. We binned the stimuli of the preceding gen-
erations into five bins based on their firing rate. The width
of each bin corresponded to 20% of the maximal firing
rate of the neuron, computed across all tested stimuli.
Thus, the first bin contained those images with a firing rate
81-100% of the top image firing rate, the second bin
contained images with 61-80% of the top image firing
rate, and so on. Then, we sampled at random three stimuli
from the first bin (81-100%), two stimuli from the second
bin (61-80%), two stimuli from the third bin (41-60%) and
one stimulus from the fourth bin (21-40%). In the case
that a particular bin did not have a sufficient number of
images (e.g., only 2 images in the first bin), the remaining
images were taken from the next bin (e.g., one extra image
taken from the second bin). Then, we derived four novel
shapes from each of the eight selected stimuli. These 32
novel shapes, together with eight novel random shapes and
five shapes of preceding generations, constituted the 45
stimuli of the next generation. The second procedure was
performed for the majority of neurons (n = 51).

In both procedures, the test of each generation of
stimuli included five unaborted presentations of each
stimulus. The stimuli were presented in pseudorandom-
ized order, with the same reinforcement schedule as in
the search test. We ran the adaptive stimulus sampling
test as long as we could hold the neuron or had a large
number of generations. In the present study, we included
only the 77 neurons for which at least five generations
were available. The mean number of generations was 9.5
(range, 5-20), which compares well with previous studies
using adaptive stimulus sampling (Yamane et al., 2008;
Okazawa et al., 2015).

Shape decomposition test

In this test, we examined the responses to different
parts of the top shape of the adaptive sampling test, i.e.,
the shape that produced the greatest response in that
test. Popivanov et al. (2016) showed that single MSB
neurons are sensitive to removal of some parts of an
effective shape. Thus, this part manipulation provides an
additional set of stimuli to which we measured responses
and that could be used as an independent test of the
shape selectivity models. We conducted the shape de-
composition test in the small number of neurons that we
were able to record after finishing the adaptive stimulus
sampling test. We selected the shape that produced the
greatest response across all the stimuli of all generations
of the adaptive stimulus sampling test. Then we removed
parts of this top shape, e.g., a limb-like feature, a head-
like feature, or part of the torso. The stimulus reduction
was performed online by the experimenter, using a
custom-made graphical interface. Different shape parts
could be presented in different tests, with each test al-
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ways including the full top shape. For instance, a test
could include presentations of only the left arm, only the
right arm, the body-like shape without both arms, and the
full top shape. A next test for the same neuron then
consisted of, for example, presentations of the half of the
torso, the legs, and the full top shape. The parts were
presented at the same size and at the same location as in
the top image. In some neurons, we also included rota-
tions (90°, 180°, or 270°) of the top shape. Stimuli were
presented in pseudorandomized order, using the same
presentation and reward schedules as in the other tests.
We included in the analysis only those tests with at least
seven unaborted presentations per stimulus.

Data analysis

We used raw firing rates, unless otherwise stated. In the
case of analyses of net firing rates, we subtracted the
firing rate in a baseline window ranging from 100 to 0 ms
before stimulus onset from the raw firing rate (computed
in a response window ranging from 50 to 250 ms after
stimulus onset; see above).

The degree of body-category selectivity of a single
neuron was quantified by the body selectivity index (BSI;
Popivanov et al., 2014):

R body R nonbody

BSI = — —
| Rbody | + | Rnonbody |

where R4, and R .54 are the mean net firing rates to
silhouettes of bodies (monkey bodies, human bodies,
mammals, and birds) and nonbodies (faces, objects,
fruits/vegetables) of the search stimulus set, respectively.

The Spearman-Brown corrected split-half correlation
coefficient ry, served as a metric of the reliability of the
responses of a neuron to the stimuli of the adaptive
stimulus sampling test. To compute r;,, we used all pre-
sentations of all stimuli presented in the adaptive sam-
pling test. The explainable variance of a neuron was
defined as the r,,2.

Human psychophysics

The psychophysical data were obtained using Ama-
zon’s Mechanical Turk crowdsourcing platform. For ex-
perimental design and stimulus presentation, we used
Psiturk (Gureckis et al., 2016), an open-source framework
for conducting behavioral experiments online, and Js-
Psych (de Leeuw, 2015), a JavaScript library for creating
behavioral experiments in a Web browser. The task was
performed by 55 human subjects, recruited from the
MTurk subject pool, for a small fee.

We asked the subjects to rate the top and bottom
shapes, defined for each neuron by the maximal and
minimal firing rate, respectively, in the adaptive stimulus
sampling test. The instruction to the subjects was as
follows: “You will have to rate a set of black and white
silhouettes of pictures. We wish to know the degree to
which you feel that the picture can be of a living creature,
an animal or a human(oid). Note that some body parts
may be missing (like the head) or may be exaggerated in
their form or size. You have to rate each silhouette using
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a scale that ranges from 1 to 5 with the extremes of the
scale corresponding to 1, very much animal-like, and 5,
not at all animal-like. By animal-like, we mean animals and
humans. The animals do not have to correspond to a real
animal living on our planet—judge whether they look like
an animal.” A trial started with the onset of a small red
fixation target in the middle of the display for 1000 ms,
followed by a 200-ms-long presentation of the black
shape with the fixation target on top of it. The background
was white. After the stimulus presentation, we presented
the empty white background for 500 ms, after which a
horizontal rating scale, labeled as in the instructions, was
shown. The subjects had to indicate their choice by
pressing one of the five numbers on the keyboard. After
responding, the next trial started. We computed the me-
dian rating across subjects for each stimulus. rg, was 0.93
(n = 154 stimuli), suggesting that we had a sufficient
number of subjects to have a reliable estimate of the
rating scores of humans.

Modeling
Curvature and angular position tuning models

The curvature and angular position tuning (CAP) family
of models was adapted from Brincat and Connor (2004).
In these models, the neuron summates the output of a
small number of subunits, each tuned for a combination of
curvature, orientation, and position (x and y coordinates)
of contour elements. The summation can be exclusively
linear or also include nonlinear terms. Furthermore, the
subunits can be exclusively excitatory or both excitatory
and inhibitory. Thus, we distinguished four types of mod-
els: the standard model that includes both excitatory and
inhibitory subunits and a nonlinear summation term (E-
I-NL model), one that includes only excitatory subunits
and a nonlinear term (E-NL model), one that includes both
excitatory and inhibitory subunits but no nonlinear term
(E-1 model), and one that includes only excitatory subunits
and no nonlinear term (E model). Below we briefly de-
scribe our implementation of this family of models and
refer to Brincat and Connor (2004) and Pasupathy and
Connor (2001) for more details. Note that Brincat and
Connor (2004) considered only the E-I-NL model, which
was also our standard CAP model.

First, the outer contour of each shape was represented
by elliptical Fourier coefficients of the first 24 harmonics.
This smoothened pixelated edges for reliable estimation
of curvature. The curvature was defined as the rate of
change in tangent angle with respect to contour length. It
was estimated using the same procedure as Pasupathy
and Connor (2001), which computes absolute and not
relative curvature (EI-Shamayleh and Pasupathy, 2016).
Next, the contour was decomposed into elements of ap-
proximately constant curvature. To avoid extreme curva-
ture values, we used the following squashing function
(Pasupathy and Connor, 2001):

2.0

K=—7—1.0
1+e°

where k and « are the curvatures before and after the
squashing transformation, respectively. The squashing
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function slope ¢ was set to 20. The orientation () of the
contour element was defined as the polar angle of the
perpendicular bisector that points outward from the inte-
rior of the silhouette. The position of the contour element,
in x and y coordinates, was defined as the bisector point
of the line joining the end points of the contour element.

We modeled each cell’s stimulus selectivity with a com-
bination of four-dimensional (4D) Gaussian subunits. The
dimensions were curvature «k, orientation 6, and x and y
position. Our standard model (E-I-NL) is the same as that
of Brincat and Connor (2004), except in our case the
relative and absolute position coordinates of the contour
elements were identical (unlike in Brincat and Connor
[2004], our stimuli were centered according to their center
of mass), so their 6D model was reduced to a 4D model.
The Gaussian subunit G, was defined by the following
equation:

(kn — w)i(on - miw - wim - )

202

# contour elements 7[
G, = oy e

n=1

202 205, 20,

where k, 0, x and y are the curvature, orientation, and
position coordinates, respectively, of contour element n;
w and o correspond to the fitted mean and SDs for each
of the four Gaussian dimensions; and wg is the fitted
amplitude of the subunit. As in Brincat and Connor (2004),
the SD of the x and y position coordinates (o,,) was
constrained to be identical.

The models could have one to six Gaussian subunits. In
the standard model, o, can have negative or positive
values, corresponding to an inhibitory or excitatory sub-
unit, respectively. The response predicted by that model
is the sum of (a) the summed responses of the individual
subunits, each weighted by their amplitude weight w,, and
(b) the weighted product of the same subunits of which w,
has the same sign. Fitted parameters wy, . and wp;_
describe the weights of the products of the excitatory and
inhibitory subunits, respectively. Thus,

# subunits # excitatory subunits

(Gs) + Wpyp + (Gs)

s=1 s=1

E-I-NL = g

# inhibitory subunits +

+ oy - (Gs) + by,

s=1

where b, is the fitted baseline firing rate, g is the fitted
gain, and the brackets represent half wave rectification of
the response. The standard model had the largest number
of fitted parameters compared with the other three mod-
els of this family. The number of fitted parameters de-
pended on the number of subunits and was 9, 16, 21, 27,
32, and 37 for 1 to 6 subunits in the standard model,
respectively. The E-NL model differed from the standard
model by constraining o, to be positive. The E-l and E
models did not contain nonlinear terms. The E model
differed from the E-I model by having positive w, values
only.

The model parameter search space was constrained as
follows. The ranges of the means of the Gaussian sub-
units were restricted to their physically possible range
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(e.g., x and y coordinates within the union of all presented
shapes). As in Brincat and Connor (2004), the SD for a
particular dimension was equal across all subunits. The
standard deviation (o) of the subunits were constrained to
be within a physiologically plausible range for each di-
mension. For curvature, the bounds for the SD were
0.01-0.5. Similarly, SDs for orientation and position were
bounded within a range of 7.5-90° and 20 to (1/3) X
(mean of maximum extent for all shapes across the x and
y dimensions) range, respectively. As in Brincat and Con-
nor (2004), the means of the Gaussian subunits were
constrained to be separated by at least 2SDs in the 4D
space, so that the subunits were sufficiently different. We
implemented this constraint in the model evaluation func-
tion by calculating whether the current parameter esti-
mate included any pair of subunits with less than the
stated separation criterion. If so, the calculated model
residuals were multiplied by a penalty value of 5, to effec-
tively prevent the solver function from exploring those
parts of the parameter space. Following Brincat and Con-
nor (2004), we also constrained the sum of all positive wg
and wy, , to be 1.5 times the maximum observed firing
rate as an upper bound, and the sum of all the negative w,
and wy, - was constrained to be —1.5 times the maximum
firing rate as a lower bound. This ensured that the fitted
weights and predicted responses stayed within a realistic
range across the entire shape domain.

Models were fitted for each neuron using the extracted
curvature, orientation, and position coordinate values of
the contour segments of each of the shapes. Each neu-
ron’s dataset was split randomly into five nonoverlapping
subsets with each subset containing 20% of the data. We
used a fivefold cross-validation approach to counter over-
fitting. In this approach, a single subset of the five data
subsets was retained for testing the model, and the re-
maining four subsets were used as training data. This
process was repeated five times, and each of the five
subsets was used exactly once as test data. An iterative
nonlinear least-squares algorithm (Matlab, /sqnonlin func-
tion with trust-region-reflective method) with an objective
to minimize the sum of squared differences between ob-
served and predicted responses was implemented for
fitting the models. The implementation of constraints (see
above) prevented the solver function from exploring cer-
tain parts of the parameter space, rendering the error
surface discontinuous. Therefore, we fitted models from
different starting points, which avoided getting stuck in
local minima and produced consistent and nondegener-
ate models. To do this, we used the multistart algorithm,
implemented in Matlab, for model optimization to find a
global minimum from multiple local minima. Models with n
subunits were instantiated with n X 100 random starting
points (within the bound constraints) to sample the pa-
rameter space in a dense manner.

For each of the five cross-validation runs, we computed
the Pearson correlation coefficient r between the pre-
dicted and measured responses for the independent 20%
test data. The mean of the five correlation coefficients
was taken as a goodness-of-fit metric. Because the
goodness-of-fit cannot exceed the reliability of the data,
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we also computed the explained explainable variance by
dividing the mean explained variance by the model (mean
r? of the five cross-validated runs) by the explainable
variance (rg,2) of the responses of the neuron in the adap-
tive stimulus sampling test.

Pixel gray-level model

This is a simple model that consists of a linear combi-
nation of the weighted-pixel gray-levels of the shapes.
The input vector for a particular image consists of the
concatenated rows of the gray levels of that image. Each
pixel value is multiplied by a weight followed by summa-
tion of the weighted values. For each neuron, we applied
partial least squares (PLS) regression (Wold et al., 1984) to
estimate the weights for individual pixels. PLS constructs
new predictor variables, known as components, as linear
combinations of the original predictor variables. The com-
ponents are found using the covariance of the predictor
input matrix X (here, pixel gray values for the shapes
tested in a neuron) and the correlation between X and the
response vector Y (here, responses of that neuron to the
shapes). PLS thus combines the information regarding
the variances of X and Y while also taking into account the
correlations among them. The PLS regression procedure
we adopted was as follows. We assigned randomly 80%
of the data to a training set, and the remaining 20%
constituted the test set. We performed PLS regression
(using SIMPLS in Matlab) with up to 30 components and
fivefold cross-validation on the training data set. For each
neuron, we defined the optimal number of components by
the global minimum of the mean squared error function.
Then, we ran PLS with the selected number of compo-
nents, followed by testing the model on the 20% held-out
data. Goodness-of-fit and explained explainable variance
were computed in the same way as for the CAP models.
We ran the same PLS procedure on surrogate data in
which the assignment of mean neural response to stimu-
lus was randomized. The models trained on the surrogate
data performed very poorly, explaining only 1% of the
response variance (median r? = 0.01). This demonstrates
the validity of the PLS procedure.

HMAX models

We used the implementation of the shallow convolu-
tional network HMAX by Mutch and Lowe (2006). For each
stimulus, we computed the activations of C1 units. The C1
layer performs a max pooling operation on the output of
the S1 orientation selective filters of the preceding layer,
producing some degree of position and size tolerance.
The number of C1 units for each of four orientations (step
= 45°) depended on scale, ranging from 25 (5 X 5; coarse
scale) to 625 (25 X 25; fine scale). Each of eight C1 scales
could define a different model. For each scale, the C1
activation vector for the shapes, which included unit ac-
tivations for all four orientations (e.g., vector length = 4 X
25 X 25), served as predictor of the responses of a
neuron. We used the same PLS regression procedure
(with fivefold cross-validation and independent train and
test data) as described above for the pixel gray-level
model to predict the responses of individual neurons from
the HMAX C1 activations for each scale.
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Alexnet

This deep convolutional neural network, developed by
Krizhevsky et al. (2012), consists of eight weight layers:
five convolutional layers followed by three fully connected
layers. Some of the first five layers consist of three stages:
convolution, max pooling, and normalization. We used the
version of Alexnet trained to classify ~1.2 million natural
images divided in 1000 classes for the ImageNet Large
Scale Visual Recognition Challenge 2012 (ILSVRC2012).
For each stimulus, we computed the activations of all the
units of each stage of the layers, including the pooling and
normalization stages, using feature extraction from the
Matconvnet Matlab toolbox. The input to Alexnet was the
shape image minus the mean of the ILSVRC2012 training
images, since this subtraction from the mean was also
performed when training Alexnet. Then, we performed
PLS regression to predict the responses of a single neu-
ron from the activations of a layer stage to the stimuli
as predictor. The PLS regression procedure was identical
to the one described above. For each neuron, Alexnet
yielded a separate model per layer stage, which allowed
comparison of the explained explainable variances across
layers.

Vgg-19

This very deep convolutional neural network by Simo-
nyan and Zisserman (2014) consists of 19 weight layers:
16 convolutional layers and three fully connected layers.
In addition, it has five max pooling stages in between the
main convolutional layers. We used the trained version of
VGG-19 that is available from Matconvnet, which was
also trained to perform classification on the ILSVRC2012
data. As with Alexnet, we first subtracted the mean of all
trained images from the shape stimulus. We used the
same PLS regression procedure as with Alexnet to predict
the responses of the single neurons from the VGG-19
layer activations.

Results

We recorded the responses of 100 single MSB neurons
of two monkeys (monkey E, 63 neurons; monkey B, 37
neurons) to silhouettes of 100 images of various catego-
ries, including bodies, faces, and human-made objects.
After this search test, we were able to measure the re-
sponses of 77 MSB neurons (monkey B, 29 neurons) in
the adaptive stimulus sampling test. These MSB neurons
responded on average more strongly to silhouettes of
bodies of monkeys, humans, animals, and birds com-
pared with silhouettes of other categories. The median
BSI in the search test for the 77 neurons was 0.19, which
was significantly greater than 0 (Wilcoxon test, p < 0.001),
with 42% of the neurons having a BSI >0.33, i.e., twofold
stronger responses to bodies, compared with object and
face silhouettes. In the adaptive sampling test, we modi-
fied the shape of silhouettes that were selected based on
the firing rate of the neuron to the stimuli. As described in
detail in Materials and Methods, we selected the five
images that produced the greatest firing rate in the search
test and then modified their shape, producing 20 novel
shapes. These modified shapes were presented inter-
leaved with 25 randomly generated shapes (“random
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Figure 2. Responses of an example neuron in the adaptive stimulus sampling test. Neuron C65b was tested with 605 silhouettes.
Every fifth shape is plotted and ranked according to firing rate, which is indicated by the color of the shape.

shapes”), and the responses to these 45 stimuli were
recorded. In successive generations, we selected eight
shapes that produced high firing rates in previous gener-
ations and modified their shape. In each generation, the
new modified shapes were presented interleaved with
new random shapes. This adaptive stimulus sampling
procedure produced a wide range of responses for a large
variety of shapes, which is illustrated for an example
neuron C65b in Fig. 2. This neuron was tested with 605
shapes in the adaptive stimulus sampling test. The mean
number of shapes tested per neuron was 358 (n = 77
neurons), ranging from 205 to 805. To illustrate the distri-
bution of the responses across stimuli, we computed for
each neuron the percentage of shapes in 10 nonoverlap-
ping bins, each having a width of one tenth of the maximal

May/June 2017, 4(3) e0113-17.2017

firing rate of that neuron. For the 77 neurons tested with
the adaptive stimulus sampling procedure, the median
proportion of shapes decreased monotonically with in-
creasing response strength (Fig. 3), demonstrating the
strong shape selectivity of the MSB neurons.

The adaptive stimulus sampling procedure produced
stronger responses, i.e., more effective stimuli, than the
search test that used a fixed set of 100 stimuli. Indeed, the
median firing rate in our sample of neurons to the top
image of the adaptive stimulus sampling test was 73
spikes/s (n = 77), which was significantly higher than the
median firing rate of 33 spikes/s to the most effective
stimulus of the search test (Wilcoxon signed rank test; p =
1.34 X 1077). Fig. 4 shows for each neuron the top image
of the adaptive stimulus sampling test together with the
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Figure 3. Distribution of responses in the adaptive stimulus
sampling test. For each neuron, we binned the normalized re-
sponses in 10 bins (bin width 0.1) and then computed the
percentage of stimuli per bin. The responses were normalized by
the maximum response of the neuron. The full line shows the
median percentage of stimuli for each response bin, across the
77 neurons. The band corresponds to the interquartile range.
The stippled line shows the percentage of stimuli for the different
response bins for the example neuron C65b.

ancestor image from which it was derived across preced-
ing generations. The ancestor images were bodies (mon-
key and human bodies, mammals, and birds) from the
search test in 54.5% of the neurons. For the remaining
neurons, the ancestor images were silhouettes of faces
(6.5%), objects (15.6%), sculptures (3.9%), and fruits/
vegetables (5.2%) from the search test or random shapes
(14.3%) generated during the adaptive stimulus sam-
pling test itself. It is interesting to observe that some
silhouettes of nonbody ancestor images, such as a
corkscrew, evolved into a more body-like shape with
limb-like features.

Because MSB is defined by contrasting fMRI activa-
tions to images of (monkey) bodies with those of objects,
one may expect that the top shapes of MSB neurons
resemble bodies. To assess this, 55 naive human observ-
ers rated with a 5-point Likert-scale how animal-like they
perceived the top images of the 77 neurons. To have a
large variety of images (and ratings), we also included the
bottom images. The top images shown in Fig. 4 were
grouped according to their median rating. Although the
top images showed a wide distribution of ratings, 40%
were rated as animal-like. This shows that some MSB
neurons can respond well to shapes that humans do not
judge as resembling a body or an animal. Only one of the
bottom images was rated as animal-like. The latter, how-
ever, should not be interpreted as suggesting that only
nonbody images elicit weak responses of MSB neurons.
Indeed, single MSB neurons typically respond selectively
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to bodies or animals, showing no or little response to
particular images of bodies or animals (Popivanov et al.,
2014).

The shape selectivity of single MSB neurons is only
partially described by the top (and bottom) images. To
gain a fuller and quantitative description of the shape
selectivity of an MSB neuron, we modeled the responses
of each single neuron to all stimuli tested in that neuron in
the adaptive stimulus sampling test. The first family of
model we considered was the CAP models, adapted from
Brincat and Connor (2004). In these models, a shape is
formalized by the curvature, orientation, and x and y
position of contour elements with an approximately con-
stant curvature. The model neurons received input from
subunits that showed Gaussian tuning in the 4D space
defined by curvature, orientation, and x and y location. In
the standard CAP model (Brincat and Connor, 2004), the
model neuron summed the weighted responses of its
subunits to contour segments and of their nonlinear inter-
action followed by rectification (see Materials and Meth-
ods). The input weights, tuning centers, and widths were
fitted for each neuron separately with fivefold cross-
validation. Models with a different number of subunits
were fitted separately. The results of the model fit, with six
subunits, is shown for the example neuron C65b in Fig. 5.
For this neuron, the mean goodness-of-fit, averaged
across the five cross-validations, computed as the corre-
lation between observed and predicted responses for a
held-out, independent sample of stimuli, was 0.78 (SD
across the five folds = 0.04). The model attempted to
capture the selectivity of the neuron by three excitatory
and three inhibitory subunits tuned to differently oriented
curved contour segments. It could predict not only weak
responses to ineffective stimuli and strong responses to
effective stimuli, but also responses to stimuli that pro-
duced a moderate response in the neuron (Fig. 5). How-
ever, the mean explained variance of the model (mean
r? = 0.62) was less than the explainable variance of the
neuron’s responses (r,,> = 0.94), resulting in a mean
explained explainable variance of 0.66 (see Materials and
Methods).

Across the 77 neurons, the median goodness-of-fit (r) of
the standard CAP model having six subunits was 0.60
(first and third quartiles: 0.51 and 0.68). This was well
below the median reliability rg, of 0.90 of the responses of
the 77 neurons. The median explained explainable vari-
ance was 0.44 (quartiles, 0.35-0.58). When fitting models
with different numbers of subunits, we found that the
median explained explainable variance increased from
one to four subunits, with negligible increase when the
number of subunits increased beyond four (Fig. 6). We
also fitted a standard model with 12 subunits, which
yielded a median explained explainable variance of 0.47
(quartiles, 0.37-0.60), only slightly greater than that with
four to six subunits. When taking the maximum good-
ness-of-fit for each neuron across the different number of
subunits fits, the median explained explainable variance
became 0.49 (quartiles, 0.39-0.60). Thus, the standard
CAP model captured about half of the explainable vari-
ance of the responses of the neurons. We also fitted other
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Figure 4. Top images of all neurons (n = 77) obtained with the adaptive sampling test. In each panel, the right image corresponds
to the top shape (T) of the neuron, and the left image is the ancestor image (A) from which the top image was derived. Each panel
corresponds to a single neuron. The panels are grouped according to the median rating of the top image in the human psychophysical
study, ranging from 1, very much animal-like, to 5, not at all animal-like. The rating is indicated by the color of the panel’s frame

according to the legend at the bottom.

versions of the CAP family of models, which differed from
the standard model (E-I-NL model) by allowing only ex-
citatory subunits (E-NL model; see Materials and Meth-
ods), no nonlinear interactions between the subunits (E-I
model), or only excitatory subunits without any interaction
(E model). As shown in Fig. 6, the CAP family models
provided overall similar fits of the shape selectivity of
single MSB neurons.

The CAP family of models restricts the input of MSB
neurons to local spatial filters in the orientation X curva-
ture domain, which agrees with classic models of early
visual cortical processing. However, this may be too sim-
ple a view of visual processing at levels upstream from
MSB. Furthermore, CAP models without nonlinear inter-
action among subunits performed as well as the standard
CAP model (Fig. 6). Both considerations led us to fit a
simple pixel gray-level model to our data. That model
consists of a linear combination of the pixel gray levels of
the stimuli, without any spatial constraints on how the
pixels are combined linearly. The input vector of this
model consisted of the concatenated rows of the gray
levels of an image. The model multiplied the gray level of
each pixel value of a silhouette by a weight, and the

May/June 2017, 4(3) e0113-17.2017

response of the model neurons is simply the summation
of these weighted values. Note that this model has no
nonlinearity. For each neuron, we estimated the pixel
weights with PLS regression (see Materials and Methods)
using cross-validation and testing on held-out indepen-
dent data. This pixel-based model produced a mean
goodness-of-fit (r) of 0.79 for the example neuron C65b
(explained explainable variance = 0.66). The estimated
weights of the image pixels for that neuron, which can be
read like a linear receptive field map, suggest a configu-
ration of neighboring negative and positive weights, akin
to highly local edge detectors (Fig. 7A). Across the 77
neurons, the median explained explainable variance
(computed on independent test data) of the pixel-based
model was 0.56 (quartiles, 0.45-0.68), which was well
above those of the CAP model family. To illustrate the
correspondence between observed and predicted test
data of all 77 neurons for the model, we plotted the
normalized observed and predicted responses of all test
data of the 77 neurons in Fig. 7B. For each neuron, we first
normalized both observed and predicted responses by
the maximal observed response of the neuron in the train
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Figure 5. Performance of the E-I-NL CAP model with six subunits for example neuron C65b. A, Scatterplot of predicted and
observed firing rates for the test stimuli that were not used when fitting the E-I-NL model using six subunits. Data of one of the
five cross-validation folds is shown. Full line indicates the regression line (Pearson r = 0.83). B, lllustration of three images of
which the predicted and observed responses are indicated by the arrows and numbers in A. The images elicited a high (1),
intermediate (2), and low (3) response, respectively. The shape selectivity of the cell was explained by six subunits the locations
of which are indicated by the colored circles. The radius of the circles equals the SD of the Gaussian for the x and y dimensions.
The color of the circles corresponds to that of the subunits (labeled a, b, c, d, e, and f with a-c excitatory and d—f inhibitory
subunits) in the equation shown at the bottom. C, D, Orientation and curvature tuning of the excitatory (C) and inhibitory (D)
subunits. Same conventions as in B.
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and test data. Although there is considerable scatter, the
model captures the overall observed response distribu-
tion of the test data.

Pixel-based models perform a template matching op-
eration and as such do not capture the tolerance for
position or size of the shape preference of MSB neurons
(Popivanov et al., 2015). Convolutional network models
with nonlinear max operations (Riesenhuber and Poggio,
1999) show some degree of position and size tolerances
(see also below). Thus, in the next model, we represented
the stimuli by activations of second-layer C1 units of the
shallow convolution network HMAX. C1 units perform the
nonlinear max operation on the output of a local set of
linear orientation-selective S1 units, allowing some de-
gree of position and size invariance of oriented features
(Fig. 8A; Riesenhuber and Poggio, 1999). We used the
HMAX implementation of Mutch and Lowe (2006), using
eight C1 scales and four orientation filters differing in steps
of 45°. We used PLS regression to predict the responses of
the single units with the C1 outputs as predictor. The PLS
procedure, with fivefold cross-validation and testing on
held-out independent data, was identical to that used
above. The median explained explainable variance, com-
puted across the 77 neurons, increased with finer scale (Fig.
8B) from 0.55 to 0.65 (quartiles, 0.54-0.75). This linear com-
bination of fine-scale C1 unit activations showed a greater
goodness-of-fit compared with the linear pixel-based
model. Concatenation of the activations of all eight HMAX
C1 scales in one vector and using this vector as input for
the PLS regression did not significantly improve the ex-
plained explainable variance (median 0.66) compared with
the fine (25 X 25) C1 scale (Wilcoxon sign rank test, p =
0.36).

B

Predicted normalized firing rate

3 -
Observed normalized firing rate

Figure 7. Performance of the pixel-based model. A, Weights for each image pixel of the pixel-based model fitted to the responses
of example neuron C65b. The weights were normalized by the maximal absolute weight. Because the shape was black and
surrounded by a high (background) value in pixel intensity, the negative and positive weights imply a positive and negative
contribution of the shape’s pixel, respectively, in predicting the firing rate. B, Scatterplot of observed and predicted normalized firing
rates to all test stimuli (not used for training the models) of the 77 neurons. Firing rate was normalized for each neuron by the maximal
observed response of the neuron in the train and test data. The line corresponds to the diagonal.

May/June 2017, 4(3) e0113-17.2017

eNeuro.org



€ [‘r*‘eU ro New Research 13 of 21

A Gabor Filters Max pooling

& ‘5‘09/
ﬁ “@s

local max

—

jolcleo)
S 4 orientations
@@@@ per location
4 orientations
per location
HMAX Input S1 Layer C1 Layer

0.5F

Median explained explainable variance

5x5b |
5x5 |
X7 }
11x11
13x13 |
15x15 |
19x19 |
25x25 +

C1 layer scale

Figure 8. Performance of the HMAX C1 models. A, lllustration of the HMAX architecture up to the C1 layer. The input image was
rescaled at nine levels and then filtered by the S1 layer units at each scale by four oriented Gabors. The C1 layer performs a max
pooling operation on the S1 units across location (10 X 10 S1 units) and scale (depth of 2). We applied PLS regression on the C1 layer
output for each of the eight scales separately. Adapted from Mutch and Lowe (2006). B, Median explained explainable variance of
the pixel-based models (n = 77 neurons) as a function of the C1 layer scale. The bars indicate the interquartile range. The scale
dimension is represented by the number of C1 units per orientation of the scale; thus, 25 X 25 corresponds to a finer scale than
5 X 5. The size of C1 layers’ scales is defined by a function (see base model of Mutch and Lowe [2006]) that specifies how the max
pooling filters for each scale will span their respective inputs. The two 5 X 5 scales have the same x and y dimensions but differ in
terms of the starting position of their filters’ centers, resulting in dissimilar unit activations.

The C1 units correspond to the second layer of the  deeper CNN layers. Thus, we turned to deep CNNs and
convolutional network architecture, after a single nonlin-  examined the fits of each CNN layer separately. We used
ear operation. Because of the increase of the fits of model  two deep CNNs, the eight-layer Alexnet (Krizhevsky et al.,
and neural data when using C1 activations, we asked 2012) and the 19-layer VGG-19 (very) deep network of
whether fits would improve even more when considering  Simonyan and Zisserman (2014). Figs. 9A and 10A show

May/June 2017, 4(3) e0113-17.2017 eNeuro.org



Stimulus Aconv1 Aconv2
Anorm1 Anorm2
Apool1 Apool2
1-
(0]
o |
c
©
—
s F
>
Q2
=
©
=
T
@ 0.5 o .
-O *
0]
E'* *
o
[e%
><-
0]
c
(_U.
o°
0]
s
T rzecgeren gy g
e} [} [}
S 59 5 59 5 5 5§ 9 < <<
O ¢ 2 0 &2 & 6 0 o 2
T 2 << 2 <<z << <

Alexnet layer

‘' Pdoos

New Research 14 of 21

Aconv3 Afc6 Afc8

Afc7

Aconv4 Aconv5
Apool5

Predicted normalized response

0 0.5 1
Observed normalized response

Figure 9. Performance of Alexnet layer models. A, Architecture of Alexnet (Krizhevsky et al., 2012). Alexnet consists of eight weight
layers: five convolutional layers followed by three fully connected layers (Afc6-8; red). Layers 1, 2, and 5 consist of different stages:
convolution (Aconv; green), normalization (Anorm; gray), and max pooling (Apool; black). B, Median explained explainable variance
of Alexnet models (n = 77 neurons) as a function of layer. The bars indicate the interquartile range. Stars indicate layers for which the
explained explainable variance differed significantly from the Apool2 stage (two-sided Wilcoxon signed rank test; false discovery rate
corrected p < 0.05), which had the best performance. C, Scatterplot of observed normalized firing rates and those predicted from
Apool2. Data of all test stimuli (not used for training the model) of the 77 neurons. Same conventions as Fig. 7B.

the architectures of these two deep networks. Both mod-
els include a hierarchy of convolutional layers, some of
which have max pooling stages and, in the case of Alex-
net, normalization stages. The last convolutional layer
provides then the input to the first of three fully connected
layers. Both models were pretrained to classify ~1.2 mil-
lion natural images of the ILSVRC 2012 database into
1000 classes. Importantly, many of these classes in-
cluded bodies and animals. The top-1 and top-5 classifi-
cation error scores on the ILSVRC 2012 validation
database were 29% and 10%, respectively, for VGG-19,
which is better than that of the less deep Alexnet (error
scores of 43% and 20%, respectively). Note that the
networks were not trained with our silhouettes. We per-
formed PLS regression to predict the responses of our

May/June 2017, 4(3) e0113-17.2017

single units using as predictors the activations of each
layer separately. For each layer and stage, we used the
same PLS regression procedure as above, with fivefold
cross-validation and testing on independent data. Figs.
9B and 10B plot the median explained explainable vari-
ance for the 77 neurons as a function of the different
layers and stages for both deep networks. In both net-
works, the best predictions were obtained with the deeper
convolutional layers, with the highest median explained
explainable variance being 0.77 (quartiles, 0.65-0.86; me-
dian goodness-of-fit r = 0.80) in the 13th convolutional
layer of VGG-19 (Fig. 10B). The performance of the initial
convolutional layers of the deep networks was similar to
that of the HMAX C1 layer. However, deeper convolu-
tional layers significantly outperformed the C1 layer of

eNeuro.org



New Research 15 of 21

conv3.1 conv4.1 convb.1
) conv1.1 conv2.1 conv3.2 conv4.2 convb.2
Stimulus conv1.2 ool1 conv2.2 pool2 conv3.3 pool3 conv4.3 pool4 conv5.3 pool5 ;Cg fe8
conv3.4 conv4.4 conv5.4 c
1
[0]
S L
c
.©
ST 3
<@ o
o) o o
[] 7]
£ o
3 [ * * * o
x * s [
[ * *  x N
-0.5 ! * =
8 * * * * * I
E B o * 6
% c
*
©
c I o
] 5
° el
3 Sl
= o b
L e
H
0 P S S S S S S T S R S S S S S S S S S i
CTNSD TN ANOSQ NS NO T QRN 0.4f, L L L L L L L L L A
~— «— O oOMmMmMmm O oOWLWWOWLWLW O
285285222 g EEEg28888 0 0 1
S 9 [slts} 3638 Qa [sJoRNels} [SRslels}] Observed normalized response
[SEN&) [SEN&) [GRNGRNS NG O O O O O O O O

VGG19 Layer

Figure 10. Performance of VGG-19 layer models. A, Architecture of VGG-19 (Simonyan and Zisserman, 2014). VGG-19 consists of
16 convolutional layers (conv; green) followed by three fully connected layers (Afc6-8; red). In addition, it has five stages performing
a max pooling operation (pool; black). Not all convolutional layers are represented by a box. B, Median explained explainable variance
of VGG-19 models (n = 77 neurons) as a function of layer. The bars indicate the interquartile range. Stars indicate layers for which
the explained explainable variance differed significantly from the conv5.1 layer (two-sided Wilcoxon signed rank test; false discovery
rate corrected p < 0.05), which had the best performance. C, Scatterplot of observed normalized firing rates and those predicted from
convb.1. Data of all test stimuli (not used for training the model) of the 77 neurons. Same conventions as Fig. 7B.

HMAX (Wilcoxon signed rank test for 25 X 25 C1 layer
versus Alexnet conv5, p = 2.2 X 107%; 25 X 25 C1 versus
VGG-19 conv5.1, p = 1.8 X 108 and more shallow
layers of the deep networks (e.g., Alexnet conv2 versus
convs, p = 1.8 X 107 %, VGG-19 conv2.1 versus conv5.1,
p = 3.5 X 107", Note that in both deep CNNs, the fully
connected layers perform relatively poorly, with VGG-19,
the last (fully connected) layer, having even a lower per-
formance (median explained explainable variance, 0.55)
than the first convolutional layer (0.62). As shown by the
scatterplots of the normalized observed and predicted
responses, both Alexnet (Fig. 9C) and VGG-19 (Fig. 10C)
deep layers predicted the differences among low, me-
dium, and high observed responses of the neurons.

The above data show that a linear combination of units
of a deep convolutional layer of deep CNNs provides an
excellent model of the shape selectivity of mid-STS body
patch neurons. We note that the explained explainable
variance of 0.77 is only a lower bound of the real ex-
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plained variance of the model, since our (split-half) re-
sponse reliability metric does not take into account
nonstationarity of the responses across generations.
From the second generation of the adaptive stimulus
sampling test onward, five stimuli per generation were
repetitions of randomly selected stimuli from a previous
generation (note that repetitions of the same stimuli were
not used in training and testing of the models). The cor-
relation between the responses to these stimuli presented
in their first and the later generation can provide an esti-
mate of the stationarity of the response selectivity across
generations in the adaptive sampling procedure. Note
that in the adaptive sampling procedure, more effective
stimuli can be included in subsequent generations, which
can increase cross-adaptation and thus affect overall fir-
ing rate. The inclusion of the “random” shapes and other
less effective stimuli in each generation coupled with the
interleaved stimulus presentation aimed to reduce such
adaptation effects. Correlating presentations of the same

eNeuro.org



eMeuro

stimulus across generations can provide a lower-bound
estimate of non-stationarities, such as adaptation and
long-term modulatory influences on the responses (that
entered the modeling procedures). The median correla-
tion coefficient of the responses to the first and later
generation of these “control” stimuli (ry,,) was 0.86 (quar-
tiles, 0.76-0.92; n = 77 neurons). The correlation coeffi-
cient of r,,,> and the explained explainable variance of the
VGG-19 convb5.1 layer was 0.35, which is significantly
greater than 0 (n = 77; p = 0.002). This suggests that,
indeed, our estimated explained explainable variance of
the VGG-19 convb.1 layer is still an underestimation of the
real explained explainable variance of that model.

Fig. 11A produces an overview of the median explained
explainable variance of the different models. The deeper
convolutional layers of the deep CNNs, in particular VGG-
19, provide the best fits of neural selectivity. The models
marked by a star showed a significantly lower explained
explainable variance than the VGG-19 conv5.1 layer
model (Wilcoxon signed rank test; false discovery rate
[Benjamini and Hochberg, 1995] corrected p < 0.05). Are
the different models just noisier versions of the best
model, or do different models capture different aspects of
the shape selectivity? To answer this, we computed all
pairwise partial correlations between the explained ex-
plainable variance of the different models, with the sta-
tionarity coefficient, r,?, of the neural responses, as
covariate. The partial correlation coefficients (Fig. 11B)
were all positive, ranging from 0.33 to 0.99 (median 0.68).
The correlation matrix of Fig. 11B was structured, with
some models showing much higher correlations than oth-
ers. To gain more insight into the relationship among
models, we performed a hierarchical clustering analysis
(single linkage algorithm) of the correlation matrix, with 1
— partial correlation as distance metric. As shown in Fig.
11C, many layers of both Alexnet and VGG-19 clustered
together. The same holds for the CAP and the HMAX C1
models, but both these model families belonged to differ-
ent clusters. The pixel model clustered with HMAX C1.
The best performing VGG-19 convb5.1 layer correlated
relatively well with VGG-19 pool4, which produced a sim-
ilarly high fitting performance (Fig. 11A), but correlated
less with the earlier layers and fully connected layers (Fig.
11C). For instance, the correlation between the VGG-19
conv5.1 layer and conv3.1 was 0.50, whereas the corre-
lation between VGG-19 conv5.1 and pool4 was 0.76.
Despite the relatively lower correlations of VGG-19
conv3.1 with the VGG-19 conv5.1 and pool4 layers, only
16/77 and 13/77 neurons showed a lower fit for the
VGG-19 conv5.1 and pool4 layer, respectively, compared
with the conv3.1 layer. These neurons had explained
explainable variance ranging from 0.5 to 0.95 for the
VGG-19 convb.1 and pool4 layers and thus, overall, did
not show a low fit for the VGG-19 conv5.1 and pool4
layers. Thus, for the large majority of neurons, the on-
average worse model conv3.1 underperformed the on-
average better models. This was also the case when
examining models from different families that correlated
poorly (CAP and HMAX versus deep CNN layers), e.g., for
only one neuron, the VGG-19 conv5.1 layer underper-
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formed the CAP model with six subunits. Therefore, it
appears that the bulk of the differences in pairwise cor-
relations reflect differences in overall fitting performance
of the models, with poor models capturing the neurons’
shape selectivity only partially. This was supported by the
Pearson correlation coefficient of —0.41 between the pair-
wise correlations of the models and the pairwise absolute
difference in mean explained explainable variance of the
models.

After the adaptive sampling test, we conducted the
shape decomposition test in 27 neurons. In this test, we
presented the top image of the adaptive sampling test
and reduced or rotated versions of it. The reduced version
consisted of parts like a limb-like feature, a head-like
feature, or part of the torso. The parts were presented at
the same size and at the same location as they occurred
in the top image. Fig. 12A shows an example of six stimuli
and responses of the example neuron C65b as tested in
the shape decomposition test. The response of the neu-
ron was strongly affected by removing some parts of the
top image, which was typical for all neurons examined
with this test. We asked whether the VGG-19 conv5.1
model would predict the responses to the stimuli of the
shape decomposition test. Note that the PLS regression
that estimated the unit’s weights used only stimuli of the
adaptive sampling test (see Materials and Methods). To
avoid any dependence between the stimuli used to train
the model and the test stimuli, we predicted only the
responses to the parts and rotated versions of the top
image, excluding the top image. We predicted the re-
sponses to these stimuli for 20 neurons for which the
explained explainable variance of the VGG-19 conv5.1
model (for the adaptive sampling test stimuli) was at least
0.50. The median correlation between the predicted and
observed responses to the parts and rotated stimuli was
0.64, which was significantly greater than 0 (n = 20
neurons; Wilcoxon test, p = 1.03 X 1074 Fig. 12B). This
demonstrates that the VGG model captured a sizable part
of the variability of single MSB neuron responses to dif-
ferent fragments of the top images.

Previous studies of MSB neurons showed that the stim-
ulus selectivity of these neurons tolerates well changes of
stimulus scale (Popivanov et al., 2015, 2016), in agree-
ment with the well-established scale invariance of shape
preference of IT neurons (Vogels and Orban, 1996; Di-
Carlo et al., 2012). This implies that a valid model of an
MSB neuron should also show scale-tolerant stimulus
selectivity. Thus, we assessed the responses of the mod-
els of each neuron to the shapes that were two times
smaller than those used to train the models. This was
done for all previously fitted models except the CAP
models, which did not perform relatively well for the stim-
uli at the original scale. Then, for each neuron, we com-
puted the Pearson correlation coefficient between the
model responses to the shapes with the original and
reduced scale. The median correlation coefficients ex-
pressing the scale tolerance are shown for the tested
models in Fig. 13. This scale tolerance test produced
further differentiation between models with similar good-
ness-of-fits. Although the pixel-based model produced a
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Figure 11. Comparison of models. A, Median explained explainable variance (and interquartile range) for the E-I-NL CAP models (blue;
ordered according to number of subunits; Max corresponds to the maximal explained explainable variance computed per neuron across
number of subunits and model versions), the pixel-based model (pink), HMAX C1 layer (brown; ordered per scale), and the Alexnet and
VGG19 layers (same color code as in Figs. 9 and 10). Stars indicate models for which the explained explainable variance differed
significantly from the VGG-19 conv5.1 layer (two-sided Wilcoxon signed rank test; false discovery rate corrected p < 0.05), which had the
best performance. B, Pairwise partial correlations between the explained explainable variance of the different models, with the stationarity
coefficient, ry..?, of the neural responses as covariate. Note that the correlation matrix is symmetric. Models are indicated using the same
conventions as in A. C, Hierarchical clustering dendrogram of the correlation matrix of B. Same conventions as in A.

May/June 2017, 4(3) e0113-17.2017

eNeuro.org



Meuro

A .
. 2
S 100
)
q £ 50
g 0 L --—h-_l
E -100 0 200 400
Time (ms)
B !
4}

(2]

C

o3t

=)

0}

C

—

o

[

2ot

€

=)

zZ

1

Lo

-0.5 0 0.5 1
Pearson correlation coefficient (r)
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used in the shape decomposition test of example neuron C65b,
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histograms indicate stimulus onsets and offsets, with 0 corre-
sponding to stimulus onset. B, Distribution of the correlation be-
tween the observed responses and those predicted by VGG-19
conv5.1 model. Data are shown for the 20 neurons tested in the shape
decomposition test and for which the explained explainable variance
of the VGG-19 conv5.1 model was at least 0.50 (adaptive sampling
test stimuli). The median correlation is indicated with an arrow.
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reasonable median explained explainable variance of
0.56, it showed no tolerance for scale variation (median r
= 0.03). This is expected, since the pixel-based model
performs a simple template matching and its output is
critically dependent on the position of the pixels’ gray
levels with respect to the template. Also, the initial layers
of the deep CNNs showed no or little scale tolerance,
whereas the scale tolerance was high in deeper CNN
layers (Fig. 13). The Alexnet conv5 and VGG-19 conv5.1
layer, which had high explained explainable variance,
showed asymptotic levels of scale tolerance, indicating
that these models not only fit well the shape selectivity of
the MSB neurons but also showed scale tolerance as
MSB neurons do. The fully connected layers demon-
strated levels of scale tolerance similar to those of the
deepest convolutional layers, but, as we described above
(Figs. 9B and 10B ), showed weaker goodness-of-fits of
the shape selectivity than the deep convolutional layers.

Discussion

We examined the shape selectivity of single neurons of
the macaque body category selective patch MSB, which
was defined with fMRI in the same two monkeys. Instead
of measuring responses only to a random collection of
arbitrary shapes, we explored the shape space locally
around shapes that were shown to be responsive in an
initial search test that included a fixed set of silhouettes of
various object categories. This adaptive sampling proce-
dure produced shapes that elicited stronger responses
than in the search test. Many, but not all, of these top
images were rated as body-like by naive human observ-
ers. The adaptive sampling procedure produced a large
range of responses in each single neuron to large number
of shapes, allowing quantitative modeling of the shape
selectivity. We tested a range of quantitative models of
shape selectivity and showed that the deeper convolu-
tional layers of current deep neural (CNN) networks pro-
vided the best models, explaining on average close to
80% of the explainable variance of the MSB responses to
the shapes. Furthermore, the deeper CNN layer units also
demonstrated size tolerance of the shape selectivity and
explained to a significant extent the response to shape
fragments.

The purpose of the adaptive stimulus sampling proce-
dure was to obtain a wide range of responses to a variety
of shapes and not to search for the optimal shape for an
MSB neuron. We believe it is impossible to determine the
optimal shape for a neuron, since one cannot sample with
sufficient resolution the vast shape space. One may na-
ively expect that body patch neurons prefer shapes that
are recognizable as bodies, but this was not the case for
the top shapes of several of our MSB neurons. This may
reflect a limited sampling of the shape space by our
adaptive stimulus sampling procedure. However, non-
body shapes produced sizable responses in some MSB
neurons, showing that MSB neurons can respond strongly
to shapes that are not easily recognizable as bodies. The
top images of the MSB neurons, although not likely iden-
tical to the optimal shapes for the neurons, are in line with
previous observations showing that some MSB neurons
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Figure 13. Scale tolerance of models. We computed for each
responses to the shapes with the original and reduced scale. The
same conventions as in .

respond well to natural images of nonbodies and some-
times even faces (Popivanov et al., 2014, 2016). The
present data support our previous suggestion that MSB
neurons do not respond to bodies as such but to (shape)
features that happen to be part of or resemble those
present in images of bodies. These features can be em-
bedded in nonbody configurations, explaining the re-
sponses to nonbody images. This is conceptually similar
to what has been observed in the face patch ML neigh-
boring MSB. ML neurons are selective to the contrast
polarity of regions of a face and respond also when such
a contrast polarity relation is present in images that hu-
mans do not classify as a face (Ohayon et al., 2012). MSB
and ML neurons are not “semantic” body and face detec-
tors, respectively.

The CAP model has been applied to the shape selec-
tivity of IT neurons that were randomly sampled from the
ventral bank and lip of the STS at anterior-posterior levels
that apparently included the level of MSB (Brincat and
Connor, 2004). The mean goodness-of-fit of the CAP
models (maximally six subunits) for the neurons in Brincat
and Connor (2004) was 0.70, which is higher than our
mean r of 0.58 for 6 subunits. The Brincat and Connor
(2004) stimulus set consisted of relatively simple and
highly constrained shapes with systematic manipulations
of orientation and curvature, unlike our stimulus set of
more complex shapes that were derived from silhouettes
of natural objects and adapted to the neuron’s responses.
The higher complexity of our shapes may require more
than six subunits of the CAP model (the maximal subunit
number used by Brincat and Connor [2004]), but increas-
ing the number of subunits to 12 only slightly increased
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neuron the Pearson correlation coefficient between the model
medians and interquartile ranges are plotted per model using the

the goodness-of-fit (mean r = 0.59). A possible reason of
the difference in goodness-of-fit between Brincat and
Connor (2004) and our study is that because of the ran-
dom sampling and wide range of locations in their study,
it is likely that few if any of their neurons were from MSB.
It is possible that the principles of the shape selectivity of
MSB neurons differ from those of other STS neurons. In
fact, there is fMRI evidence showing curvature-preferring
patches along the ventral bank and lip of the STS (Op de
Beeck et al., 2008; Srihasam et al., 2014; Yue et al., 2014),
suggesting a heterogeneity of shape processing within
the STS.

The CAP models performed similarly well when their
subunits had exclusively excitatory subunits compared
with mixed excitatory and inhibitory subunits. We ex-
pected that CAP models with both inhibitory and excit-
atory units would perform better than without excitatory
units, because the stimulus selectivity of MSB neurons
likely depends on both excitatory and inhibitory inputs (as
other IT neurons do; Wang et al., 2000). Because CAP
models with and without inhibitory units captured similar
amounts of response variance, it is difficult to decide by
modeling alone which of these two kind of models comes
closer the neurobiological truth. Also, CAP models with or
without nonlinear interactions among subunits performed
similarly. Because of the higher fits we obtained with other
models, we did not examine the CAP family of models
further. The linear pixel-based model outperformed even
the best CAP model, likely because it is not constrained
by having subunits that are selective for the orientation
and curvature of contour segments (as is the CAP model).
However, the pixel-based models do not show size toler-
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ance and hence cannot capture the overall stimulus se-
lectivity of MSB neurons. CNNs with several layers that
included nonlinear stages and were trained to classify a
large number of natural images showed size tolerance in
their deeper layers. These deep-layer CNN models pro-
duced the best fits of the models we tested, culminating in
a median goodness-of-fit (r) equal to 0.80 for the late deep
learning convolutional layers, explaining the large majority
of the explainable variance of single MSB neurons’ re-
sponses to shapes.

We predicted the neuron’s response by a linear
weighted combination of the outputs of the units of a CNN
layer. This approach is based on the argument that one
cannot expect a one-to-one mapping of the shape selec-
tivity of a single neuron and a single unit of a model layer
for the same reason that one cannot expect the same
shape selectivity among units sampled in two different
monkeys (Yamins and DiCarlo, 2016). However, it implies
that not the CNN units but their weighted linear combina-
tion—which is one (linear) processing stage further—con-
stitutes the model of the neurons.

Both deep CNNs showed an increase in their predict-
ability of single MSB neuron shape selectivity with in-
creasing layer. A similar trend has been observed when
predicting macaque IT multi-unit selectivity (Yamins et al.,
2014), voxel activations in human lateral occipital (LO)
area (Guclu and van Gerven, 2015), and the representa-
tion similarity of macaque and human (putative) IT
(Khaligh-Razavi and Kriegeskorte, 2014; Cichy et al.,
2016) with layers of deep CNNs. The fact that the shape
selectivity of single MSB neurons is best predicted by the
deeper CNN layers suggests that these neurons respond
to features that are more complex than oriented and
curved contours, which are preferred more by initial CNN
layers (Zeiler and Fergus, 2014; Guclu and van Gerven,
2015; Yosinski et al., 2015). Unlike in some fMRI studies
that examined putative human IT (Khaligh-Razavi and
Kriegeskorte, 2014; Cichy et al., 2016), the fully con-
nected layers performed worse than the late CNN layers
in predicting MSB shape selectivity. The fully connected
layers are close to or at the categorization stage of the
CNN and are likely strongly dependent on the specific
classifications the network was trained on. The relatively
poor performance of the fully connected layers suggests
that single MSB neurons do not carry much categorical
information, i.e. show little invariance across exemplars of
the same semantic category, unlike fully connected CNN
units (Yosinski et al., 2015).

We modeled 2D shape selectivity of MSB neurons be-
cause Popivanov et al. (2015) showed a sizable corre-
spondence between their preference for the original
textured and shaded images and their silhouettes. How-
ever, this correspondence was not perfect for some MSB
neurons, even when taking into account response reliabil-
ity. CNNs will likely be able to model texture and shading
cues—these are present in the images used for training
CNNs—and can be extended to encode binocular dispar-
ity cues, all of which may affect MSB responses. Bodies
can be identified from distances in which surface and
binocular depth cues can be poorly resolved. Indeed,
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bodies of different animals and their postures can typi-
cally be identified from their silhouettes, explaining the
strong contribution of shape selectivity to MSB responses
(Popivanov et al., 2015). Here we show that MSB shape
selectivity can be modeled quite well by deep convolu-
tional layers of CNNs that were trained to classify natural
images. It is noteworthy that we could model responses
to silhouettes from models that were trained with natural
images. The classes the CNNs were trained on included
images of bodies of animals and humans. It is not yet
known whether CNNs that were not trained with body
images would also model the shape selectivity of the
body patch neurons. Another avenue for research is how
the MSB shape selectivity and their models differ from
that of the more anterior STS body patch.
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